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Abstract: Let G be a group. An automorphism � of G is called a commuting

automorphism if ½�ðxÞ; x� ¼ 1 for all x 2 G. Let AðGÞ be the set of all commuting automorphisms

of G. A group G is said to be an AðGÞ-group if AðGÞ forms a subgroup of AutðGÞ. We give some

sufficient conditions on a finite p-group G such that G is an AðGÞ-group. As an application we

prove that a finite p-group G of coclass 2 for an odd prime p is an AðGÞ-group. Also we classify

non-AðGÞ groups G of order p5.
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1. Introduction. For a group G, let AðGÞ ¼
f� 2 AutðGÞ j x�ðxÞ ¼ �ðxÞx 8 x 2 Gg. Automor-

phisms from the set AðGÞ are called commuting

automorphisms. These automorphisms were first

studied for various classes of rings [1,3,9]. The

following problem was proposed by I. N. Herstein to

the American Mathematical Monthly: If G is a

simple non-abelian group, then AðGÞ ¼ 1 [6]. Giving

answer to Herstiens’s problem, Laffey proved that

AðGÞ ¼ 1 provided G has no non-trivial abelian

normal subgroups [8]. Also, Pettet gave a more

general statement proving that AðGÞ ¼ 1 if ZðGÞ ¼
1 and the commutator subgroup �2ðGÞ ¼ G (See

[8]). In 2002, Deaconescu, Silberberg and Walls

proved a number of interesting properties of com-

muting automorphisms [2], and raised the following

natural question about AðGÞ: Is it true that the set

AðGÞ is always a subgroup of AutðGÞ, the auto-

morphism group of G? They themselves answered

the question in negative by constructing an extra-

special group of order 25.

Following Vosooghpour and Akhavan-

Malayeri we say that, a group G is an AðGÞ-group

if AðGÞ forms a subgroup of AutðGÞ. Vosooghpour

and Akhavan-Malayeri [10] showed that, for a given

prime p, minimum order of a non-AðGÞ p-group G is

p5. They also proved that there exists a non-AðGÞ
p-group G of order pn for all n � 5. Fouladi and Orfi

have shown that, if G is either a finite AC-group or

a p-group of maximal class or a metacyclic p-group,

then G is an AðGÞ-group [4].

We prove the following theorem for p-groups

of coclass 2. By the coclass of a p-group G of order

pn we mean the number n� c, where c is the

nilpotency class of G.

Theorem A. Let G be a finite p-group of

coclass 2 for an odd prime p. Then G is an

AðGÞ-group.

Vosooghpour and Akhavan-Malayeri proved

that if G is a non-AðGÞ p-group of order p5 and

nilpotency class 2 then dðGÞ ¼ 4. Improving their

result we prove the following theorem.

Theorem B. Let G be a group of order p5 for

a prime p. Then G is a non-AðGÞ group if and only if

G is an extra-special p-group for an odd prime p or

G is an extra-special 2-group of plus type, i.e., the

central product of two dihedral groups of order 8.

Remark 1.1. We would like to remark here

that our claim, that the only non-AðGÞ group G of

order 32 is the extra-special group of plus type, does

not agree with the claim of Vosooghpour and

Akhavan-Malayeri in [10], where it is shown that,

both the extra-special groups G of order 32 are

non-AðGÞ groups. One can notice in their proof of

Theorem 1.2, that the definition of �, for the extra-

special group of order 2n with relation x2
2 ¼ z is

invalid because it maps x4 to x4x2z
c4 and therefore

does not preserve the relation x2
4 ¼ 1.

We use the following notations. For a multi-

plicatively written group G, let x; y 2 G. Then ½x; y�
denotes the commutator x�1y�1xy. By ZðGÞ and

Z2ðGÞ we denote the center and second center of G

respectively. The centralizer of H in G, where H is

a subgroup of G, is denoted by CGðHÞ. We write
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�kðGÞ for the k’th term in the lower central series of

G. For � 2 AutðGÞ and H � G, ½H;�� denotes the

set fh�1�ðhÞ j h 2 Hg and CHð�Þ denotes the sub-

group fh 2 H j �ðhÞ ¼ hg. Let H � G and T �
AutðGÞ, then ½H;T � denotes the set fh�1�ðhÞ j h 2
H; � 2 Tg. By dðGÞ we mean the minimum no. of

generators of G.

