Non-norm-Euclidean fields in basic Z_l -extensions

By Kuniaki HORIE^{*)} and Mitsuko HORIE^{**)}

(Communicated by Masaki KASHIWARA, M.J.A., Dec. 14, 2015)

Abstract: We shall deal with infinite towers of cyclic fields of genus number 1 in which a prime number $l \ge 5$ is totally ramified. Our main result states that, if m is a positive divisor of l-1 less than (l-1)/2, then for any positive integer n, the cyclic field of degree ml^n with conductor l^{n+1} is not norm-Euclidean. In particular, it follows that, for any positive integer n, the (real) cyclic field of degree l^n with conductor l^{n+1} is not norm-Euclidean and that the (imaginary) cyclic field of degree 14 with conductor 49, whose class number is known to equal 1, is not norm-Euclidean.

Key words: Norm-Euclidean field; cyclic field; class number; genus number; basic Z_l -extension.

1. Introduction. Given any finite extension F of the rational field Q in the complex field C, we denote by N_F the norm map from F to Q. The field F will be called norm-Euclidean if, for every pair (α, β) of algebraic integers in F with $\beta \neq 0$, there exists an algebraic integer γ in F such that $|N_F(\alpha - \gamma\beta)| < |N_F(\beta)|$. As is well known, when F is norm-Euclidean, the class number of F equals 1. We call F a cyclic field if F is a cyclic extension over Q.

Among interesting results of McGown [Mc], Theorem 4.1 of the paper implies that, for any prime number $l \ge 5$, the cyclic field of degree l with conductor l^2 is not norm-Euclidean. The proof of the theorem, which is partly based on McGown's variant [Mc, Lemma 4.2] of Heilbronn's criterion (cf. [H]), enables us to extend the above assertion to the following.

Proposition 1. Let l be a prime number not less than 5, and m a positive divisor of l-1 less than (l-1)/2. Then, for any positive integer n, the cyclic field of degree ml^n with conductor l^{n+1} is not norm-Euclidean.

This result particularly implies that, if l is a prime number not less than 5, then for any positive integer n, the cyclic field of degree l^n with conductor l^{n+1} is not norm-Euclidean. On the other hand, the real cyclic field of degree 2^n with conductor 2^{n+2} for each $n \in \{1, 2, 3\}$ and the cyclic field of degree 3 with conductor 9 are known to be norm-Euclidean (cf. Cerri [C], Cohn and Deutsch [CD], Davenport [D]). Furthermore, certain real cyclic fields whose conductors are prime-powers, including all non-norm-Euclidean cyclic fields given by Proposition 1 for m = 1, are expected to have class number 1; indeed, there exist various known results that let us hold such expectations (cf. Bauer [B], Buhler, Pomerance and Robertson [BPR], [HH], van der Linden [Li], Masley [Ma], Miller [Mi], etc.). Proposition 1 seems remarkable in view of the facts mentioned above.

Throughout the rest of the present paper, we fix a prime number $l \geq 5$ and a positive divisor m of l-1. Let k be the cyclic field of degree m with conductor dividing l. We denote by \mathbf{Z}_l the ring of *l*-adic integers, and by B_{∞} the unique abelian extension of Q in C whose Galois group over Q is topologically isomorphic to the additive group of \mathbf{Z}_l . For each positive integer n, let \mathbf{B}_n denote the subfield of B_{∞} of degree l^n . It then follows that not only is l totally ramified in the compositum kB_n (in C) but kB_n is the cyclic field of degree ml^n with conductor l^{n+1} . Naturally k and kB_n for all positive integers n form an increasing sequence of the intermediate fields between k and kB_{∞} other than kB_{∞} . For each finite extension E of Q in C, the compositum EB_{∞} is called the basic Z_l -extension over E, the extension $E \pmb{B}_{\infty} / E$ being an abelian extension with Galois group topologically isomorphic to the additive group of \mathbf{Z}_l . Thus Proposition 1 can be restated as follows: If m < (l-1)/2, then kB_n is not norm-Euclidean for any positive integer n, namely, no finite extension of k other than k in

²⁰¹⁰ Mathematics Subject Classification. Primary 11A05; Secondary 11R20, 11R29.

