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Abstract: Let � be a smoothly bounded domain in Cn, for n � 2. For a given continuous

function � on b�, and a non-negative continuous function � on R� �, the main purpose of this

note is to seek a plurisubharmonic function u on �, continuous on �, which solves the following

Dirichlet problem of the complex Monge-Ampère equation

det
@2ðuÞ
@zi@�zj

� �
ðzÞ ¼ �ðuðzÞ; zÞ > 0 in �,

u ¼ � on b�.

8<
:

In particular, the boundary regularity for the solution of this complex, fully nonlinear equation is

studied when � belongs to a large class of weakly pseudoconvex domains of finite and infinite type

in Cn.

Key words: Pseudoconvexity; D’Angelo type; complex Monge-Ampère operator; Perron-
Bremermann family.

1. Introduction. Let � be a bounded pseu-

doconvex domain in Cn, for n � 2, with the smooth

boundary b�. In the coordinates ðz1; z2; . . . ; znÞ 2
Cn, we define complex linear operators as

@ ¼
Xn
j¼1

@

@zj
dzj and �@ ¼

Xn
j¼1

@

@�zj
d �zj:

Let u ¼ uðz1; . . . ; znÞ be a function of class C2ð�Þ.
The complex Monge-Ampère operator is a fully

nonlinear partial differential operator denoted by

ðddcuÞn ¼ ddcu ^ . . . ^ ddcu|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n-times

¼ 4nn! det
@2u

@zj@�zk

� �
j;k¼1;...;n

dV ;

where d ¼ @ þ �@, dc ¼ ið �@ � @Þ, then ddcu ¼ 2i@ �@u,

and dV is the volume form

dV ¼ i

2

� �nYn
j¼1

dzj ^ d�zk:

Let Pð�Þ be the cone of plurisubharmonic functions

on �, Mð�Þ be the set of non-negative Borel

measure on � with the weak topology. Then,

following the generalized definition of E. Bedford

and B. A. Taylor [1], the operator ðddcÞn : C2ð�Þ \
Pð�Þ !Mð�Þ is extended continuously to Cð�Þ \
Pð�Þ via the language of positive currents. In this

sense, we study the following Dirichlet problem of a

complex Monge-Ampère type

u 2 Pð�Þ \ Cð�Þ
ðddcuÞnðzÞ ¼ �ðuðzÞ; zÞdV ; for z 2 �

u ¼ � on b�,

8><
>:ð1:1Þ

where � has the following properties:

(a) non-negative, continuous in all variables,

(b) u 7! �
1
nðu; zÞ is a nondecreasing, convex func-

tion.

One of the most classical examples, �ðuðzÞ; zÞ ¼
euðzÞ, is studied by several mathematicians such as

E. Calabi, L. Nirenberg, S. T. Yau, C. Fefferman

and N. Krylov. The boundary regularity of the

solution to (1.1) in the current sense is well-known

by the work of E. Bedford and B. A. Taylor [1,2] on

the strongly pseudoconvex domain. However, the

consideration for this problem on weakly pseudo-

convex domains of finite and also infinite type, in

the sense of D’Angelo, still remains unsolved with
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the general right-hand side �ðu; zÞ. In this note, we

will provide an admissible answer to this problem.

The note is organized as follows: in Section 2,

we will recall some essential notions to state the

main result which is proven in Section 3.

2. Geometry on the boundaries of weakly

pseudoconvex domains. In this section, we are

interested in some geometric materials on the

boundaries of pseudoconvex domains. By these,

the existence of strictly plurisubharmonic defining

functions on such domains is established. For more

details, the reader should be referred to the previous

work [3]. Here, the most important geometric

condition on boundaries is named f-property firstly

introduced by T. V. Khanh and G. Zampieri [4].

This condition generalizes the classical finite geo-

metric type and many cases of infinite type. We

have three certain examples to illustrate this

notion. First of all, we say that � admits the

t
1
2-property if it is strongly pseudoconvex. Second,

� is said to have the tm
�n2mn2

-property when it is

pseudoconvex of finite type m in Cn in the sense of

D’Angelo. Finally, let us define

� ¼ ðz1; . . . ; znÞ 2 Cn :
Xn
j¼1

exp �
1

jzjjsj
� �

<
1

e

( )
:

Obviously, � is smooth, pseudoconvex domain of

infinite type in Cn. Moreover, we also say that �

has the ln
1
s t-property, for s :¼ maxfs1; . . . ; sng.

