A note on the Bloch-Tamagawa space and Selmer groups

By Niranjan RAMACHANDRAN

Department of Mathematics, University of Maryland, College Park, MD 20742, USA

(Communicated by Shigefumi MORI, M.J.A., April 13, 2015)

Abstract: For any abelian variety A over a number field, we construct an extension of the Tate-Shafarevich group by the Bloch-Tamagawa space using the recent work of Lichtenbaum and Flach. This gives a new example of a Zagier sequence for the Selmer group of A.

Key words: Abelian varieties; L-functions; Tamagawa numbers; Selmer groups.

Introduction. Let A be an abelian variety over a number field F and A^{\vee} its dual. Birch and Swinnerton-Dyer, interested in defining the Tamagawa number $\tau(A)$ of A, were led to their celebrated conjecture [2, Conjecture 0.2] for the Lfunction L(A, s) (of A over F) which predicts both its order r of vanishing and its leading term c_A at s = 1. The difficulty in defining $\tau(A)$ directly is that the adelic quotient $\frac{A(\mathbf{A}_F)}{A(F)}$ is Hausdorff only when r = 0, i.e., A(F) is finite. Bloch [2] has introduced a semiabelian variety G over F such that G(F) is discrete and cocompact in $G(\mathbf{A}_F)$ [2, Theorem 1.10] and famously proved [2, Theorem 1.17] that the Tamagawa number conjecture (4) for G is equivalent to the Birch-Swinnerton-Dyer conjecture for A over F. Observe that G is not a linear algebraic group.

The aim of this short note is to indicate a functorial construction of a locally compact group Y_A given as

(1)
$$0 \to X_A \to Y_A \to \operatorname{III}(A/F) \to 0$$

an extension of $\operatorname{III}(A/F)$ by X_A . The compactness of Y_A is clearly equivalent to the finiteness of $\operatorname{III}(A/F)$. This would be straightforward if G(L)were discrete in $G(\mathbf{A}_L)$ for all finite extensions L of F. But this is not true (Lemma 4):

$$\frac{G(\mathbf{A}_L)}{G(L)}$$

is not Hausdorff in general.

The very simple idea for the construction of Y_A is: Yoneda's lemma. Namely, consider the category of topological \mathcal{G} -modules as a subcategory of the classifying topos $B\mathcal{G}$ of \mathcal{G} (continuous cohomology of a topological group \mathcal{G} , as in S. Lichtenbaum [10], M. Flach [5]).

D. Zagier [18] has pointed out that the Selmer groups $\operatorname{Sel}_m(A/F)$ (5) can be obtained from certain two-extensions (6) of $\operatorname{III}(A/F)$ by A(F); these we call Zagier sequences. We show how Y_A provides a new natural Zagier sequence. In particular, this shows that Y_A is not a split sequence.

Bloch's construction has been generalized to one-motives; it led to the Bloch-Kato conjecture on Tamagawa numbers of motives [3]; it is also closely related to Scholl's method of relating non-critical values of L-functions of pure motives to critical values of L-functions of mixed motives [9, p. 252] [13, 14].

Notations. We write $\mathbf{A} = \mathbf{A}_f \times \mathbf{R}$ for the ring of adeles over \mathbf{Q} ; here $\mathbf{A}_f = \hat{\mathbf{Z}} \otimes_{\mathbf{Z}} \mathbf{Q}$ is the ring of finite adeles. For any number field K, we let \mathcal{O}_K be the ring of integers, \mathbf{A}_K denote the ring of adeles $\mathbf{A} \otimes_{\mathbf{Q}} K$ over K; write \mathbf{I}_K for the ideles. Let \overline{F} be a fixed algebraic closure of F and write $\Gamma = \text{Gal}(\overline{F}/F)$ for the Galois group of F. For any abelian group P and any integer m > 0, we write P_m for the m-torsion subgroup of P. A topological abelian group is Hausdorff.