 ^{*) 3-9-2-302} Sengoku, Bunkyo-ku, Tokyo 112-0011, Japan.
**) Department of Mathematics, Ochanomizu University,
2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan.

the basic \mathbf{Z}_l -extension over k is norm-Euclidean.

2. Preliminaries and proof. For the cyclic field B_1 of degree l with conductor l^2 , let \mathcal{N} denote the set of the absolute norms of all non-zero integral ideals of B_1 . To prove Proposition 1, we first give a modification of [Mc, Lemma 4.2]:

Lemma 1. Let m' be a positive divisor of l-1, and k' a cyclic field of degree m' in which l is totally ramified in the case m' > 1. Assume that there exists a positive integer a < l satisfying $a \notin \mathcal{N}$, $l-a \notin \mathcal{N}$, and $a \equiv g^{m'} \pmod{l}$ with some integer g. Then $k'\mathbf{B}_n$ is not norm-Euclidean for any positive integer n.

Proof. Let n be any positive integer, and let $F' = k' \boldsymbol{B}_n$. For a contradiction, we suppose that F'is norm-Euclidean, whence the class number of F' is equal to 1. The condition on k' implies that l is totally ramified in F'. Let \mathfrak{l} be the prime ideal of F' dividing l, and λ an algebraic integer in F'generating the principal ideal \mathfrak{l} . Since F' is norm-Euclidean, there exists an algebraic integer γ in F'which satisfies $|N_{F'}(g - \gamma \lambda)| < |N_{F'}(\lambda)| = l$. We put $\alpha = g - \gamma \lambda$, so that we have $\alpha \equiv g \pmod{\mathfrak{l}}$. Hence $N_{F'}(\alpha) \equiv q^{m'l^n} \pmod{\mathfrak{l}}$, i.e., $N_{F'}(\alpha) \equiv q^{m'l^n} \equiv$ $g^{m'} \pmod{l}$. Consequently, $N_{F'}(\alpha) \equiv a \pmod{l}$. Since $|N_{F'}(\alpha)| < l$ and 0 < a < l, it follows that $N_{F'}(\alpha) = a$ or $N_{F'}(\alpha) = a - l$. We thus deduce that a or l-a coincides with the absolute norm of the norm for F'/B_1 of the principal ideal of F'generated by α . This contradicts the assumption of the lemma.

Lemma 2. Every integer b in \mathcal{N} less than l fulfills $b^{l-1} \equiv 1 \pmod{l^2}$.

Proof. If a prime divisor v of an integer a in \mathcal{N} is not decomposed in \mathbf{B}_1 , then v^l or l divides a according to whether v remains prime or is ramified in \mathbf{B}_1 , so that one has $a \ge l$. Further, for any prime number $v' \ne l$, the order of v' modulo l^2 is equal to the order of the decomposition group of v' with respect to the cyclotomic extension $\mathbf{Q}(e^{2\pi i/l^2})/\mathbf{Q}$. Hence, for every integer b in \mathcal{N} with 1 < b < l, every prime divisor w of b is decomposed in \mathbf{B}_1 and therefore satisfies $w^{l-1} \equiv 1 \pmod{l^2}$. In addition, it is obvious that $1 \in \mathcal{N}$ and $1^{l-1} \equiv 1 \pmod{l^2}$.

For each integer *a* relatively prime to *l*, let r(a) denote the order of *a* modulo *l*. Let *R* be the set of positive integers a < l satisfying $a \equiv g^m \pmod{l}$ for some integer *g*. We easily find that a positive integer a < l belongs to *R* if and only if r(a) divides the integer (l-1)/m.

Lemma 3. If m < (l-1)/2, then $\{a, l-a\} \cap \mathcal{N} = \emptyset$ with some element a of R.