More generally, we have

Definition 2.1. For a smooth, monotonic,

increasing function f : ½1;þ1Þ ! ½1;þ1Þ with
fðtÞ
t1=2

decreasing, we say that � has an f-property if there

exist a neighborhood U of b� and a family of

functions f��g such that

(i) the functions �� are plurisubharmonic, C2 on

U , and satisfy �1 6 �� 6 0, and

(ii) i@ �@�� & fð��1Þ2Id and jD��j . ��1 for any

z 2 U \ fz 2 � : �� < rðzÞ < 0g, where r is a

C1-defining function of �.

Here and in what follows, . and & denote inequal-

ities up to a positive constant. Moreover, we will

use � for the combination of . and &.

In the case � ¼ �ðzÞ, on general weakly

pseudoconvex domains of finite type, the solution

to the equation (1.1) only belongs to Hölder classes,

and we do not have any smoothness result. This is

proved in [5]. The solution u can not belong to

C2ð��Þ even if � is strongly pseudoconvex. In the

best case, when � is the unit ball, the second partial

derivatives of u are locally bounded, see [1, Theo-

rem C]. Therefore, on only f-property domains, we

expect to prove ‘‘weaker’’ Hölder estimates for the

solution of the Dirichlet problem of the complex

Monge-Ampère equation. This is the main result

in the previous work [3]. For this purpose, we recall

the definition of the f-Hölder spaces in [3].

Definition 2.2. Let f be an increasing func-

tion such that lim
t!þ1

fðtÞ ¼ þ1 and fðtÞ . t. For a

subset A of Cm, define the f-Hölder space on A as

�fðAÞ ¼
�
u : kukL1ðAÞ

þ sup
z;w2A;z 6¼w

fðjz� wj�1Þ � juðzÞ� uðwÞj<1
�

and set

kuk�f ðAÞ ¼ kukL1ðAÞ
þ sup

z;w2A;z 6¼w
fðjz� wj�1Þ � juðzÞ � uðwÞj:

Note that the notion of the f-Hölder space includes

the standard Hölder space �� by taking fðtÞ ¼ t�
(so that fðjhj�1Þ ¼ jhj��) with 0 < � � 1. When 1 <
� � 2, we also define �t�ðAÞ :¼ ��ðAÞ where

��ðAÞ ¼ fu : kuk�t� ðAÞ ¼ kDuk�t��1 ðAÞ <1g:

Since the right hand side of (1.1) is nonlinear, we

also define the corresponding Hölder classes on R�
A as follows:

�fðR� AÞ ¼
(

� 2 CðR� AÞ :

k�k�f ðR�AÞ ¼ k�kL1ðR�AÞ
þ sup

u;v2R
sup
z;w2A;
z 6¼w

½fðjz� wj�1Þ

� j�ðu; zÞ ��ðv; wÞj� is finite

)
;

where

k�kL1ðR�AÞ ¼ sup
u2R;z2A

j�ðu; zÞj:

As was mentioned in the previous work [3], the

f-property provides the existence of strictly pluri-

subharmonic (global) defining functions on weakly

pseudoconvex domains of finite type and also many

cases of infinite type. Actually, such defining func-

tions are smooth if � is strongly pseudoconvex.
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Theorem 2.3. Let f be as in Definition 2.1

with ½gðtÞ��1 :¼
Z 1
t

da

afðaÞ <1. Assume that � is a

bounded, pseudoconvex domain admitting the

f-property. Then there exists a strictly plurisubhar-

monic defining function of � which belongs to the

g2-Hölder space of �, that means, there is a

plurisubharmonic function � such that

(a) z 2 � if and only if �ðzÞ < 0 and b� ¼ fz 2 Cn :

�ðzÞ ¼ 0g;
(b) i@ �@�ðX; �XÞ � jXj2 on � in the distribution

sense, for any X 2 T 1;0ðCnÞ; and

(c) � is in the g2-Hölder space of �, that is,

j�ðzÞ � �ðz0Þj . gðjz� z0j�1Þ�2 for any z; z0 2 �.