2. Prerequisites. An automorphism � of a

group G is called central automorphism if x�1�ðxÞ 2
ZðGÞ for all x 2 G. These automorphisms form a

normal subgroup of AutðGÞ, which we denote by

AutcentðGÞ.
Now we collect some results on commuting

automorphisms which we will use in section 3.

Theorem 2.1 ([2, Theorem 1.3]). Let G be

a group such that ZðG0Þ contains no involutions.

Then AðGÞ is a subgroup of AutðGÞ if and only if

commutators of elements in AðGÞ are central auto-

morphisms.

Theorem 2.2 ([2, Theorem 1.4]). If G is a

group and if � 2 AðGÞ, then ½G2; �� � Z2ðGÞ.
Lemma 2.3 ([8]). If � 2 AðGÞ and x; y 2 G,

then ½�ðxÞ; y� ¼ ½x; �ðyÞ�.
Lemma 2.4 ([2, Lemma 2.4 (ii, vi, viii), Lem-

ma 2.6 (iii)]). Let G be a group and �; � 2 AðGÞ,
then

(i) AðGÞ is closed under powers.

(ii) �� 2 AðGÞ if and only if ½�ðxÞ; �ðxÞ� ¼ 1 for all

x 2 G.

(iii) �2 2 AutcentðGÞ if and only if �2ðGÞ � CGð�Þ.
(iv) �3ðGÞ � CGð�Þ.

Lemma 2.5 ([10, Lemma 2.2]). Let G be a

group of nilpotency class 2. If dðG=ZðGÞÞ ¼ 2, then

G is an AðGÞ-group.

Theorem 2.6 ([10, Theorem 1.5]). For a

given prime p, the minimal number of generators

of a non-AðGÞ p-group of order p5 and of nilpotency

class 2 is equal to 4.

3. Proofs of the Theorems A and B. We

first prove the following theorem.

Theorem 3.1. Let G be a finite p-group for

an odd prime p. If ½Z2ðGÞ; AðGÞ� � ZðGÞ, then G is

an AðGÞ-group.

Proof. Since G is an odd order group, by

Theorem 2.2 we have, for all � 2 AðGÞ and for all

x 2 G, x�1�ðxÞ 2 Z2ðGÞ. Let �, � 2 AðGÞ, x 2 G and

�ðxÞ ¼ xz1, �ðxÞ ¼ xz2 for some z1; z2 2 Z2ðGÞ. Note

that ��1ðxÞ ¼ x��1ðz�1
1 Þ and ��1ðxÞ ¼ x��1ðz�1

2 Þ.
Now we have

½�; ��ðxÞ
¼ ��1��1��ðxÞ
¼ ��1��1�ðxz2Þ
¼ ��1��1ðxz1�ðz2ÞÞ
¼ ��1ð��1ðxÞ��1ðz1Þ��1�ðz2ÞÞ
¼ ��1ðx��1ðz�1

2 Þ��1ðz1Þ��1�ðz2ÞÞ
¼ x��1ðz�1

1 Þ��1��1ðz�1
2 Þ��1��1ðz1Þ��1��1�ðz2Þ

¼ x��1��1ð�ðz�1
1 Þz�1

2 z1�ðz2ÞÞ
¼ x��1��1ð�ðz�1

1 Þz1½z1; z2�z�1
2 �ðz2ÞÞ:

So that x�1½�; ��ðxÞ ¼ ��1��1ð�ðz�1
1 Þz1½z1;

z2�z�1
2 �ðz2ÞÞ. Since ½Z2ðGÞ; AðGÞ� � ZðGÞ, we have

�ðz�1
1 Þz1; z

�1
2 �ðz2Þ 2 ZðGÞ. Obviously, ½z1; z2� 2

ZðGÞ. It follows that ��1��1ð�ðz�1
1 Þz1½z1;

z2�z�1
2 �ðz2ÞÞ 2 ZðGÞ. We have proved that for all

�, � 2 AðGÞ and for all x 2 G, x�1½�; ��ðxÞ 2 ZðGÞ.
This shows that ½�; �� 2 AutcentðGÞ for all �,