Construction of Y_A . This will use the continuous cohomology of Γ via classifying spaces [10, 5] to which we refer for a detailed exposition.

For each field L with $F \subset L \subset \overline{F}$, the group $G(\mathbf{A}_L)$ is a locally compact group. If L/F is Galois, then

$$G(\mathbf{A}_L)^{\operatorname{Gal}(L/F)} = G(\mathbf{A}_F).$$

$$\mathbf{E} = \lim G(\mathbf{A}_L),$$

doi: 10.3792/pjaa.91.61 ©2015 The Japan Academy

²⁰¹⁰ Mathematics Subject Classification. Primary 11G40, 14H52, 20G30, 22E41.

the direct limit of locally compact abelian groups, is equipped with a continuous action of $\Gamma = \Gamma_F$. The natural map

$$E := G(\bar{F}) \hookrightarrow \mathbf{E}$$

is Γ_F -equivariant. Though the subgroup $G(F) \subset G(\mathbf{A}_F)$ is discrete, the subgroup

$$E \subset \mathbf{E}$$

fails to be discrete; this failure happens at finite level (see Lemma 4 below). The non-Hausdorff nature of the quotient

 \mathbf{E}/E

directs us to consider the classifying space/topos.

Let Top be the site defined by the category of (locally compact) Hausdorff topological spaces with the open covering Grothendieck topology (as in the "gros topos" of [5, §2]). Any locally compact abelian group M defines a sheaf yM of abelian groups on Top; this (Yoneda) provides a fully faithful embedding of the (additive, but not abelian) category Tabof locally compact abelian groups into the (abelian) category Tab of sheaves of abelian groups on Top. Write Top for the category of sheaves of sets on Topand let $y: Top \to Top$ be the Yoneda embedding. A generalized topology on a given set S is an object Fof Top with F(*) = S.

For any (locally compact) topological group \mathcal{G} , its classifying topos $B\mathcal{G}$ is the category of objects Fof $\mathcal{T}op$ together with an action $y\mathcal{G} \times F \to F$. An abelian group object F of $B\mathcal{G}$ is a sheaf on $\mathcal{T}op$, together with actions $y\mathcal{G}(U) \times F(U) \to F(U)$, functorial in U; we write $H^i(\mathcal{G}, F)$ (objects of $\mathcal{T}ab$) for the continuous/topological group cohomology of \mathcal{G} with coefficients in F. These arise from the global section functor

$$B\mathcal{G} \to \mathcal{T}ab, \quad F \mapsto F^{y\mathcal{G}}.$$

Details for the following facts can be found in $[5, \S 3]$ and [10].

- (a) (Yoneda) Any topological \mathcal{G} -module M provides an (abelian group) object yM of $B\mathcal{G}$; see [10, Proposition 1.1].
- (b) If 0 → M → N is a map of topological G-modules with M homeomorphic to its image in N, then the induced map yM → yN is injective [5, Lemma 4].
- (c) Applying Propositions 5.1 and 9.4 of [5] to the profinite group Γ and any continuous Γ -mod-

ule M provide an isomorphism

$$H^i(\Gamma, yM) \simeq H^i_{cts}(\Gamma, M)$$

between this topological group cohomology and the continuous cohomology (computed via continuous cochains). This is also proved in [10, Corollary 2.4].

For any map $f: M \to N$ of topological abelian groups, the cokernel of $yf: yM \to yN$ is welldefined in $\mathcal{T}ab$ even if the cokernel of f does not exist in Tab. If f is a map of topological \mathcal{G} -modules, then the cokernel of the induced map $yf: yM \to$ yN, a well-defined abelian group object of $B\mathcal{G}$, need not be of the form yP.

The pair of topological Γ -modules $E \hookrightarrow \mathbf{E}$ gives rise to a pair $yE \hookrightarrow y\mathbf{E}$ of objects of $B\Gamma$. Write \mathcal{Y} for the quotient object $\frac{y\mathbf{E}}{yE}$. As \mathbf{E}/E is not Hausdorff (Lemma 4), \mathcal{Y} is not yN for any topological Γ -module N.

