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Some problems of hypergeometric integrals associated

with hypersphere arrangement

By Kazuhiko AOMOTO" and Yoshinori MACHIDA*"

(Communicated by Masaki KASHIWARA, M.J.A., May 12, 2015)

Abstract:

The n dimensional hypergeometric integrals associated with a hypersphere

arrangement S are formulated by the pairing of n dimensional twisted cohomology
HY (X, (%S)) and its dual. Under the condition of general position there are stated some
results and conjectures which concern a representation of the standard form by a special basis of
the twisted cohomology, the variational formula of the corresponding integral in terms of special
invariant 1-forms using Calyley-Menger minor determinants, a connection relation of the unique
twisted n-cycle identified with the unbounded chamber to a special basis of twisted n-cycles
identified with bounded chambers. General conjectures are presented under a much weaker

assumption.
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1. Preliminary. Hypersphere arrangements
are an interesting subject in analysis and geometry
for a long time (see [16] for example). The purpose
of this note is to present some problems and results
in relation to hypergeometric integrals. The details
in case where the dimension n < 3, the number m =
n + 1 of hyperspheres will be presented in a forth-
coming paper.

Let A be an arrangement of n — 1 dimensional
hyperspheres in the complex n dimensional affine
space C":

Sj : fj(l‘) = Q(l‘) + Q(aj,x) + Qo = 0

where

(1<j<m),

n n
Qz) =), (aj,2) =)o,
v=1 v=1

Q= (Oéjl, .. .,Oéjn) € R”, ajo € R.

S; represents the n—1 dimensional (complex)
hypersphere with center O; = —o; and with radius
r; such that r? = —ajo+ Q(;). The distance p;;
between O; and O; is given by p%]- = Q(a; — o).
Let X be the complement of the union
S=U,S; in C". Denote by Q(X,*S)=

j=
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®p_oS¥ (X, x5) the space of rational differential
forms on C" which are holomorphic in X.

Let A= (A1,...,A\n) € C™ be a system of m
tuple of exponents such that

O(z) = H fi(x)" (A eC)

defines a multiplicative meromorphic function on
C". The covariant differentiation associated with
®(x) is defined as follows:

Vi =dyp+dlog® Ay (Y € Q(X,x9)).

HY (X, (xS)) denotes the corresponding rational
de Rham cohomology. £ and L£* denote the local
system and its dual on X attached to ®(x).

Let @ be the standard n-form

w=dri A Ndx,.

Take a twisted cycle 3 € H,(X, L") and consider the
integral of pw € HL (X, Q"(x5)),

(or3) = / B(z)pw,
3

which defines the perfect pairing between
HY(X,Q"(xS)) and H,(X,L"). This fact is due to
A. Grothendieck and P. Deligne (see [10]).
Differential and difference structures related to
(p,3) can be described in terms of invariants with
respect to the isometry group for the arrangement
of hyperspheres (see [3—6,9] for general treatment).


http://dx.doi.org/10.3792/pjaa.91.77

78 K. AoMOTO and Y. MACHIDA

Notation. Denote by ¢; (1<j<m) the
standard basis of C™ so that A = 37", Aje;.

Denote by [1,m] the set of indices 1,2,...,m.
For J = {j1,...,Jp} C [1,m], we denote by |J| =p
the size of J, by 0,J (1<v<p) the subset
{15 3 dv=1, 01y -5 Jp}- I9=[1,m] —I denotes
the complement of I in [1,m]. We say J C [1,m)]
to be “admissible” if 1 < |J| <n + 1. The family of
all admissible sets is denoted by B.

Definition 1. Let B = (bjj);<; <,y be the
symmetric matrix of degree m + 2 whose compo-
nents of the ¢ th row and the j th column are

bjj:07 blj:]. (2§j§m+2),

by =75, 3<j<m+2),

bij = ng2j72 B<i<j<m+2).
This is called a Cayley-Menger matrix associated
with the arrangement A. Cayley-Menger determi-
nants are defined to be minors including the first
row and the first column (see [11,12]). Namely for
I= {il,iQ, .. .,Z.p}, J = {jl,jg, R a.]p} - [1,m],

0 I 0 i1 i
B =B . .
0 J O J1 ...]p

0 1 1
2 2
]‘ pi1j| piljp
2 2
Piyji Piyj,
B(O * 31[>:B<0 * i‘Q zp>
0 j1 oJ 0 71 J2 - Jp
0 1 L. 1
2 2
1 A
2 2
—|1 Piyjy Pisjy s
2 2
1 Piyji Piyjy
B(O * 31]>:B(0 * z"2 zp)
0 « O4J 0 % g2 --Jp
0 1 1 1
2 2
1 0 T C. rjp
— 1 Ti p?z]z pzsz
1 TY?,, plzpj2 p?pjp
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B( 8 § > will be abbreviated by B(0T) if I = J,

in the same way.