� 2 AðGÞ. Now from Theorem 2.1, it follows that

G is an AðGÞ-group. �

Lemma 3.2. Let p be an odd prime and G be

a finite p-group such that Z2ðGÞ is abelian. Then G is

an AðGÞ-group.

Proof. Let �; � 2 AðGÞ and x 2 G. By Theo-

rem 2.2, �ðxÞ ¼ xz1, �ðxÞ ¼ xz2 for some z1, z2 2
Z2ðGÞ. Since Z2ðGÞ is abelian, and z1, z2 2 CGðxÞ,
we have ½�ðxÞ; �ðxÞ� ¼ ½xz1; xz2� ¼ 1. By Lemma 2.4

(ii) we get that �� 2 AðGÞ. Since AðGÞ is closed

under powers and G is finite we also have ��1 2
AðGÞ. This proves that AðGÞ is a subgroup. �

Theorem 3.3. Let p be an odd prime and G

be a finite p-group such that jZ2ðGÞ=ZðGÞj ¼ p2 and

ZðGÞ ¼ �kðGÞ for some k � 2. Then G is an

AðGÞ-group.

Proof. For k ¼ 2, the result follows from

Lemma 2.5. So let us assume k � 3. Now in view

of Lemma 3.2, we can assume that Z2ðGÞ is non-

abelian. It follows that Z2ðGÞ=ZðGÞ is elementary

abelian, for if Z2ðGÞ=ZðGÞ is cyclic, then Z2ðGÞ is

abelian, which is a contradiction. Let Z2ðGÞ ¼
ha; b; ZðGÞi. Clearly ½a; b� 6¼ 1, because Z2ðGÞ is

non-abelian. Also we have ½a; b� 2 ZðGÞ. Let � 2
AðGÞ. Note that any element of Z2ðGÞ can be

written as arbsz for some r; s 2 Z and z 2 ZðGÞ. Now

since ½�ðaÞ; a� ¼ 1, ½�ðbÞ; b� ¼ 1 and ½a; b� 6¼ 1 we get

that �ðaÞ ¼ ar1z1 and �ðbÞ ¼ bs1z2 for some r1; s1 2
Z and z1; z2 2 ZðGÞ. Since Z2ðGÞ= ZðGÞ is elemen-

tary abelian we can assume that r1 6� 0 (mod pÞ
and s1 6� 0 (mod pÞ. Now since k � 3, by Lemma
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2.4 (iv), we have that ZðGÞ � CGð�Þ. Therefore

�ð½a; b�Þ ¼ ½a; b� which gives the equality that

½a; b�r1s1 ¼ ½a; b�. It follows that

r1s1 � 1 � 0 (mod pÞ:ð3:1Þ

Again consider ½a; b� ¼ �ð½a; b�Þ ¼ ½�ðaÞ; �ðbÞ�, which

by Lemma 2.3 equals ½a; �2ðbÞ� which, after putting

the value of �2ðbÞ, turns out to be ½a; b�s
2
1 : It follows

that

s2
1 � 1 � 0 (mod pÞ:ð3:2Þ

Subtracting equation (3.2) from equation (3.1)

we get that s1ðr1 � s1Þ � 0 (mod pÞ. But s1 6�
0 (mod pÞ. Therefore r1 � s1 (mod pÞ. Since