Definition 1. We set $\mathcal{Y}_A = H^0(\Gamma, \mathcal{Y}) \in \mathcal{T}ab$. Our main result is the

Theorem 2.

(i) \mathcal{Y}_A is the Yoneda image yY_A of a Hausdorff locally compact topological abelian group Y_A .

(ii) X_A is an open subgroup of Y_A .

(iii) The group Y_A is compact if and only if $\operatorname{III}(A/F)$ is finite. If Y_A is compact, then the index of X_A in Y_A is equal to $\#\operatorname{III}(A/F)$.

As $\operatorname{III}(A/F)$ is a torsion discrete group, the topology of Y_A is determined by that of X_A .

Proof of Theorem 2. The basic point is the proof of (iii). From the exact sequence

$$0 \to yE \to yE \to \mathcal{Y} \to 0$$

of abelian objects in $B\Gamma$, we get a long exact sequence (in $\mathcal{T}ab$)

$$0 \to H^0(\Gamma, yE) \to H^0(\Gamma, yE) \to$$
$$\to H^0(\Gamma, \mathcal{Y}) \to H^1(\Gamma, yE) \xrightarrow{j} H^1(\Gamma, yE) \to \cdots$$

We have the following identities of topological groups: $H^0(\Gamma, yE) = yG(F)$ and $H^0(\Gamma, yE) =$ $yG(\mathbf{A}_F)$. Thus, it suffices to identify $\operatorname{Ker}(j)$ as $y\operatorname{III}(A/F)$. Let \mathbf{E}^{δ} denote \mathbf{E} endowed with the discrete topology; the identity map on the underlying set provides a continuous Γ -equivariant map $\mathbf{E}^{\delta} \to \mathbf{E}$. Since E is a discrete Γ -module, the inclusion $E \to \mathbf{E}$ factorizes via \mathbf{E}^{δ} . By item (c) above, $\operatorname{Ker}(j)$ is isomorphic to the Yoneda image of the kernel of the composite map

$$H^1_{cts}(\Gamma, E) \xrightarrow{j'} H^1_{cts}(\Gamma, \mathbf{E}^{\delta}) \xrightarrow{k} H^1_{cts}(\Gamma, \mathbf{E}).$$

Since E and \mathbf{E}^{δ} are discrete Γ -modules, the map j' identifies with the map of ordinary Galois cohomology groups

$$H^1(\Gamma, E) \xrightarrow{j''} H^1(\Gamma, \mathbf{E}^{\delta}).$$

The traditional definition [2, Lemma 1.16] of $\operatorname{III}(G/F)$ is as $\operatorname{Ker}(j'')$. As

$$\mathrm{III}(A/F)\simeq\mathrm{III}(G/F)$$

[2, Lemma 1.16], to prove Theorem 2, all that remains is the injectivity of k. This is straightforward from the standard description of H^1 in terms of crossed homomorphisms: if $f: \Gamma \to \mathbf{E}^{\delta}$ is a crossed homomorphism with kf principal, then there exists $\alpha \in \mathbf{E}$ with $f: \Gamma \to \mathbf{E}$ satisfies

$$f(\gamma) = \gamma(\alpha) - \alpha \quad \gamma \in \Gamma$$

This identity clearly holds in both \mathbf{E} and \mathbf{E}^{δ} . Since the Γ -orbit of any element of \mathbf{E} is finite, the left hand side is a continuous map from Γ to \mathbf{E}^{δ} . Thus, fis already a principal crossed (continuous) homomorphism. So k is injective, finishing the proof of Theorem 2.

Remark 3. The proof above shows: If every element of a topological Γ -module N has open stabilizer, then the natural map $H^1(\Gamma, N^{\delta}) \rightarrow$ $H^1(\Gamma, N)$ is injective.