The main result in this note consists in the

following

Theorem 2.4. Let f be as in Definition 2.1

and � 	 Cn be a bounded, pseudoconvex domain

admitting the f-property. Suppose that a function

g : ½1;1Þ ! ½1;1Þ is defined by

½gðtÞ��1 :¼
Z 1
t

da

afðaÞ
<1:

If 0 < � � 2, � 2 �t�ðb�Þ, and � � 0 on R� � such

that �
1
nðu; zÞ 2 �g�ðR� �Þ, nondecreasing, convex

in u, then the following Dirichlet problem for the

complex Monge-Ampère equation

detðuijðzÞÞ ¼ �ðuðzÞ; zÞ in �,

u ¼ � on b�,

�
ð2:1Þ

has a unique plurisubharmonic solution u 2 �g�ð�Þ.
3. Proof of the main result. Based on the

classical approach, the solution in the main theorem

is constructed by the Perron-Bremermann family of

subsolutions of second order complex fully non-

linear equations. Let � 2 Cðb�Þ and �ðu; zÞ 2
CðR� ��Þ, that is

Bð�;�Þ ¼
�
v 2 Pð�Þ \ Cð��Þ :

det½ðvÞij�ðzÞ � �ðvðzÞ; zÞ; and

lim sup
z!z0

vðzÞ � vðz0Þ; for all z0 2 b�
�
:

The existence and uniqueness theorem for the

problem (1.1) follows from the proof by E. Bedford

and B. A. Taylor in [1, Theorem 8.3, p. 42] with

modifications in [2, Theorem A, p. 40].

Theorem 3.1 (Bedford-Taylor [2]). Let �
be a smoothly bounded open set in Cn. Let � 2

Cðb�Þ and 0 � �ðu; zÞ 2 CðR� ��Þ be increasing,

convex in u-variable. If the Perron-Bremermann

family is non-empty, and its upper envelope

u ¼ supfv : v 2 Bð�;�Þgð3:1Þ

is continuous on �� with u ¼ � on b�, then u is the

unique solution to the Dirichlet problem (1.1).

The fact that the Perron-Bremermann family is

non-empty is a direct consequence of the following

result.

Proposition 3.2. Let � be a smoothly

bounded, pseudoconvex domain. Assume that there

is a strictly plurisubharmonic defining function � of

� such that � 2 �g2ð��Þ. Let 0 < � � 2, and � 2
�t�ðb�Þ, and let � � 0 on R� �� with �1=n 2
�g�ðR� ��Þ. Then, for each � 2 b�, there exists

v� 2 �g�ð�Þ \ Pð�Þ such that

(i) v�ðzÞ � �ðzÞ for all z 2 b�, and v�ð�Þ ¼ �ð�Þ,
(ii) kv�k�g� ð�Þ � C0 and

(iii) detðHðv�ÞðzÞÞ � �ðv�ðzÞ; zÞ,
where C0 is a positive constant depending only on �

and k�k�t� ðb�Þ.
Proof of Proposition 3.2. For each � 2 b�, the

family fv�g is defined by:

Case 1: if 0 < � � 1 then we choose

v�ðzÞ ¼ �ð�Þ �K½�2�ðzÞ þ jz� �j2�
�
2 ; z 2 �;

Case 2: if 1 < � � 2 then we choose

v�ðzÞ ¼ �ð�Þ �
Xn
j¼1

2 Re
@�ð�Þ
@�j

ðzj � �jÞ

�K½�2�ðzÞ þ jz� �j2�
�
2 ; z 2 �;

where � is defined by Theorem 2.3, and K will be

chosen step by step later.

The proof of the assertions (i) and (ii) is exactly

contained in [3, Proposition 3.2], with K � k�k�t� .

