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Abstract: Let k be a field and G be a finite group acting on the rational function field

kðxg j g 2 GÞ by k-automorphisms hðxgÞ ¼ xhg for any g; h 2 G. Noether’s problem asks whether

the invariant field kðGÞ ¼ kðxg j g 2 GÞG is rational (i.e. purely transcendental) over k. In 1974,

Lenstra gave a necessary and sufficient condition to this problem for abelian groups G. However,

even for the cyclic group Cp of prime order p, it is unknown whether there exist infinitely many

primes p such that QðCpÞ is rational over Q. Only known 17 primes p for which QðCpÞ is rational

over Q are p � 43 and p ¼ 61; 67; 71. We show that for primes p < 20000, QðCpÞ is not (stably)

rational over Q except for affirmative 17 primes and undetermined 46 primes. Under the GRH,

the generalized Riemann hypothesis, we also confirm that QðCpÞ is not (stably) rational over Q

for undetermined 28 primes p out of 46.

Key words: Noether’s problem; rationality problem; algebraic tori; class number;
cyclotomic field.

1. Introduction. Let k be a field and K be

an extension field of k. A field K is said to be

rational over k if K is purely transcendental over k.

A field K is said to be stably rational over k if the

field Kðt1; . . . ; tnÞ is rational over k for some

algebraically independent elements t1; . . . ; tn over

K. Let G be a finite group acting on the rational

function field kðxg j g 2 GÞ by k-automorphisms

hðxgÞ ¼ xhg for any g; h 2 G. We denote the fixed

field kðxg j g 2 GÞG by kðGÞ. Emmy Noether [27,28]

asked whether kðGÞ is rational (= purely transcen-

dental) over k. This is called Noether’s problem for

G over k, and is related to the inverse Galois

problem (see a survey paper of Swan [32] for

details). Let Cn be the cyclic group of order n.

We define the following sets of primes:

R ¼ f2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43;

61; 67; 71g (rational cases);

U ¼ f251; 347; 587; 2459; 2819; 3299; 4547; 4787;

6659; 10667; 12227; 14281; 15299; 17027; 17681;

18059; 18481; 18947g (undetermined cases);

X ¼ f59; 83; 107; 163; 487; 677; 727; 1187; 1459; 2663;

3779; 4259; 7523; 8837; 10883; 11699; 12659;

12899; 13043; 13183; 13523; 14243; 14387;

14723; 14867; 16547; 17939; 19379g
(not rational cases under the GRH)

with #R ¼ 17, #U ¼ 18, #X ¼ 28.

The aim of this paper is to show the following

theorem.

Theorem 1.1. Let p < 20000 be a prime. If

(i) p =2 R [ U [X or (ii) under the GRH, the

generalized Riemann hypothesis, p =2 R [ U, then

QðCpÞ is not stably rational over Q.

2. Noether’s problem for abelian

groups. We give a brief survey of Noether’s

problem for abelian groups. The reader is referred

to Swan’s survey papers [31] and [32].

Theorem 2.1 (Fischer [5], see also Swan [32,

Theorem 6.1]). Let G be a finite abelian group

with exponent e. Assume that (i) either char k ¼ 0
or char k > 0 with char k - e, and (ii) k contains a

primitive e-th root of unity. Then kðGÞ is rational

over k.

Theorem 2.2 (Kuniyoshi [16,17,18]). Let G

be a p-group and k be a field with char k ¼ p > 0.

Then kðGÞ is rational over k.

Masuda [22,23] gave an idea to use a technique

of Galois descent to Noether’s problem for cyclic

groups Cp of order p. Let �p be a primitive p-th root

of unity, L ¼ Qð�pÞ and � ¼ GalðL=QÞ. Then, by
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Theorem 2.1, we have QðCpÞ ¼ Qðx1; . . . ; xpÞCp ¼
ðLðx1; . . . ; xpÞCpÞ� ¼ Lðy0 ; . . . ; yp�1Þ� ¼ LðMÞ�ðy0Þ
where y0 ¼

Pp
i¼1 xi is �-invariant, M is free

Z½��-module and � acts on y1; . . . ; yp�1 by �ðyiÞ ¼Qp�1
j¼1 y

aij
j , ½aij� 2 GLnðZÞ for any � 2 �. Thus the

field LðMÞ� may be regarded as the function field of

some algebraic torus of dimension p� 1 (see e.g.