Z2ðGÞ=ZðGÞ is elementary abelian, without loss of

generality we can assume that �ðbÞ ¼ br1z3 for some

z3 2 ZðGÞ. As r2
1 � 1 � 0 (mod pÞ, we get that

either r1 � 1 � 0 (mod pÞ or r1 þ 1 � 0 (mod pÞ.
If r1 � 1 (mod pÞ, then clearly a�1�ðaÞ; b�1�ðbÞ 2
ZðGÞ. It easily follows that for all y 2 Z2ðGÞ,
y�1�ðyÞ 2 ZðGÞ. Since � was chosen arbitrarily,

by Theorem 3.1 G is an AðGÞ-group. Suppose

r1 � 1 6� 0 (mod pÞ, then r1 � �1 (mod pÞ. There-

fore we have �ðaÞ ¼ a�1u1 and �ðbÞ ¼ b�1u2 for

some u1; u2 2 ZðGÞ. It easily follows that for all

y 2 Z2ðGÞ, �ðyÞ ¼ y�1u for some u 2 ZðGÞ. Let

x 2 G. By Theorem 2.2 �ðxÞ ¼ xy for some y 2
Z2ðGÞ. But then �2ðxÞ ¼ �ðxÞ�ðyÞ ¼ xyy�1u ¼ xu
for some u 2 ZðGÞ. Since x was chosen arbitrarily,

this shows that �2 2 AutcentðGÞ. By Lemma 2.4

(iii), we get that �2ðGÞ � CGð�Þ. Hence Z2ðGÞ \
�2ðGÞ � CGð�Þ. Now observe that �k�1ðGÞ � Z2ðGÞ
because ZðGÞ ¼ �kðGÞ. Therefore, jZ2ðGÞ \
�2ðGÞj > jZðGÞj. It follows that � fixes some

y 2 Z2ðGÞ � ZðGÞ. Let arbsz 2 CGð�Þ � ZðGÞ for

some r; s 2 Z and z 2 ZðGÞ. Therefore arbs 2
CGð�Þ � ZðGÞ. But then arbs ¼ a�rb�sur1us2. It fol-

lows that a2rb2s ¼ ðarbsÞ2½a; b�rs 2 ZðGÞ. Hence

arbs 2 ZðGÞ which is a contradiction. This com-

pletes the proof. �

Proof of Theorem A. In view of Lemma 3.2

we can assume that Z2ðGÞ is non-abelian. Since G

is a p-group of coclass 2, we have jZ2ðGÞj ¼ p3,

jZðGÞj ¼ p. Clearly ZðGÞ ¼ �cðGÞ, where c is the

nilpotency class of G. Now the Theorem A follows

from Theorem 3.3. �

Now we are ready to prove Theorem B. We will

use the classification of groups of order p5 by

James [7] in the proof. We note that James has

classified these groups in 10 isoclinism families.

These families are denoted by �k for k ¼ 1; . . . ; 10.

Proof of Theorem B. For p ¼ 2, it can be

checked using small group library and programming

in GAP [5] that the only non-AðGÞ group G of order

32 is the extra-special group with the GAP id

SmallGroup(32, 49), which is the extra-special 2-

group of plus type. So now we assume that p is an

odd prime. We proceed by cases according to the

nilpotency class of G. If G is a group of nilpotency

class 4 then it is a group of maximal class and

therefore Z2ðGÞ is abelian. So by Lemma 3.2, G is

an AðGÞ-group. Next suppose that G is a group of

nilpotency class 3. Then it is a group of coclass 2

and so by Theorem A it is an AðGÞ-group. Now

suppose that G is a group of nilpotency class 2.

There are 3 isoclinic families, �2, �4 and �5, of

groups of order p5 and of nilpotency class 2. Let

G 2 �4. It can be observed from James list of these

groups that G is a 3 generated group. Therefore by

Theorem 2.6, G is an AðGÞ-group. Next suppose

that G 2 �2. Then from the James list we note that

either dðG=ZðGÞÞ ¼ 2 or dðGÞ � 3. Hence by Lem-

ma 2.5 and Theorem 2.6, G is an AðGÞ-group. The

family �5 consists of two extra-special p-groups. It

has been proved in [10, Theorem 1.2] that extra-

special p-groups of order p5 are non AðGÞ-groups.

Clearly the abelian groups G are AðGÞ-groups. This

completes the proof of the Theorem B. �
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