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Abstract: We shall deal with infinite towers of cyclic fields of genus number 1 in which a

prime number l � 5 is totally ramified. Our main result states that, if m is a positive divisor of

l� 1 less than ðl� 1Þ=2, then for any positive integer n, the cyclic field of degree mln with

conductor lnþ1 is not norm-Euclidean. In particular, it follows that, for any positive integer n, the

(real) cyclic field of degree ln with conductor lnþ1 is not norm-Euclidean and that the (imaginary)

cyclic field of degree 14 with conductor 49, whose class number is known to equal 1, is not norm-

Euclidean.
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1. Introduction. Given any finite extension

F of the rational field Q in the complex field C ,

we denote by NF the norm map from F to Q. The

field F will be called norm-Euclidean if, for every

pair ð�; �Þ of algebraic integers in F with � 6¼ 0,

there exists an algebraic integer � in F such that

jNF ð�� ��Þj < jNF ð�Þj. As is well known, when F

is norm-Euclidean, the class number of F equals 1.

We call F a cyclic field if F is a cyclic extension

over Q.

Among interesting results of McGown [Mc],

Theorem 4.1 of the paper implies that, for any

prime number l � 5, the cyclic field of degree l with

conductor l2 is not norm-Euclidean. The proof of

the theorem, which is partly based on McGown’s

variant [Mc, Lemma 4.2] of Heilbronn’s criterion

(cf. [H]), enables us to extend the above assertion to

the following.

Proposition 1. Let l be a prime number not

less than 5, and m a positive divisor of l� 1 less

than ðl� 1Þ=2. Then, for any positive integer n, the

cyclic field of degree mln with conductor lnþ1 is not

norm-Euclidean.

This result particularly implies that, if l is a

prime number not less than 5, then for any positive

integer n, the cyclic field of degree ln with conductor

lnþ1 is not norm-Euclidean. On the other hand, the

real cyclic field of degree 2n with conductor 2nþ2 for

each n 2 f1; 2; 3g and the cyclic field of degree 3

with conductor 9 are known to be norm-Euclidean

(cf. Cerri [C], Cohn and Deutsch [CD], Davenport

[D]). Furthermore, certain real cyclic fields whose

conductors are prime-powers, including all non-

norm-Euclidean cyclic fields given by Proposition 1

for m ¼ 1, are expected to have class number 1;

indeed, there exist various known results that let us

hold such expectations (cf. Bauer [B], Buhler,

Pomerance and Robertson [BPR], [HH], van der

Linden [Li], Masley [Ma], Miller [Mi], etc.). Prop-

osition 1 seems remarkable in view of the facts

mentioned above.

Throughout the rest of the present paper, we

fix a prime number l � 5 and a positive divisor m

of l� 1. Let k be the cyclic field of degree m with

conductor dividing l. We denote by Z l the ring of

l-adic integers, and by B1 the unique abelian

extension of Q in C whose Galois group over Q is

topologically isomorphic to the additive group of

Z l. For each positive integer n, let Bn denote the

subfield of B1 of degree ln. It then follows that

not only is l totally ramified in the compositum kBn

(in C) but kBn is the cyclic field of degree mln with

conductor lnþ1. Naturally k and kBn for all positive

integers n form an increasing sequence of the

intermediate fields between k and kB1 other than

kB1. For each finite extension E of Q in C , the

compositum EB1 is called the basic Z l-extension

over E, the extension EB1=E being an abelian

extension with Galois group topologically isomor-

phic to the additive group of Z l. Thus Proposition 1

can be restated as follows: If m < ðl� 1Þ=2, then

kBn is not norm-Euclidean for any positive integer

n, namely, no finite extension of k other than k in
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the basic Z l-extension over k is norm-Euclidean.

2. Preliminaries and proof. For the cyclic

field B1 of degree l with conductor l2, let N denote

the set of the absolute norms of all non-zero integral

ideals of B1. To prove Proposition 1, we first give a

modification of [Mc, Lemma 4.2]:

Lemma 1. Let m0 be a positive divisor of

l� 1, and k0 a cyclic field of degree m0 in which l is

totally ramified in the case m0 > 1. Assume that

there exists a positive integer a < l satisfying a =2 N ,

l� a =2 N , and a � gm0 (mod lÞ with some integer g.

Then k0Bn is not norm-Euclidean for any positive

integer n.

