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Abstract: For a one dimensional diffusion process D�s;m and the harmonic transformed

process D�sh;mh
, the asymptotic behavior of the Lévy measure density corresponding to the inverse

local time at the regular end point is investigated. The asymptotic behavior of n�, the Lévy

measure density corresponding to D�s;m, follows from asymptotic behavior of the speed measure

m. However, that of nh�, the Lévy measure density corresponding to D�sh;mh
, is given by a simple

form, n� multiplied by an exponential decay function, for any harmonic function h based on the

original diffusion operator.

Key words: Lévy measure density; asymptotic behavior; inverse local time.

1. Inverse local time and Lévy measure

density. Let s be a continuous increasing func-

tion on an open interval I ¼ ðl1; l2Þ, where �1 <

l1 < l2 � 1, and let m be a right continuous

increasing function on I. We assume

jsðl1Þj þ jmðl1Þj <1;ð1Þ

where we set uðliÞ ¼ limx!li;x2I uðxÞ, i ¼ 1; 2, if there

exist the limits, for functions u on I. (1) implies that

the end point l1 is regular in the sense of Feller [2].

We pose the reflecting or absorbing boundary

condition at li ði ¼ 1; 2Þ if it is regular. Let Gs;m be

a one dimensional diffusion operator on I with scale

function s, speed measure m, and null killing

measure. We denote by D�s;m ¼ ½XðtÞ; P �x � [resp.

Do
s;m ¼ ½XðtÞ; P o

x �] the one dimensional diffusion

process on I with Gs;m as the generator and with l1
being reflecting [resp. absorbing]. Let denote by

l�ðt; �Þ the local time of D�s;m, that is,Z t

0

fðXðuÞÞ du ¼
Z
I

l�ðt; �Þfð�Þ dmð�Þ; t > 0;

for bounded continuous functions f on I. Since

l�ðt; �Þ is continuous and nondecreasing in t P �x -a.s.,

there is the right continuous inverse function

l��1ðt; �Þ. Note that there exists the inverse local

time l��1ðt; l1Þ at the end point l1, which is denoted

by ��ðtÞ. Combining Lévy formulas due to R. M.

Blumenthal and R. K. Getoor ([1], Chapter V,

Theorem 3.21) and those due to K. Itô and H. P.

McKean ([3], Section 6.2), we obtain the following

result. We give the proof in another paper.

Proposition 1. The Laplace transform of

the distribution of ½��ðtÞ; t � 0� is given by the

following

E�l1 ½e
����ðtÞ�ð2Þ

¼ exp ���t� t
Z 1

0

ð1� e���Þn�ð�Þ d �
� �

;

�� ¼
0 if sðl2Þ ¼ 1; or

l2 is regular and reflecting;

1=fsðl2Þ � sðl1Þg if sðl2Þ <1;

8><
>:ð3Þ

n�ð�Þ ¼ lim
x!l1

q�ð�; xÞ=fsðxÞ � sðl1Þg;ð4Þ

where E�l1 stands for the expectation with respect to

P �l1 , Z t

0

q�ð�; xÞ d� ¼ P �x ð�l1 < tÞ; x 2 I; t > 0;ð5Þ

and �l1 is the first hitting time for l1.

We note a representation of q�ð�; xÞ in terms of

the transition probability density poðt; x; yÞ of Do
s;m,

that is,

q�ð�; xÞ ¼ lim
z!l1

poð�; z; xÞ=fsðzÞ � sðl1Þg;ð6Þ

� > 0; x 2 I:
Here poðt; x; yÞ is the transition probability density

with respect to dm for Do
s;m, that is,
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Po
xðXðtÞ 2 EÞ ¼

Z
E

poðt; x; yÞ dmðyÞ;

for x 2 I, E 2 BðIÞ, where BðIÞ stands for the set of

all Borel sets of I. It is well known that poðt; x; yÞ is

represented as

poðt; x; yÞð7Þ

¼
Z
ð0;1Þ

e��t oðx;��Þ oðy;��Þ d�oð�Þ;

t > 0; x; y 2 I;
where d�oð�Þ is a Borel measure on ð0;1Þ satisfyingZ

ð0;1Þ
e��t d�oð�Þ <1; t > 0;ð8Þ

and  oðx; �Þ, x 2 I, � 2 C, is the unique solution of

the following integral equation (9).

 oðx; �Þ ¼ sðxÞ � sðl1Þð9Þ

þ �
Z
ðl1;x�
fsðxÞ � sðyÞg oðy; �Þ dmðyÞ:

By means of (4), (6), (7) and (9), we find

n�ð�Þ ¼ lim
x;y!l1

DsðxÞDsðyÞp
oð�; x; yÞð10Þ

¼
Z
ð0;1Þ

e���d�oð�Þ;

where DsðxÞ denotes the right derivative with

respect to sðxÞ. n�ð�Þ is the Lévy measure density

of the inverse local time ½��ðtÞ; t � 0�.
Example 2. Let l1 ¼ 0, l2 ¼ l <1, sðxÞ ¼ x

and mðxÞ ¼ Cðl� xÞ�ð1þ1=�Þ, where C is a positive

number and 0 < � < 1. (1) is satisfied. By virtue of

Proposition 1, the Laplace transform of the distri-

bution of ½��ðtÞ; t � 0� is given by

E�0 ½e���
�ðtÞ�ð11Þ

¼ exp �t=l� t
Z 1

0

ð1� e���Þn�ð�Þ d �
� �

;

n�ð�Þ ¼
Z 1

0

e��t�ooð�Þ d�;ð12Þ

where

poðt; x; yÞð13Þ

¼
Z
ð0;1Þ

e��t oðx;��Þ oðy;��Þ�ooð�Þ d�;

 oðx;��Þ ¼ �	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðl� xÞ

p
ð14Þ

� f�N�ðc�l�1=2�
ffiffiffi
�
p
ÞJ�ðc�ðl� xÞ�1=2�

ffiffiffi
�
p
Þ

þ J�ðc�l�1=2�
ffiffiffi
�
p
ÞN�ðc�ðl� xÞ�1=2�

ffiffiffi
�
p
Þg;

�ooð�Þ ¼ ðl�	2Þ�1ð15Þ
� fJ�ðc�l�1=2�

ffiffiffi
�
p
Þ2 þN�ðc�l�1=2�

ffiffiffi
�
p
Þ2g�1:

Here c� ¼ 2fC�ð1þ �Þg1=2, and J�ðzÞ are N�ðzÞ are

Bessel functions. We prove (13) with (14) and (15)

in another paper. Noting the asymptotic behavior of

Bessel functions, we have

�ooð�Þ �
C�C1ð�Þ
l2�ð1þ �Þ �

� as �! 0;

where fðtÞ � gðtÞ as t! 0 [resp. t!1] stands for

limt!0 ½resp. t!1� fðtÞ=gðtÞ ¼ 1 for positive functions

fðtÞ and gðtÞ, and C1ð�Þ is a positive number given

by

C1ð�Þ ¼ f�ð1þ �Þg�=�ð�Þ:ð16Þ

Therefore we find

n�ð�Þ � l�2C�C1ð�Þ��ð1þ�Þ as � !1:ð17Þ

Example 3. Let l1 ¼ 0, l2 ¼ 1, sðxÞ ¼ x and

mðxÞ ¼ Cx�1þ1=�, where C is a positive number and

0 < � < 1. (1) is satisfied. By virtue of Proposi-

tion 1, the Laplace transform of the distribution of

½��ðtÞ; t � 0� is given by

E�0 ½e���
�ðtÞ�ð18Þ

¼ exp �t
Z 1

0

ð1� e���Þn�ð�Þ d �
� �

;

n�ð�Þ ¼
Z 1

0

e��t�ooð�Þ d� ¼ C�C2ð�Þ��ð1þ�Þ;ð19Þ

where C2ð�Þ is a positive number given by

C2ð�Þ ¼ f�ð1� �Þg�=�ð�Þ:ð20Þ

(19) follows from the following representation of

poðt; x; yÞ.
poðt; x; yÞð21Þ

¼
Z
ð0;1Þ

e��t oðx;��Þ oðy;��Þ�ooð�Þ d�;

 oðx;��Þ ¼
�ð1þ �Þ

fC�ð1� �Þ�g�=2
ffiffiffi
x
p

ð22Þ

� J�ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C�ð1� �Þ�

p
x1=2�Þ;

�ooð�Þ ¼
C�C2ð�Þ
�ð1þ �Þ �

�:ð23Þ

2. Asymptotic behavior of Lévy measure

densities. In this section we consider asymptotic

behavior of Lévy measure densities. We assume one
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of the following (A1), (A2) and (A3), where 0 <

� < 1 and LðxÞ is a slowly varying function.