To establish (iii), we make a simple modification:

ðv�ðzÞÞij ¼ K
�

2
ð�2�ðzÞ þ jz� �j2Þ

�
2�2

�
ð�2�ðzÞ

þ jz� �j2Þð2�ðzÞij � �ijÞ

þ 1�
�

2

� �
ð�2�i þ �zi � ��iÞð�2�j þ �zj � ��jÞ

�
:

Hence

i@ �@v�ðX;XÞ � K
�

2
ð�2�ðzÞ

þ jz� �j2Þ
�
2�1ð2i@ �@�ðX;XÞ � jXj2Þ
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� K
�

2
ð�2�ðzÞ þ jz� �j2Þ

�
2�1jXj2;

for any X 2 T 1;0ðCnÞ. Here the last inequality

follows from Theorem 2.3 (b). Thus v� is plurisub-

harmonic and furthermore, we obtain

det½ðv�Þij�ðzÞð3:2Þ

� K
�

2
ð�2�ðzÞ þ jz� �j2Þ

	
�
2�1

� �n

:

Now, since 0 < � � 2, we might choose

K � max

�
2

�
max

z2�;�2b�
ð�2�ðzÞ

þ jz� �j2Þ1�
�
2k�1=nkL1ðR��Þ; k�k�t�

�
:

Then

det½ðv�Þij�ðzÞ � k�1=nknL1ðR��Þð3:3Þ

� ð�1=nðv�ðzÞ; zÞÞn

¼ �ðv�ðzÞ; zÞ;

for all z 2 �, and � 2 b�. This completes the proof

of Proposition 3.2. �

Proof of Theorem 2.4. First, immediately, the

set Bð�;�Þ is non-empty. In particular, it contains

the family of fv�g�2b� in Proposition 3.2. The proof

of this theorem will be completed if the upper

envelope defined in (3.1) has the properties

(a) uð�Þ ¼ �ð�Þ for all � 2 b�; and

(b) u 2 �g�ð��Þ.
We note that the uniqueness of the solution follows

from the Minimum Principle (cf. [2, Proposition 3,

p. 45]).

Next, we define another upper envelope, for

each z 2 �, as

vðzÞ :¼ sup
�2b�
fv�ðzÞg:

By the first property of fv�g in Proposition 3.2, we

have

vð�Þ � v�ð�Þ ¼ �ð�Þ for all � 2 b�;ð3:4Þ
vðzÞ � �ðzÞ for all z 2 b�;

and so v ¼ � on b�.

From the second property in Proposition 3.2,

we have

jv�ðzÞ � v�ðz0Þj � C0ðg�ðjz� z0j�1ÞÞ�1

for all z; z0 2 ��:

Notice that C0 is independent of � so taking the

supremum in �, the theory of the modulus of

continuity again implies that

jvðzÞ � vðz0Þj � C0ðg�ðjz� z0j�1ÞÞ�1 for all z; z0 2 ��:

The first inequality in (3.3) also shows that

det½ðv�Þij�ðzÞ � k�1=nknL1ðR��Þ

� ð�1=nðvðzÞ; zÞÞn � �ðvðzÞ; zÞ:
By Proposition 2.8 in [1], the following inequality

holds

det½ðvÞij�ðzÞ � inf
�2b�
fdet½ðv�Þij�ðzÞg � �ðvðzÞ; zÞ;

for all z 2 �. So, we conclude that v 2 Bð�;�Þ \
�g�ð�Þ and vð�Þ ¼ �ð�Þ for any � 2 b�.

By a similar construction there exists a pluri-

superharmonic function w 2 �g�ð��Þ such that

wð�Þ ¼ �ð�Þ for any � 2 b�. Thus, vðzÞ � uðzÞ �
wðzÞ for any z 2 ��, and hence uð�Þ ¼ �ð�Þ for any

� 2 b�. We also obtain

juðzÞ � uð�Þjð3:5Þ
� maxfkvk�g� ð��Þ; kvk�g� ð��Þgðg�ðjz� �j

�1Þ�1

for any z 2 ��; � 2 b�. Here, the inequality follows

from the facts that w; v 2 �g�ð��Þ and vð�Þ ¼ uð�Þ ¼
wð�Þ ¼ �ð�Þ for any � 2 @�.