Proof. Let n be any positive integer, and let

F 0 ¼ k0Bn. For a contradiction, we suppose that F 0

is norm-Euclidean, whence the class number of F 0 is
equal to 1. The condition on k0 implies that l is

totally ramified in F 0. Let l be the prime ideal of

F 0 dividing l, and � an algebraic integer in F 0

generating the principal ideal l. Since F 0 is norm-

Euclidean, there exists an algebraic integer � in F 0

which satisfies jNF 0 ðg� ��Þj < jNF 0 ð�Þj ¼ l. We

put � ¼ g� ��, so that we have � � g (mod lÞ.
Hence NF 0 ð�Þ � gm

0ln (mod lÞ, i.e., NF 0 ð�Þ � gm
0ln �

gm
0

(mod lÞ. Consequently, NF 0 ð�Þ � a (mod lÞ.
Since jNF 0 ð�Þj < l and 0 < a < l, it follows that

NF 0 ð�Þ ¼ a or NF 0 ð�Þ ¼ a� l. We thus deduce that

a or l� a coincides with the absolute norm of the

norm for F 0=B1 of the principal ideal of F 0

generated by �. This contradicts the assumption

of the lemma. �

Lemma 2. Every integer b in N less than l

fulfills bl�1 � 1 (mod l2Þ.
Proof. If a prime divisor v of an integer a in N

is not decomposed in B1, then vl or l divides a

according to whether v remains prime or is ramified

in B1, so that one has a � l. Further, for any prime

number v0 6¼ l, the order of v0 modulo l2 is equal to

the order of the decomposition group of v0 with

respect to the cyclotomic extension Qðe2�i=l2Þ=Q.

Hence, for every integer b in N with 1 < b < l, every

prime divisor w of b is decomposed in B1 and

therefore satisfies wl�1 � 1 (mod l2Þ. In addition, it

is obvious that 1 2 N and 1l�1 � 1 (mod l2Þ. �

For each integer a relatively prime to l, let rðaÞ
denote the order of a modulo l. Let R be the set of

positive integers a < l satisfying a � gm (mod lÞ for

some integer g. We easily find that a positive

integer a < l belongs to R if and only if rðaÞ divides

the integer ðl� 1Þ=m.

Lemma 3. If m < ðl� 1Þ=2, then fa; l� ag \
N ¼ ; with some element a of R.

Proof. Assume that m < ðl� 1Þ=2, i.e., 2 <

ðl� 1Þ=m. Then there exists a prime number v such

that v� divides ðl� 1Þ=m, where v� denotes 4 or v

according as v ¼ 2 or v > 2. Simultaneously we can

choose a positive integer a0 < l with rða0Þ ¼ v�.
Since a0 belongs to R, the conclusion of the lemma

holds if a0 =2 N and l� a0 =2 N . We now consider the

case where an element b of fa0; l� a0g \N exists.

Note that frða0Þ; rðl� a0Þg ¼ fv�; 2vg. We take the

maximal integer j > 0 with bj < l. Let a and c

be respectively the remainder and the quotient of

the division of bjþ1 by l. Obviously, bjþ1 ¼ aþ lc,
0 < a < l and c > 0. As bjþ1 < l1þ1=j, we have c <

l1=j. Furthermore, since l � 5, it is clear that l1=j <

l� 2 if j � 2. In the case j ¼ 1, the relation bjþ1 ¼
aþ lðl� 1Þ implies that l� a ¼ ðlþ bÞðl� bÞ �
lþ b, which is impossible. We thus obtain 1 �
c � l� 2. On the other hand, as Lemma 2 yields

bl�1 � 1 (mod l2Þ, we see that ðaþ lcÞl�1 �
ðbl�1Þjþ1 � 1 (mod l2Þ, so that al � ðaþ lcÞl � aþ
lc (mod l2Þ; it then follows that ðl� aÞl � �al �
�a� lc (mod l2Þ. Hence al 6� a (mod l2Þ and

ðl� aÞl 6� l� a (mod l2Þ. Therefore, by Lemma 2,

we have fa; l� ag \N ¼ ;. As 1 belongs to N , this

implies that a =2 f1; l� 1g, i.e., rðaÞ =2 f1; 2g. How-

ever, rðaÞ divides rðbÞ, an element of fv�; 2vg. Thus

rðaÞ equals v� or 2v, i.e., frðaÞ; rðl� aÞg ¼ fv�; 2vg.
Hence, replacing a by l� a if necessary, we may

regard a as an element of R. �

We add that the converse of Lemma 3 is also

true. In fact, if ðl� 1Þ=m � 2, then R � f1; l� 1g or,

equivalently, fa; l� ag \N 3 1 for every element a

of R.

Proof of Proposition 1. Under the assumption

of the proposition, Lemma 3 shows that there exists

a positive integer a < l satisfying a =2 N , l� a =2 N ,

and a � gm (mod lÞ for some integer g. Since l is

totally ramified in k in the case m > 1, we can take

m and k respectively as m0 and k0 of Lemma 1.

Therefore Lemma 1 completes the proof. �

3. Associated results. Let � ¼ cosð2�=49Þ �
cosð11�=49Þ cosð36�=49Þ. Since B1 ¼ Qð�Þ if l ¼ 7,

we see from Proposition 1 that Qð�;
ffiffiffiffiffiffiffi
�7
p

Þ, the

cyclic field of degree 14 with conductor 49, is not

norm-Euclidean. Meanwhile, in [Y], Yamamura

determined all imaginary finite abelian extensions

over Q in C with class number 1. The theorem

of [Y], together with the last table of [Y], tells
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us that Qð�;
ffiffiffiffiffiffiffi
�7
p

Þ is the unique imaginary cyclic

field of class number 1 to which Proposition 1 is

applicable.

