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Abstract:

We prove existence of a set E of positive real numbers, which is relatively small

in the sense that its logarithmic measure is finite, such that we can improve the error term of the
prime geodesic theorem as x — oo (z ¢ E). The result holds for any compact hyperbolic surfaces,
and it would also be true for generic hyperbolic surfaces of finite volume according to the

philosophy of Phillips and Sarnak.
Key words:

1. Introduction. Let I' C PSL(2,R) be a
cofinite Fuchsian group. Denote

dr(z) = Y logN(p),

N (p;kjéx
where p runs through primitive hyperbolic conju-
gacy classes (i.e. prime geodesics on I'\H with H
the upper half plane), N(p) = exp(length(p)), and k
runs through positive integers.
Prime geodesic theorem asserts that

Ur(z) ~x

Our chief concern is the error term of this formula.
We now briefly explain how it depends on the
estimate of an exponential sum over zeros of the
Selberg zeta function.

For simplicity we start from the modular
surface case. When T’ = PSL(2,Z), an analog of
the Riemann Hypothesis for the Selberg zeta
function Zr(s) is known to hold. That is, all
nontrivial zeros of Zr(s) lie on the line Re(s) =
By [I] Lemma 1, it holds for 1 < 7T < /z(logx)
that

1) (@) =z+ Y. f’f_’”w(; (10gsc)2>

=T Pi

NI

2

(T' = o0),

where p; = £ + iv; runs over the zeros of the Selberg
zeta function Zr(s) counted with multiplicity. It is
known that

2

#: bl <T) = = 4 eiTlog T+ O(T) (T — o)
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for some constant c¢;. Therefore by estimating the
sum over ; in (1) trivially, it holds that

br(z) = + o<x%T + ; (log:c)2> (T — o0).

On taking the optimal value T' = o log z, we have

Yr(z) =z + O(ﬂ; logz) (z— o).

For more general cofinite T', the formula (1)
is not explicitly proved, but the estimate of the
sum

Re(p)=% P

[Im(p)|<T

still controls the error term. By a detailed analysis
of the Selberg trace formula, a little better estimate
for the error term is known as

2) 0 (tog x)%) (T — o)

in [H1] Theorem 6.18 (p. 111) and [H2] Theorem 3.4
(p. 474) for cocompact and cofinite I', respectively.

In the past research the error terms in the
prime geodesic theorem have been successfully
improved only f%)rr arithmetic special cases. Iwaniec
[1] obtained O(z*%) for T = PSL(2,Z), Luo-Sarnak
[LS] improved it to O(z1°) and Luo-Rudnick-
Sarnak [LRS] generalized it for any congruence
subgroups in PSL(2,Z). Then the author [K]
extended it to arithmetic cocompact groups.

Thus the situation is quite different from the
classical case on prime number theorem, where we
have

(3) () =2+0(22(loga)’) (z— ox)
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under assuming the Riemann Hypothesis. This
difference is caused by the abundance of zeros for
Zp(s). The true size of the error term in the prime
geodesic theorem is unknown. If the distribution of
Laplace eigenvalues is uniform enough to make a
huge cancellation oceur, then the error term may
be as good as O(x2"¢). If this is correct, we would
say that we are still standing very far from the
truth, even if we almost proved the Riemann
Hypothesis.

According to Hejhal [H1] Theorem 15.13
(p. 252), the error term for the prime geodesic
theorem is expressed for cocompact cases as

O(z%(logx)l%ﬂ> (z — 00),
if S(t) = Larg Zr(3 +it) satisfies that S(t) = O(t")
for some 0 < a < 1. Taking @ — 1 would recover
the trivial bound above. If Sl(t) were bounded, we
would take o — 0 to get O(x2logz). But we do not
have any evidence for that.

In this paper we obtain an evidence for the
trivial error term (2) is not optimal. For describing
our result, we define the logarithmic measure p* (E)
of a measurable subset £ C R>9 as

W (E) = dr.
E X

When TI' is cofinite but not cocompact, there
exist continuous spectra and the generalized Weyl
law asserts that

. 1 T3 +it)
(4) #{j: 1yl < T}+E/det
vol(T'\H)

- 4
for some constant ¢; with ¢ the scattering determi-
nant. We call I' ordinary if it satisfies either of the

following two conditions:

(i) The first term is the main term in the left

hand side of (4). That is
vol(T'\H)
4

T? + ¢,TlogT + O(T) (T — 00)

#i: lul <Tr~ T° (T — o0).

(ii) The second term is the main term, and the
first term satisfies that

#{j: il <T}=0(T)

Any congruence subgroup I' satisfies the condition
(i). On the other hand, a generic cofinite I" should
satisfy (ii) according to the philosophy of Phillips

(T — ).

[Vol. 92(A),

and Sarnak [PS].

Theorem 1. For any cocompact or ordinary
cofinite I', there exists a subset E in Rso whose
logarithmic measure is finite, such that

P )
Yr(z) =z + Z Ty O(x%(log log x)%ﬂ)
1 P
Re(p)>3
(x — 00, ¢ E),

where p runs through the finite number of excep-
tional zeros of the Selberg zeta function.

Theorem 1 gives an improvement of (2). The
proof is analogous to that of Gallagher [G2] for the
Riemann zeta function. His result was conditional
in the sense that he had to assume the Riemann
Hypothesis. In our case, however, we do not need
any assumption for proving the existence of the set
FE, because the Riemann Hypothesis is proved for
Selberg zeta functions except for at most finitely
many exceptional zeros.