Bloch's construction of G [2,11]. Write $A^{\vee}(F) = B \times \text{finite.}$ By the Weil-Barsotti formula,

$$\operatorname{Ext}_{F}^{1}(A, \mathbf{G}_{m}) \simeq A^{\vee}(F).$$

Every point $P \in A^{\vee}(F)$ determines a semi-abelian variety G_P which is an extension of A by \mathbf{G}_m . Let Gbe the semiabelian variety determined by B:

(2)
$$0 \to T \to G \to A \to 0,$$

an extension of A by the torus $T = Hom(B, \mathbf{G}_m)$. The semiabelian variety G is the Cartier dual [4, §10] of the one-motive

$$[B \to A^{\vee}].$$

The sequence (2) provides (via Hilbert Theorem 90) [2, (1.4)] the following exact sequence

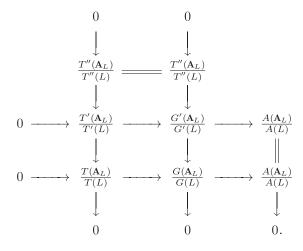
(3)
$$0 \to \frac{T(\mathbf{A}_F)}{T(F)} \to \frac{G(\mathbf{A}_F)}{G(F)} \to \frac{A(\mathbf{A}_F)}{A(F)} \to 0$$

It is worthwhile to contemplate this mysterious sequence: the first term is a Hausdorff, non-compact

group and the last is a compact non-Hausdorff group, but the middle term is a compact Hausdorff group!

Lemma 4. For any field L with $F \subset L \subset \overline{F}$, the group G(L) is a discrete subgroup of $G(\mathbf{A}_L)$ if and only if $A(K) \subset A(L)$ is of finite index.

Proof. Pick a subgroup $C \simeq \mathbf{Z}^s$ of $A^{\vee}(L)$ such that $B \times C$ has finite index in $A^{\vee}(L)$. The Bloch semiabelian variety G' over L determined by $B \times C$ is an extension of A by $T' = Hom(B \times C, \mathbf{G}_m)$. One has an exact sequence $0 \to T'' \to G' \to G \to 0$ defined over L where $T'' = Hom(C, \mathbf{G}_m)$ is a split torus of dimension s. Consider the commutative diagram with exact rows and columns



The proof of surjectivity in the columns follows Hilbert Theorem 90 applied to T'' [2, (1.4]). The Bloch-Tamagawa space $X'_A = \frac{G'(\mathbf{A}_L)}{G'(L)}$ for A over L is compact and Hausdorff; its quotient by

$$\frac{T''(\mathbf{A}_L)}{T''(L)} = \left(\frac{\mathbf{I}_L}{L^*}\right)^s$$

is $\frac{G(\mathbf{A}_L)}{G(L)}$. The quotient is Hausdorff if and only if s = 0.

A more general form of Lemma 4 is implicit in [2]: For any one-motive $[N \xrightarrow{\phi} A^{\vee}]$ over F, write Vfor its Cartier dual (a semiabelian variety), and put

$$X = \frac{V(\mathbf{A}_F)}{V(F)}.$$

Then X is compact if and only if $\text{Ker}(\phi)$ is finite; X is Hausdorff if and only if the image of ϕ has finite index in $A^{\vee}(F)$.