(A1) l1 ¼ 0, l2 ¼ l <1, sðxÞ ¼ x and mðxÞ sat-

isfies jmð0Þj <1 and

mðl� 1=xÞ � x1þ1=�LðxÞ as x!1:ð24Þ

(A2) l1 ¼ 0, l2 ¼ 1, sðxÞ ¼ x and mðxÞ satisfies

jmð0Þj <1 and

mðxÞ � x�1þ1=�LðxÞ as x!1:ð25Þ

(A3) l1 ¼ 0, l2 ¼ 1, sðxÞ ¼ x and mðxÞ satisfies

limx!1mðxÞ ¼ 1 and

mðxÞ � x�1þ1=�LðxÞ as x! 0:ð26Þ

Since l1 ¼ 0 is regular, we can define the inverse

local time ��ðtÞ at 0 by putting the reflecting

boundary condition. We obtain the following

asymptotic behavior of Lévy measure densities.

Let KðxÞ be another slowly varying function such

that

lim
x!1

KðxÞ1=�Lðx�KðxÞÞð27Þ

¼ lim
x!1

LðxÞ�Kðx1=�LðxÞÞ ¼ 1;

where x!1 should be read as x! 0 when (A3) is

satisfied.

Theorem 4. Assume (A1). Then the Lap-

lace transform of the distribution of ½��ðtÞ; t � 0� is

given by the same formula as (11) and the Lévy

measure density satisfies

n�ð�Þ � l�2C1ð�Þ��ð1þ�ÞKð�Þ�1ð28Þ
as �!1:

Theorem 5. Assume (A2) [resp. (A3)].

Then the Laplace transform of the distribution of

½��ðtÞ; t � 0� is given by the same formula as (18)

and the Lévy measure density satisfies

n�ð�Þ � C2ð�Þ��ð1þ�ÞKð�Þ�1ð29Þ
as �!1 ½resp. �! 0�:

Proof of Theorem 4. The assumption (A1)

implies that (A.1) with 
 ¼ 0 of [10] is satisfied,

where we should replace the role of l1 by that l2 in

(A.1) of [10]. Since l1 ¼ 0 is regular, we can put

l1 ¼ 0 in (3.1) of [10]. Thus, by means of (5.11)

of [10], we haveZ
ð0;1Þ

e��t d�oð�Þ � l�2C1ð�Þt�ð1þ�ÞKðtÞ�1

as t!1:
Combining this with (10), we obtain (28). �

Theorem 5 follows from some results on

Krein’s correspondence. The arguments of Krein’s

correspondence are due to [4] and [6]. Let denote by

M the totality of nonnegative right continuous

nondecreasing functions �ðxÞ on ½0;1� such that

�ðxÞ 6	 1 and �ð1Þ ¼ 1. For � 2M set �ð0�Þ ¼ 0

and let ’ðx; �Þ be the solution of the integral

equation

’ðx; �Þ ¼ 1þ �
Z
½0;x�
ðx� yÞ’ðy; �Þ d�ðyÞ; x 2 ½0; lÞ;

where � 2 C and l ¼ supfx : �ðxÞ <1g. We set

�ð�Þ ¼
Z l

0

’ðx; �Þ�2 dx; � > 0:

� is called the characteristic function of � and the

correspondence � 2M! � is called Krein’s corre-

spondence. Let K be the set of functions � on ð0;1Þ
such that

�ð�Þ ¼ cþ
Z
½0;1Þ
ð�þ �Þ�1 d�ð�Þ; � > 0;

for some c � 0 and some nonnegative Borel measure

� on ½0;1Þ satisfying
R
½0;1Þð1þ �Þ

�1 d�ð�Þ <1. It

is well known that Krein’s correspondence is a one

to one map fromM onto K (see [4], e.g.). From now

on we denote by � 2M$ � 2 K Krein’s corre-

spondence. In [5] Kasahara proved the following

asymptotic theorem on Krein’s corespondence,

where 0 < � < 1, LðxÞ and KðxÞ are slowly varying

functions satisfying (27), and C3ð�Þ ¼ �=f�ð1�
�ÞC2ð�Þg.

Theorem 6 ([5]). � 2M$ � 2 K and l ¼
1. Then the following (30), (31) and (32) are

equivalent each other.

�ðxÞ � x�1þ1=�LðxÞ as x!1 [x! 0]:ð30Þ

�ð�Þ � C3ð�Þ���Kð1=�Þð31Þ
as �! 0 [�!1]:

�ð�Þ � fC3ð�Þ=�ð�Þ�ð2� �Þg�1��Kð1=�Þð32Þ
as �! 0 [�!1]:

Now we show Theorem 5.
Proof of Theorem 5. Assume (A2) [resp.