Finally, using the method by J. B. Walsh in [6],

we will show that (3.5) also holds for all � 2 �. For

any small vector � 2 Cn, we define

V ðz; �Þ ¼ uðzÞ if zþ � =2 �; z 2 �;

maxfuðzÞ; V�ðzÞg; if z; zþ � 2 �;

(

where

V� ðzÞ ¼ uðzþ �Þ þ ðK1jzj2 �K2 �K3Þg��ðj� j�1Þ

and here

K1 � max
k2f1;...;ng

n

k

� �1=k

k�
1
nk�g� ðR��Þ; K2 � K1jzj2;

and

K3 � maxfkvk�g� ð��Þ; kwk�g� ð��Þg:

We will show that V ðz; �Þ 2 Bð�;�Þ. Observe that

V ðz; �Þ 2 Pð�Þ for all z; � . Moreover, for z 2 @� and

zþ � 2 �, we have

V� ðzÞ � uðzÞð3:6Þ
¼ uðzþ �Þ � uðzÞ
þ ðK1jzj2 �K2 �K3Þg��ðj� j�1Þ

� maxfkvk�g� ð��Þ; kvk�g� ð��Þgg��ðj� j
�1Þ
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þ ðK1jzj2 �K2 �K3Þg��ðj� j�1Þ
� 0:

Here the first inequality follows from (3.5) and the

second follows from the choices of K2 and K3. This

implies that lim supz!� V ðz; �Þ � �ð�Þ for all � 2 b�.

For the proof of det½V ðz; �Þij� � �ðV ðz; �Þ; zÞ, we

need the following lemma.

Lemma 3.3. Let ð�ijÞ � 0 and � 2 ð0;þ1Þ.
Then

det½�ij þ �I� �
Xn
k¼0

�k detð�ijÞðn�kÞ=n:

Proof of Lemma 3.3. Let 0 � 	1 � � � � � 	n be

the eigenvalues of ð�ijÞ. We have

det½�ij þ �� ¼
Yn
j¼1

ð	j þ �Þð3:7Þ

�
Xn
k¼0

�k
Yn
j¼kþ1

	j

 !

�
Xn
k¼0

ð�k det½�ij�ðn�kÞ=nÞ:

Here the last inequality follows from

det½�ij� ¼
Yn
j¼1

	j �
Yn
j¼kþ1

	j

 !n=ðn�kÞ

:

�

Coming back to the proof of the main theorem, for

any z; zþ � 2 � we have

det½ðV� ðzÞÞij� ¼ det½uijðzþ �Þ þK1g
��ðj� j�1ÞI�ð3:8Þ

� det½uijðzþ �Þ�

þ
Xn
k¼1

Kk
1 ½g�ðj� j

�1Þ��k

� det½uijðzþ �Þ�
n�k
n

� �ðuðzþ �Þ; zþ �Þ

þ
Xn
k¼1

Kk
1 ½g�ðj� j

�1Þ��k

� ð�ðuðzþ �Þ; zþ �ÞÞ
n�k
n ;

where the first inequality is derived by Lemma 3.3.

Since �
1
n 2 �g�ðR� �Þ, we obtain

�
1
nðuðzÞ; zÞ ��

1
nðuðzþ �Þ; zþ �Þ

� g��ðj� j�1Þk�1
nk�g� ðR��Þ;

for any z; zþ � 2 �. Hence

�ðuðzÞ; zÞ � �ðuðzþ �Þ; zþ �Þð3:9Þ

þ
Xn
k¼1

n

k

� �
�ðuðzþ �Þ; zþ �Þðn�kÞ=n

� ðg��ðj� j�1Þk�
1
nk�g� Þk:

Combining (3.8) and (3.9) with the choice of K1, we

get

det½ðV� Þij�ðzÞ � �ðuðzÞ; zÞ; for any z; zþ � 2 �:

We conclude that V ðz; �Þ 2 Bð�;�Þ. It follows that

for all z 2 �, V ðz; �Þ � uðzÞ. If z; zþ � 2 �, this

yields

uðzþ �Þ � uðzÞ � V ð�; zÞ � uðzÞ
� ðK1jzj2 �K2 �K3Þg��ðj� j�1Þ
� ð�K1jzj2 þK2 þK3Þg��ðj� j�1Þ
� ðK2 þK3Þg��ðj� j�1Þ:

By reversing the role of z and zþ � , we assert that

u 2 �g�ð�Þ. This completes the proof. �
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