Proof. Assume that m < (l-1)/2, i.e., 2 < l(l-1)/m. Then there exists a prime number v such that v^* divides (l-1)/m, where v^* denotes 4 or v according as v = 2 or v > 2. Simultaneously we can choose a positive integer a' < l with $r(a') = v^*$. Since a' belongs to R, the conclusion of the lemma holds if $a' \notin \mathcal{N}$ and $l - a' \notin \mathcal{N}$. We now consider the case where an element b of $\{a', l-a'\} \cap \mathcal{N}$ exists. Note that $\{r(a'), r(l-a')\} = \{v^*, 2v\}$. We take the maximal integer j > 0 with $b^j < l$. Let a and c be respectively the remainder and the quotient of the division of b^{j+1} by l. Obviously, $b^{j+1} = a + lc$, 0 < a < l and c > 0. As $b^{j+1} < l^{1+1/j}$, we have $c < l^{j+1} < l^{j+1/j}$. $l^{1/j}$. Furthermore, since $l \ge 5$, it is clear that $l^{1/j} < l^{1/j}$ l-2 if $j \ge 2$. In the case j=1, the relation $b^{j+1}=$ a + l(l-1) implies that $l-a = (l+b)(l-b) \ge l$ l+b, which is impossible. We thus obtain $1 \leq$ c < l-2. On the other hand, as Lemma 2 yields $b^{l-1} \equiv 1 \pmod{l^2}$, we see that $(a+lc)^{l-1} \equiv$ $(b^{l-1})^{j+1} \equiv 1 \pmod{l^2}$, so that $a^l \equiv (a+lc)^l \equiv a+l^2$ $lc \pmod{l^2}$; it then follows that $(l-a)^l \equiv -a^l \equiv$ $-a - lc \pmod{l^2}$. Hence $a^l \not\equiv a \pmod{l^2}$ and $(l-a)^l \not\equiv l-a \pmod{l^2}$. Therefore, by Lemma 2, we have $\{a, l-a\} \cap \mathcal{N} = \emptyset$. As 1 belongs to \mathcal{N} , this implies that $a \notin \{1, l-1\}$, i.e., $r(a) \notin \{1, 2\}$. However, r(a) divides r(b), an element of $\{v^*, 2v\}$. Thus r(a) equals v^* or 2v, i.e., $\{r(a), r(l-a)\} = \{v^*, 2v\}.$ Hence, replacing a by l-a if necessary, we may regard a as an element of R. \square

We add that the converse of Lemma 3 is also true. In fact, if $(l-1)/m \leq 2$, then $R \subseteq \{1, l-1\}$ or, equivalently, $\{a, l-a\} \cap \mathcal{N} \ni 1$ for every element a of R.

Proof of Proposition 1. Under the assumption of the proposition, Lemma 3 shows that there exists a positive integer a < l satisfying $a \notin \mathcal{N}, l - a \notin \mathcal{N},$ and $a \equiv g^m \pmod{l}$ for some integer g. Since l is totally ramified in k in the case m > 1, we can take m and k respectively as m' and k' of Lemma 1. Therefore Lemma 1 completes the proof. \Box

3. Associated results. Let $\theta = \cos(2\pi/49) \times \cos(11\pi/49)\cos(36\pi/49)$. Since $B_1 = Q(\theta)$ if l = 7, we see from Proposition 1 that $Q(\theta, \sqrt{-7})$, the cyclic field of degree 14 with conductor 49, is not norm-Euclidean. Meanwhile, in [Y], Yamamura determined all imaginary finite abelian extensions over Q in C with class number 1. The theorem of [Y], together with the last table of [Y], tells

us that $Q(\theta, \sqrt{-7})$ is the unique imaginary cyclic field of class number 1 to which Proposition 1 is applicable.

Next let \mathfrak{F} be a finite abelian extension over Qin C. Let \mathfrak{F}^* denote the maximal abelian extension over Q, in the Hilbert class field over \mathfrak{F} (in C), that contains \mathfrak{F} . Then \mathfrak{F}^* coincides with the genus field (Geschlechterkörper) of \mathfrak{F} in the sense of Leopoldt [Le] or the maximal real subfield of this genus field of \mathfrak{F} according to whether \mathfrak{F} is imaginary or real. The genus number of \mathfrak{F} is defined as the degree of $\mathfrak{F}^*/\mathfrak{F}$ (cf. Furuta [F]), so that the genus number of \mathfrak{F} divides the class number of \mathfrak{F} . Hence \mathfrak{F} is not norm-Euclidean if the genus number of \mathfrak{F} exceeds 1. On the other hand, \mathfrak{F} is a cyclic field of genus number 1 if the conductor of \mathfrak{F} is a power of $l \geq 5$.