Next let F be a finite abelian extension over Q

in C . Let F
� denote the maximal abelian extension

over Q, in the Hilbert class field over F (in C), that

contains F. Then F
� coincides with the genus field

(Geschlechterkörper) of F in the sense of Leopoldt

[Le] or the maximal real subfield of this genus field

of F according to whether F is imaginary or real.

The genus number of F is defined as the degree of

F�=F (cf. Furuta [F]), so that the genus number of F

divides the class number of F. Hence F is not norm-

Euclidean if the genus number of F exceeds 1. On

the other hand, F is a cyclic field of genus number 1

if the conductor of F is a power of l � 5.

From now on, let us deal with cyclic fields of

genus number 1 in which l is totally ramified and

further a prime number other than l is ramified. We

denote by t the highest power of 2 dividing l� 1.

Naturally t � 2 since l � 5. We denote by U the

union of f4; 8g and the set of prime numbers not

equal to l but congruent to 3 modulo 4. Let K be

a cyclic field, not contained in the cyclotomic field

Qðe2�i=lÞ, such that l is totally and tamely ramified

in K. Then, essentially by the genus theory of

[Le], the following three conditions turn out to be

equivalent (cf. also [F], Iyanaga and Tamagawa

[IT]):

(1) the genus number of K is equal to 1,

(2) K is the compositum of a cyclic field in Qðe2�i=lÞ
of odd degree and a real cyclic field of degree

t whose conductor is the product of l and an

element of U ,

(3) for every positive integer n, the genus number

of the cyclic field KBn is equal to 1.

Under the condition (2), the ramification index for

K=Q of the prime number other than l dividing the

conductor of K coincides with 2, whence K is a real

quadratic extension over a subfield of Qðcosð2�=lÞÞ.
Proposition 2. Assume that ðl� 1Þ=ð2mÞ is

an odd integer greater than 1. Let q be any element

of U, and let K be the compositum of the maximal

subfield of k with odd degree and the real cyclic field

of degree t with conductor lq. Then KBn is not

norm-Euclidean for any positive integer n.

Proof. We first note that, by the hypothesis

and the fact stated just above the proposition, the

real cyclic field K is a quadratic extension over k.

As ðl� 1Þ=m > 2, Lemma 3 shows that there exists

an element b of R with fb; l� bg \N ¼ ;. When the

divisor rðbÞ of ðl� 1Þ=m is even, we have rðl� bÞ ¼
rðbÞ=2 since ðl� 1Þ=ð2mÞ is an odd integer. Hence

rðbÞ or rðl� bÞ divides ðl� 1Þ=ð2mÞ, namely, b or

l� b is congruent to g2m modulo l for some integer g.

Furthermore, l is totally and tamely ramified in K.

The proposition thus holds by Lemma 1 for the case

where m0 ¼ 2m and k0 ¼ K. �

In the above, K ¼ kð
ffiffiffiffi
lq
p
Þ if m is odd. This fact

leads us to state an immediate consequence of

Proposition 2, as follows:

Proposition 3. Take any prime number p 6¼
l with p 6� 1 (mod 4Þ. Suppose that l � 3 (mod 4Þ,
m is odd, and l � 6mþ 1. Then neither kBnð

ffiffi
l
p
Þ

nor kBnð
ffiffiffiffi
lp
p
Þ is norm-Euclidean for any positive

integer n.

We now take a positive integer n. In the case

where l � 1 (mod 4Þ and l � 13, Proposition 1 for

m ¼ 2 asserts that Bnð
ffiffi
l
p
Þ is not norm-Euclidean.

In the case where l � 3 (mod 4Þ and l � 7, Propo-

sition 3 for m ¼ 1 implies that Bnð
ffiffi
l
p
Þ is not norm-

Euclidean. The following simple result is therefore

obtained.

Proposition 4. Whenever l � 7, Bnð
ffiffi
l
p
Þ is

not norm-Euclidean for any positive integer n.
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norme, J. Théor. Nombres Bordeaux 12
(2000), no. 1, 103–126.

[ CD ] H. Cohn and J. Deutsch, Use of a computer scan

to prove Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
2
pp
Þ and Qð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ

ffiffiffi
2
pp
Þ are

Euclidean, Math. Comp. 46 (1986), no. 173,
295–299.

[ D ] H. Davenport, On the product of three non-
homogeneous linear forms, Math. Proc. Cam-
bridge Philos. Soc. 43 (1947), 137–152.

[ F ] Y. Furuta, The genus field and genus number in
algebraic number fields, Nagoya Math. J. 29
(1967), 281–285.

No. 1] Non-norm-Euclidean fields in basic Z l-extensions 25



[ H ] H. Heilbronn, On Euclid’s algorithm in cyclic
fields, Canadian J. Math. 3 (1951), 257–268.

[ HH ] K. Horie and M. Horie, The l-class group of the
Zp-extension over the rational field, J. Math.
Soc. Japan 64 (2012), no. 4, 1071–1089.

[ IT ] S. Iyanaga and T. Tamagawa, Sur la théorie
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