Tamagawa numbers. Let *H* be a semisimple algebraic group over *F*. Since H(F) embeds discretely in $H(\mathbf{A}_F)$, the adelic space $X_H = \frac{H(\mathbf{A}_F)}{H(F)}$ is

No. 5]

Hausdorff. The Tamagawa number $\tau(H)$ is the volume of X_H relative to a canonical (Tamagawa) measure [15]. The Tamagawa number theorem [8, 1] (which was formerly a conjecture) states

(4)
$$\tau(H) = \frac{\# \operatorname{Pic}(H)_{\operatorname{torsion}}}{\# \operatorname{III}(H)}$$

where Pic(H) is the Picard group and III(H) the Tate-Shafarevich set of H/F (which measures the failure of the Hasse principle). Taking $H = SL_2$ over **Q** in (4) recovers Euler's result

$$\zeta(2) = \frac{\pi^2}{6}$$

The above formulation (4) of the Tamagawa number theorem is due to T. Ono [12, 17] whose study of the behavior of τ under an isogeny explains the presence of Pic(H), and reduces the semisimple case to the simply connected case. The original form of the theorem (due to A. Weil) is that $\tau(H) = 1$ for split simply connected H. The Tamagawa number theorem (4) is valid, more generally, for any connected linear algebraic group H over F. The case $H = \mathbf{G}_m$ becomes the Tate-Iwasawa [16, 7] version of the analytic class number formula: the residue of the zeta function $\zeta(F, s)$ is the volume of the (compact) unit idele class group \mathbf{J}_F^1 of F.

Zagier extensions [18]. The *m*-Selmer group $\operatorname{Sel}_m(A/F)$ (for m > 0) fits into an exact sequence

(5)
$$0 \to \frac{A(F)}{mA(F)} \to \operatorname{Sel}_m(A/F) \to \operatorname{III}(A/F)_m \to 0.$$

D. Zagier [18, §4] has pointed out that while the m-Selmer sequences (5) (for all m > 1) cannot be induced by a sequence (an extension of $\operatorname{III}(A/F)$ by A(F))

$$0 \to A(F) \to ? \to \operatorname{III}(A/F) \to 0,$$

they can be induced by an exact sequence of the form

(6)
$$0 \to A(F) \to \mathcal{A} \to \mathcal{S} \to \operatorname{III}(A/F) \to 0$$

and gave examples of such (Zagier) sequences. Combining (1) and (3) above provides the following natural Zagier sequence

$$0 \to A(F) \to A(\mathbf{A}_F) \to \frac{Y_A}{T(\mathbf{A}_F)} \to \mathrm{III}(A/F) \to 0.$$

Write $A(\mathbf{A}_{\bar{F}})$ for the direct limit of the groups $A(\mathbf{A}_L)$ over all finite subextensions $F \subset L \subset \bar{F}$. The

previous sequence discretized (neglect the topology) becomes

$$0 \to A(F) \to A(\mathbf{A}_F) \to \left(\frac{A(\mathbf{A}_{\bar{F}})}{A(\bar{F})}\right)^T \to \operatorname{III}(A/F) \to 0.$$

Remark 5. (i) For an elliptic curve E over F, Flach has indicated how to extract a canonical Zagier sequence via $\tau_{\geq 1}\tau_{\leq 2}R\Gamma(S_{et}, \mathbf{G}_m)$ from any regular arithmetic surface $S \to \operatorname{Spec} \mathcal{O}_F$ with $E = S \times_{\operatorname{Spec} \mathcal{O}_F} \operatorname{Spec} F$.

(ii) It is well known that the class group $\operatorname{Pic}(\mathcal{O}_F)$ is analogous to $\operatorname{III}(A/F)$ and the unit group \mathcal{O}_F^{\times} is analogous to A(F). Iwasawa [6, p. 354] proved that the compactness of \mathbf{J}_F^1 is equivalent to the two basic finiteness results of algebraic number theory: (i) $\operatorname{Pic}(\mathcal{O}_F)$ is finite; (ii) \mathcal{O}_F^{\times} is finitely generated. His result provided a beautiful new proof of these two finiteness theorems. Bloch's result [2, Theorem 1.10] on the compactness of X_A uses the Mordell-Weil theorem (A(F) is finitely generated) and the non-degeneracy of the Néron-Tate pairing on $A(F) \times A^{\vee}(F)$ (modulo torsion).