0 % 81[ . .

B( 0 % O ) will be abbreviated by B(0* 011)
it I =01J.

For example we have

J

9, 2 2 9
/ ) = Pt Pk — Pik — Pis

i
k
0 x gJ
B<0 i l)zr?"’ﬂ?k_ri_l’?h
0 x jJ
B(O * l>_7”§+7’12—p§,,

B(0ij) = 2p;;, B0 * j) = 2r7.
We impose the following two conditions
(H1): (i) (=1)’B(0I) >0
(for any admissible I, 1 <p <mn+ 1),
(i) (=)’ 'BOO*1) >0
(for any admissible I, 1 <p <n+1),
where I = {i1,...,i,}.
The singularity defined by the equations

B(0I)=0 or B(0x I)=0 is nothing else than
Landau singularity associated with the integral

{,3) (see [15]).
(H2) :

A; are all positive.

Lemma 2. Suppose that )\ satisfies the con-
ditions, for J = {j1,...,Jr} C[1,m],
/\.i1+"'+/\.jy-¢zv (1 STS”)v
DN, N EZ, (0<r<n—1).

Then the following fact holds:
(i) Hg(X,Q(x5)) ={0} (0<p<n-1),
(if) dim Hg(X,Q (x5)) = |Eu(X)]

-2 ()"

where Eu(X) represents the Euler number of X.
For the proof see [1,7,8].

2. Statement of problems.
we assume that m =n + 1.

Denote by K;: R" N {f;(z) <0} the closure of
the inside of the real part #S; = S;NR" in R".

Under the condition (H1), the number of
bounded connected components of R" — U;n:l S; is
equal to |Fu(X)|=2""1—1. It is also equal to
dim H,(X, L*). The twisted cycles corresponding

From now on,
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to these bounded chambers constitute a basis of

H,(X,L").

More precisely,

Lemma 3. For every admissible set I with
[I| =n, the intersection (\;c;S; consists of two

different points. Moreover for every admissible

I € B we see

K; = the closure of {ﬂK} - U KJ} £ 0

iel jere

has an inner point. Fach Ky can be identified with a
twisted cycle 3; representing a homology class in
H, (X, L"). The twisted cycles 3; (I € B) form a basis
of H\(X,L").
For the proof see [7,8].

On the other hand,

Lemma 4. HZ(X,Q(xS)) is spanned by

F] =

(1<p<n+1) (I€B),

fii 1,

or equivalently by

P 0 « 0,1
= — B F’
+ B0« I)F; (I €B).

(H1) assures that {F; (I € B)} or {Wy(I)w (I € B)}
constitutes a basis of HZ(X,Q (xS)). The former
will be called “of first kind” and the latter will be
called “of second kind”. Both are related to each
other by a triangular matrix. See also [7,8].

Using the basis of the second kind, we give the
following conjecture.

Conjecture I. w is represented cohomolog-
ically in terms of the basis of second kind

(1) (2Ac+n) w~

n+1 HGI/\-
1)? J Wo(I)w
;,d%;'p( b [ (A +n—v) oD

in HY (X, (xS)) (~ means “cohomologous”).
{(p,3) is an analytic function of the parameters

aj,. The total differentiation dp of (p,3) with

respect to the parameters «;, has the expression

dplo,3) = / )V (),

where
(2) Vp(pw) = (dpp + dplog ® p)w
In order to express the RHS of (2), we
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introduce the following differential 1-forms 6,
(J € B):
Definition 5.

1
9]‘ - - 5 dlog(rf),

1
ajk - 5 leg p?k'v
O =
0 5 k1
B(o] kl)
*
- dlog p;
2 B(Ojk]) 08 Ph
0k 51
s(y 1 70)
n 0 ~ g I
B(0jkl)
01 g k
2o vy 0
* J
dlog p? dl
og py + B(Ojk) 0g ij
More generally for J = {ji,...,j,} €B (2<
n+1)a
(="
0= > dlogp,,:

{L}:{J};ll<l2
0 i 1 0 lh 1o 1
B( * U )B< x Uil 3)
0 Iy I I 0 L L b I

L B(OLlyly -+ 1,)
Iy )
ot )

B( 0 % ll lg l3
0 6L L I I3
where L = {l;,ls,...,1,} run over the set of se-
quences such that L coincides with J as a set in
[1,m] and satisfies I1 <lo <3 <ly < ... <,
The second conjecture can be stated in the
following form (Gauss-Manin connection):
Conjecture II.

n+1

(3) va~Z @

p=1

V}, — Z H (I_IJEJ )\J ) HJWO(J)

JeB,|J|=p

It seems remarkable that in the RHS of (3) the
expression of 6; is independent of n and depends
only on J for any fixed admissible J.