From now on, let us deal with cyclic fields of genus number 1 in which l is totally ramified and further a prime number other than l is ramified. We denote by t the highest power of 2 dividing l-1. Naturally $t \ge 2$ since $l \ge 5$. We denote by U the union of $\{4, 8\}$ and the set of prime numbers not equal to l but congruent to 3 modulo 4. Let \mathfrak{K} be a cyclic field, not contained in the cyclotomic field $Q(e^{2\pi i/l})$, such that l is totally and tamely ramified in \mathfrak{K} . Then, essentially by the genus theory of [Le], the following three conditions turn out to be equivalent (cf. also [F], Iyanaga and Tamagawa [IT]):

- (1) the genus number of \mathfrak{K} is equal to 1,
- (2) \Re is the compositum of a cyclic field in $Q(e^{2\pi i/l})$ of odd degree and a real cyclic field of degree t whose conductor is the product of l and an element of U,
- (3) for every positive integer n, the genus number of the cyclic field $\Re B_n$ is equal to 1.

Under the condition (2), the ramification index for \mathfrak{K}/\mathbf{Q} of the prime number other than l dividing the conductor of \mathfrak{K} coincides with 2, whence \mathfrak{K} is a real quadratic extension over a subfield of $\mathbf{Q}(\cos(2\pi/l))$.

Proposition 2. Assume that (l-1)/(2m) is an odd integer greater than 1. Let q be any element of U, and let K be the compositum of the maximal subfield of k with odd degree and the real cyclic field of degree t with conductor lq. Then KB_n is not norm-Euclidean for any positive integer n.

Proof. We first note that, by the hypothesis and the fact stated just above the proposition, the real cyclic field K is a quadratic extension over k. As (l-1)/m > 2, Lemma 3 shows that there exists

an element b of R with $\{b, l-b\} \cap \mathcal{N} = \emptyset$. When the divisor r(b) of (l-1)/m is even, we have r(l-b) = r(b)/2 since (l-1)/(2m) is an odd integer. Hence r(b) or r(l-b) divides (l-1)/(2m), namely, b or l-b is congruent to g^{2m} modulo l for some integer g. Furthermore, l is totally and tamely ramified in K. The proposition thus holds by Lemma 1 for the case where m' = 2m and k' = K.

In the above, $K = k(\sqrt{lq})$ if *m* is odd. This fact leads us to state an immediate consequence of Proposition 2, as follows:

Proposition 3. Take any prime number $p \neq l$ with $p \not\equiv 1 \pmod{4}$. Suppose that $l \equiv 3 \pmod{4}$, m is odd, and $l \geq 6m + 1$. Then neither $kB_n(\sqrt{l})$ nor $kB_n(\sqrt{lp})$ is norm-Euclidean for any positive integer n.

We now take a positive integer n. In the case where $l \equiv 1 \pmod{4}$ and $l \geq 13$, Proposition 1 for m = 2 asserts that $\mathbf{B}_n(\sqrt{l})$ is not norm-Euclidean. In the case where $l \equiv 3 \pmod{4}$ and $l \geq 7$, Proposition 3 for m = 1 implies that $\mathbf{B}_n(\sqrt{l})$ is not norm-Euclidean. The following simple result is therefore obtained.

Proposition 4. Whenever $l \ge 7$, $B_n(\sqrt{l})$ is not norm-Euclidean for any positive integer n.

Acknowledgment. The authors express their sincere gratitude to the referee who made many detailed and helpful comments for the paper.