Question 6. Can one define directly a space attached to A/F whose compactness implies the Mordell-Weil theorem for A and the finiteness of $\operatorname{III}(A/F)$?

Acknowledgements. I thank Profs. C. Deninger, M. Flach, S. Lichtenbaum, J. Milne, J. Parson, J. Rosenberg, L. Washington and B. Wieland for interest and encouragement and the referee for helping correct some inaccuracies in an earlier version of this note. I have been inspired by the ideas of Bloch, Prof. T. Ono (via B. Wieland [17]) on Tamagawa numbers, and Prof. D. Zagier on the Tate-Shafarevich group [18]. I am indebted to Ran Cui for alerting me to Wieland's ideas [17].

References

- A. Asok, B. Doran and F. Kirwan, Yang-Mills theory and Tamagawa numbers: the fascination of unexpected links in mathematics, Bull. Lond. Math. Soc. 40 (2008), no. 4, 533–567.
- S. Bloch, A note on height pairings, Tamagawa numbers, and the Birch and Swinnerton-Dyer conjecture, Invent. Math. 58 (1980), no. 1, 65– 76.
- [3] S. Bloch and K. Kato, L-functions and Tamagawa numbers of motives, in *The Grothendieck Festschrift, Vol. I*, Progr. Math., 86, Birkhäuser, Boston, MA, 1990, pp. 333–400.

- [4] P. Deligne, Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. 44 (1974), 5–77.
- [5] M. Flach, Cohomology of topological groups with applications to the Weil group, Compos. Math. 144 (2008), no. 3, 633–656.
- [6] K. Iwasawa, On the rings of valuation vectors, Ann. of Math. (2) 57 (1953), 331–356.
- K. Iwasawa, Letter to J. Dieudonné, in Zeta functions in geometry (Tokyo, 1990), 445–450, Adv. Stud. Pure Math., 21, Kinokuniya, Tokyo, 1992.
- [8] R. E. Kottwitz, Tamagawa numbers, Ann. of Math. (2) **127** (1988), no. 3, 629–646.
- [9] S. Lichtenbaum, Euler characteristics and special values of zeta-functions, in *Motives and algebraic cycles*, Fields Inst. Commun., 56, Amer. Math. Soc., Providence, RI, 2009, pp. 249–255.
- [10] S. Lichtenbaum, The Weil-étale topology for number rings, Ann. of Math. (2) **170** (2009), no. 2, 657–683.
- J. Oesterlé, Construction de hauteurs archimédiennes et p-adiques suivant la methode de Bloch, in Seminar on Number Theory, Paris 1980-81 (Paris, 1980/1981), 175-192, Progr. Math., 22, Birkhäuser, Boston, MA, 1982.
- [12] T. Ono, On Tamagawa numbers, in Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), 122-132, Amer. Math. Soc., Providence, RI,

1996.

- [13] A. J. Scholl, Extensions of motives, higher Chow groups and special values of L-functions, in Séminaire de Théorie des Nombres, Paris, 1991–92, Progr. Math., 116, Birkhäuser, Boston, MA, 1993, pp. 279–292.
- A. J. Scholl, Height pairings and special values of L-functions, in Motives (Seattle, WA, 1991), 571–598, Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994.
- T. Tamagawa, Adèles, in Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), 113–121, Amer. Math. Soc., Providence, RI, 1966.
- [16] J. T. Tate, Fourier analysis in number fields, and Hecke's zeta-functions, in Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), 305–347, Thompson, Washington, DC, 1967.
- [17] B. Wieland (http://mathoverflow.net/users/ 4639/ben-wieland), Why are tamagawa numbers equal to Pic/Sha? MathOverflow. URL: http://mathoverflow.net/q/44360 (version: 2010-10-31).
- [18] D. Zagier, The Birch-Swinnerton-Dyer conjecture from a naive point of view, in Arithmetic algebraic geometry (Texel, 1989), 377–389, Progr. Math., 89, Birkhäuser, Boston, MA, 1991.