Finally we state a conjecture concerning the
connection formula among twisted cycles.
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For ‘]:{jla---vjp}c [l,m] (1SPSm), 3 n+1 2%

(J € B) forms a basis H,(X,L"). The complement  (4) Z(—l)y716611J = Wo(J)w.

Km = R" — Ujjej1,m & can also be regarded as a v=1 (=)™ B(0J)

twisted n-cycle denoted by j3.,. We put further
Jo=[1,m] = J, \j=3"c; N, (In case J =10, we
put A; = 1)1 Ao = Zje[l,m] )‘]"
We can now state:
Conjecture III.
formula holds (~ means “homologous”):
(i) Case where n even,

The following connection

sin 7w je

doo ™~ T 3J-

JeBn>|J| Sin 77)‘00

(ii) Case where n odd,

COS T Je
oo ™ _Z 37-

4o COS T A

For example, in case n =1,

1 COS Ay CcoS A\
doc COS Moo 312 COS Moo 3 COS Ao 32
In case n = 2,
sin wA; sin A sin wAg
3o Sin e 32 Sin s 313 Sin e 312

Sin’fr()\g + )\3) sin7r()\1 + )\g)

- - 3 — : 32

Sin s sin T

sin 7T()\1 + )\2)

- 33

Sin A5

We can prove the following

Theorem 6. In case where n=1,2,3, Con-
jectures I, II, and III affirmatively hold.

The proof can be done by using contiguity
relations involved in (p,3) relative to the shifts
A— A=t Ej.

The formula (3) can be regarded as an exten-
sion of the classical variation formula due to L.
Schléfli concerning the volume of a geodesic simplex
in the unit hypersphere (see [2,17,18]). In fact, by
taking the limit of (3) for A — 0, we can derive the
variation formula of the volume of a real domain
bounded by hyperspheres.

3. Generalization. In this section we as-
sume m (m > n + 2) is arbitrary. Denote by e; (J =
{j1,---,dp} C [1,m], p <n) the logarithmic p-form
dlog fi, A--- Adlog f;,.

Fix an arbitrary subset J = {j1,52,...,jns1} C
[1,m]. Then under the condition (H1), we have

Fix a subset I = {i1,42,...,in+2} C [1,m]. Then
as a consequence of (4) the following fundamental
equality holds among F} (J € B):

(5) nz:ﬁ:t WO(&/I)W =0
= (=1)""B(08,1)

Moreover the following partial fraction
decomposition holds (note that B(0I)=0,
(=1)"'B(09,I) > 0 and (—1)" B(0x I) > 0):

n+2 1/2
B(03,1)
6 Fr = tHl———F) F
( ) I ; ( B(O N I) ) 0,1

so that F7 can be expressed as a linear combination
of Fy(J € B) provided B(0 = I) # 0. Here the signs
+ in the RHS of (5), (6) can be taken such that the
equalities hold

(7) +/BO,1) BOd,I) = B(

0 i,

0,0,1
0 iy '

0,0,1

Note that owing to Jacobi identity and the
above assumption the square of the LHS equals the
square of the RHS in (7).

For Q(z) = >_I_, 22, let
*dQ = Z(—l)"flxl,dxl A ANdzy_q
v=1

ANdx, 1 A - Ndx,.

In addition to the above identities, there are
cohomologous relations like

(8) V(es)~0, |J=n—1,

(9) v(ﬂ) ~ 0,
fino i
J={j,.., 5t Cl,m], 0<r<n-+1.

These identities (4)-(9) seem sufficient to
prove the above Conjectures I, II, and III.

In view of the results obtained in [13,14] in case
of hyperplane arrangement, it seems natural to
make the following conjecture in case of hyper-
sphere arrangement.

Conjecture IV. Let A={S5,...,S5,} bean
arbitrary arrangement of hyperspheres i.e., a;, ajo
be arbitrary.

In addition to (H2), assume further that

(H3): For any choice of I C [1,m] such that
|I| <n, ﬂje[ §RSj #0.
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Then

(i) If X is generic, HE (X, (xS)) is spanned by
F; (I € B). However these are no more necessarily
linearly independent. Under the condition (H1), (5)
are the fundamental relations satisfied by them.

(ii) |Bu(X)| which equals dim H, (X, L") also
equals the number of bounded connected chambers
of R" — S.

Remark 7. It seems interesting to extend
the above formulae stated in Conjectures I and II to

arbitrary m by using the differential forms F7 or
Wo(I)w (I € B) under (H1) or even without (H1).
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