References

- [B] H. Bauer, Numerische Bestimmung von Klassenzahlen reeller zyklischer Zahlkörper, J. Number Theory 1 (1969), 161–162.
- [BPR] J. Buhler, C. Pomerance and L. Robertson, Heuristics for class numbers of prime-power real cyclotomic fields, in *High primes and misdemeanours: lectures in honour of the* 60th birthday of Hugh Cowie Williams, Fields Inst. Commun., 41, Amer. Math. Soc., Providence, RI, 2004, pp. 149–157.
- $\begin{bmatrix} C \end{bmatrix} J.-P. Cerri, De l'euclidianité de$ $<math>\mathbf{Q}(\sqrt{2+\sqrt{2}+\sqrt{2}})$ et $\mathbf{Q}(\sqrt{2+\sqrt{2}})$ pour la norme, J. Théor. Nombres Bordeaux **12** (2000), no. 1, 103–126.
- [CD] H. Cohn and J. Deutsch, Use of a computer scan to prove $\mathbf{Q}(\sqrt{2+\sqrt{2}})$ and $\mathbf{Q}(\sqrt{3+\sqrt{2}})$ are Euclidean, Math. Comp. **46** (1986), no. 173, 295–299.
- [D] H. Davenport, On the product of three nonhomogeneous linear forms, Math. Proc. Cambridge Philos. Soc. 43 (1947), 137–152.
 - F] Y. Furuta, The genus field and genus number in algebraic number fields, Nagoya Math. J. 29 (1967), 281–285.

- [H] H. Heilbronn, On Euclid's algorithm in cyclic fields, Canadian J. Math. **3** (1951), 257–268.
- $\left[\begin{array}{c} \mathrm{HH} \end{array} \right] \hspace{0.1 cm} \mathrm{K.} \hspace{0.1 cm} \mathrm{Horie} \hspace{0.1 cm} \mathrm{and} \hspace{0.1 cm} \mathrm{M.} \hspace{0.1 cm} \mathrm{Horie}, \hspace{0.1 cm} \mathrm{The} \hspace{0.1 cm} l\text{-class} \hspace{0.1 cm} \mathrm{group} \hspace{0.1 cm} \mathrm{of} \hspace{0.1 cm} \mathrm{the} \hspace{0.1 cm} \\ \hspace{0.1 cm} \mathbf{Z}_{p} \hspace{0.1 cm} \mathrm{extension} \hspace{0.1 cm} \mathrm{over} \hspace{0.1 cm} \mathrm{the} \hspace{0.1 cm} \mathrm{rational} \hspace{0.1 cm} \mathrm{field}, \hspace{0.1 cm} \mathrm{J.} \hspace{0.1 cm} \mathrm{Math.} \\ \hspace{0.1 cm} \mathrm{Soc.} \hspace{0.1 cm} \mathrm{Japan} \hspace{0.1 cm} \mathbf{64} \hspace{0.1 cm} (2012), \hspace{0.1 cm} \mathrm{no} \hspace{0.1 cm} 4, \hspace{0.1 cm} 1071 \hspace{-0.1 cm} -1089. \end{array}$
- [IT] S. Iyanaga and T. Tamagawa, Sur la théorie du corps de classes sur le corps des nombres rationnels, J. Math. Soc. Japan 3 (1951), 220– 227.
- [Le] H. W. Leopoldt, Zur Geschlechtertheorie in abelschen Zahlkörpern, Math. Nachr. 9 (1953), 351–362.
- [Li] F. J. van der Linden, Class number computations of real abelian number fields, Math.

Comp. **39** (1982), no. 160, 693–707.

- [Ma] J. M. Masley, Class numbers of real cyclic number fields with small conductor, Compositio Math. **37** (1978), no. 3, 297–319.
- [Mc] K. J. McGown, Norm-Euclidean cyclic fields of prime degree, Int. J. Number Theory 8 (2012), no. 1, 227–254.
- [Mi] J. C. Miller, Class numbers in cyclotomic $\mathbb{Z}_{p^{-1}}$ extensions, J. Number Theory **150** (2015), 47–73.
- [Y] K. Yamamura, The determination of the imaginary abelian number fields with class number one, Math. Comp. 62 (1994), no. 206, 899– 921.