(A3)]. Since m 2M, there is the characteristic

function � 2 K such that m$ �. By means of

Theorem 6, �ð�Þ satisfies (31). As we saw in

Lemma 3 of [7], 1=��ð�Þ 2 K and the corresponding

spectral measure d��ð�Þ coincides with d�oð�Þ=�
for � > 0 and ��ðf0gÞ ¼ 0. Noting 1=��ð�Þ �
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C3ð�Þ�1���1=Kð1=�Þ as �! 0 [resp. �!1], and

the relation between (31) and (32), we get

��ð�Þ � f�ð1� �Þ�ð1þ �ÞC3ð�Þg�1��=Kð1=�Þ
as �! 0 [resp. �!1];

and hence

�oð�Þ ¼
Z
ð0;��

� d��ð�Þ �
�

1þ � ���ð�Þ

as �! 0 [resp. �!1]:

Thus we obtainZ
ð0;1Þ

e��t d�oð�Þ � C2ð�Þt�ð1þ�ÞKðtÞ�1

as t!1 [resp. t! 0]:

Combining this with (10), we obtain (29). �

3. Inverse local time of harmonic trans-

formed diffusion processes. In this section we

consider inverse local times of harmonic trans-

formed diffusion processes and the corresponding

Lévy measure densities. Let D�s;m and Do
s;m be

diffusion processes on I as in Section 1. For both

diffusion processes we pose the absorbing boundary

condition at l2 whenever it is regular, that is,

jsðl2Þj þ jmðl2Þj <1.

For  � 0, let h be a positive continuous

function on I satisfying Gs;mh ¼ h. We set

shðxÞ ¼
Z
ðc0;x�

hðyÞ�2 dsðyÞ;

mhðxÞ ¼
Z
ðc0;x�

hðyÞ2 dmðyÞ;

where c0 2 I is fixed arbitrarily. Let us consider a

harmonic transformed diffusion process on I whose

generator is given by Gsh;mh
. It is known that hðxÞ is

represented as a linear combination of giðx; Þ ði ¼
1; 2Þ such that giðx; Þ is positive and continuous in

x, g1ðx; Þ is nondecreasing in x, g2ðx; Þ is non-

increasing in x, giðli; Þ ¼ 0 if jsðliÞj <1, and

Gs;mgi ¼ gi. Note that there exist such functions

gið; Þ, i ¼ 1; 2 ([3]). In the following we set

hðxÞ ¼ B1g1ðx; Þ þ B2g2ðx; Þ;ð33Þ

where B1 � 0, B2 > 0. Since g1ðl1; Þ ¼ 0, (33)

implies hðl1Þ 2 ð0;1Þ, and by virtue of Theorem 1.1

of [8], jshðl1Þj þ jmhðl1Þj <1, that is, l1 is regular

for harmonic transformed diffusion processes. Let

D�sh;mh
¼ ½XðtÞ; Ph�

x � [resp. Do
sh;mh

¼ ½XðtÞ; Pho
x �] the

one dimensional diffusion process on I with Gsh;mh
as

the generator and with l1 being reflecting [resp.

absorbing]. For both diffusion processes we pose the

absorbing boundary condition at l2 whenever it is

regular, that is, jshðl2Þj þ jmhðl2Þj <1. We denote

by ½� ðh�ÞðtÞ, t � 0� the inverse local time of D�sh;mh
at

the end point l1.

We derive the following result from Propo-

sition 1, Theorem 1.1 of [8] and Theorem 3.2 of [9].

Theorem 7. The Laplace transform of the

distribution of ½�h�ðtÞ; t � 0� is given by the

following

Eh�
l1

e���
h�ðtÞ

h i
ð34Þ

¼ exp ��h�t� t
Z 1

0

ð1� e���Þnh�ð�Þ d �
� �

;

�h� ¼
0 if B1 ¼ 0;

1=fshðl2Þ � shðl1Þg if B1 > 0;

�
ð35Þ

nh�ð�Þ ¼ ðB2g2ðl1; ÞÞ2e��n�ð�Þ;ð36Þ
where Eh�

l1
stands for the expectation with respect to

Ph�
l1

and n�ð�Þ is given by (4).

We should note that nh� is independent of B1.

Finally we study asymptotic behavior of Lévy

measure density nh�ð�Þ. Assume that D�s;m satisfies

one of (A1), (A2) and (A3). We might suppose

that the asymptotic behavior of nh�ð�Þ depends on

those of shðxÞ and mhðxÞ as x! l2, and hence that

of hðxÞ as x! l2. However the asymptotic behavior

of nh�ð�Þ is given by a quite simple form n�ð�Þ
multiplied by e��.

Theorem 8. Assume one of (A1), (A2) and

(A3). Let h be given by (33). Then (34), (35) and

(36) hold. In particular, the asymptotic behavior of

Lévy measure density nh� is given by (36) with n�ð�Þ
satisfying (28) [resp. (29)] if (A1) [resp. (A2) or

(A3)] is satisfied.
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