2. Proofs. We quote a lemma discovered
earlier by Gallagher [G2].

Lemma 1 (Gallagher [G1]). Let A be a dis-
crete subset of R. For any given sequence c¢(v) € C
(v € A), assume that the series

S(u) _ ZC(V)GQWiVU

veA

is absolutely convergent. Then for any 0 € (0,1), it
holds that

[oseotans (i) [

Let

wl,p(.’b) = /OI wp(u)du

Theorem 2. For any cocompact or ordinary
cofinite T, there exists a subset E in R whose
logarithmic measure is finite, such that for anye > 0
it holds that

$2 x/ﬂrl

hr@ =5+ Y ——
’ 2 +1
Reel plp+1)
Iy<x

+0 (z% (loglog z)%H)

(x = 00, x¢ E).

Proof. By Hejhal [H1] Theorem 6.16 (p. 110),
it holds that
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(5) Yir(z) = oz + Boxlogz + oy + B logx
(R a2y >
T 2 >
[Im(p)|<T

2]
—&-O(x ;gx) (T,x — o0)

with some constants ag, ai, Gy, 41 and

x1+p

p(1+ p)

F(z) = (29— 2) i % ot
k=2

Actually the above theorem is explicitly proved for
cocompact I', and it is generalized by himself in [H2]
in the proof of Theorem 3.4 (p. 474) for cofinite I

Since
x/)+1 Z‘p+1 x/}+1
zp: plp+1) le(p+1)+ le(pﬂ)’
<X Re(p)>3 Re(p)=3
B <X lv<x

where the first term in the left hand side is a finite
sum, it suffices to estimate the last sum

P

+1)°
Re(ﬂ):%p(p )
[71<X

For Y < X, we have by putting z = Xe>™

2

eX Z Ierl dx
+1)| 2t
X | it plp+1)
Y<h|<X
2
_/eX Z xi"/ dx
B +1 T
X p(p+1)
Y<|yl<X

X i
Z ( +1) e?m'yu du
Re(p=t
Y<fyl<

2

1 i~
- 27T/ Ty ) g,
. p(p+1)

| Re(p)=3
Y<phl<

We apply Lemma 1 to v=+=1Im(p), § =U = ﬁ
and
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Xy
- 2
plp+1)
0 (otherwise)

) — (¥ <yl < X)

Thus

eX l‘ﬁ+1 dx

2 +1)| 2t
Rl plp+1)
Y<ph|<X

1 2 o0 1
<-4 / R
<Sln Z) —00 t<\p\§t+1 |p(p + 1)|

Y<h|<X

2

The number of « participating in the sum is
O(t) by Weyl’s law:
vol(I'\H)

#{j: |yl <T}= e

T? + e1Tlog T + O(T)
(T — o0)

for cocompact I', and by the assumption that I' is
ordinary for cofinite I'. Since p(/}H) =0(t™?) (t—
00), we have

eX p+1 d X+11
[ o
X plp+1)| z y1 t

Re(p)=3
Y<|ylsX
=0y (Y - )
In particular, when X = ¢e",
2
Y41
e xp+1 dzx
/y Z plp+1) ?:O(Yil)'
‘ Re(p)=3
Y<pyl<e”
Define a set Ey by
xp+1
Ey=<z¢€ eY,eY+1 : R =
: ] Z_l plp+1)
Re(p)=3
Y<ly|<e”

1
5te

v
ol

x2(loglog x)
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We denote its logarithmic measure by My =
1 (Ey).
2

xrtl dx
vis [y S
By ‘L plpt1)| z

Re(p)=35

Y<|y|<e?

N\2d
Z/ ( %(loglogx)%+°> —f
Ey z

d
> (1oglogey)1+25/ d
By T

= (log Y)""™* My

Hence

1
My =0 ————|.
Y <Y(10g Y)1+2€>

Then the logarithmic measure of the set

oo
E=JEy
Y=2
is estimated by

M<<ZM Si log

o0 1
< ———-dx < 0.
/2 z(logz)' ™

By the definition of F, it holds for any z € R\
that

Y /1126

P! 3 1
Z m < \/.E (10g10g$)2+8. U
Re(—4 77
Y<py<e

Proof of Theorem 1. Since 1 is an increasing
function, we have

1 z+h
o<y / W(t)dt

1
= = (@ +h) — (@)
Thus if we denote the error term by R(z) as
zP
) =z+ Y, —+R(@)
Re(p)>3 ©
<X

it holds from Theorem 2 that
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x’
— @) —a— 3T
Re(p)>%
[y|<X
Y1(z +h) — () z’
< ),z 2
Re(p)>3

h 2 2
Z (z + h)"T — gt
- +1
Rl plp+1)

+O( %(loglogx)’frg) —r— Z

xP

Re(p)>% P

<x

(x > 00,2 ¢ F)

3 1.
h x§(logloo x)2'

=240
2—|—

By choosing

h=

we have

R(z) = O( %(log log z)1™"

[ G1]
[ G2 ]

[ HL]

[ H2 ]

[ 1]
[ K]

. (x =00,z ¢ F).

2 (loglog 21",

>J>I>—A

) (x = 00,2 ¢ E). O
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