[37, Chapter 3]).

Theorem 2.3 (Masuda [22,23], see also [32,

Lemma 7.1]).

(i) M is projective Z½��-module of rank one;

(ii) If M is a permutation Z½��-module, i.e. M has a

Z-basis which is permuted by �, then LðMÞ� is

rational over Q. In particular, QðCpÞ is rational

over Q for p � 11.
�1)

Swan [30] gave the first negative solution to

Noether’s problem by investigating a partial con-

verse to Masuda’s result.

Theorem 2.4 (Swan [30, Theorem 1],

Voskresenski�� [34, Theorem 2]).
(i) If QðCpÞ is rational over Q, then there exists

� 2 Z½�p�1� such that NQð�p�1Þ=Qð�Þ ¼ �p;

(ii) (Swan) QðC47Þ, QðC113Þ and QðC233Þ are not

rational over Q;

(iii) (Voskresenski��) QðC47Þ, QðC167Þ, QðC359Þ,
QðC383Þ, QðC479Þ, QðC503Þ and QðC719Þ are not

rational over Q.

Theorem 2.5 (Voskresenski�� [35, Theorem

1]). QðCpÞ is rational over Q if and only if there

exists � 2 Z½�p�1� such that NQð�p�1Þ=Qð�Þ ¼ �p.

Hence if the cyclotomic field Qð�p�1Þ has

class number one, then QðCpÞ is rational over

Q. However, it is known that such primes are

exactly p � 43 and p ¼ 61; 67; 71 (see Masley and

Montgomery [21, Main theorem] or Washington’s

book [38, Chapter 11]).

Endo and Miyata [4] refined Masuda-Swan’s

method and gave some further consequences on

Noether’s problem when G is abelian (see also [36]).

Theorem 2.6 (Endo and Miyata [4, Theorem

2.3]). Let G1 and G2 be finite groups and k be a

field with char k ¼ 0. If kðG1Þ and kðG2Þ are rational

(resp. stably rational) over k, then kðG1 �G2Þ is

rational (resp. stably rational) over k.
�2)

The converse of Theorem 2.6 does not hold for

general k, see e.g. Theorem 2.10 below.

Theorem 2.7 (Endo and Miyata [4, Theorem

3.1]). Let p be an odd prime and l be a positive

integer. Let k be a field with char k ¼ 0 and ½kð�plÞ :

k� ¼ pm0d0 with 0 � m0 � l� 1 and d0 j p� 1. Then

the following conditions are equivalent:

(i) For any faithful k½Cpl �-module V , kðV ÞCpl is

rational over k;

(ii) kðCplÞ is rational over k;

(iii) There exists � 2 Z½�pm0d0
� such that

NQð�pm0 d0 Þ=Qð�Þ ¼
�p m0 > 0

�pl m0 ¼ 0.

�

Further suppose that m0 > 0. Then the above

conditions are equivalent to each of the following

conditions:

(i0) For any k½Cpl �-module V , kðV ÞCpl is rational over

k;

(ii0) For any 1 � l0 � l, kðCpl0 Þ is rational over k.

Theorem 2.8 (Endo and Miyata [4, Proposi-

tion 3.2]). Let p be an odd prime and k be a field

with char k ¼ 0. If k contains �p þ ��1
p , then kðCplÞ is

rational over k for any l. In particular, QðC3lÞ is

rational over Q for any l.

Theorem 2.9 (Endo and Miyata [4, Proposi-

tion 3.4, Corollary 3.10]).
(i) For primes p � 43 and p ¼ 61; 67; 71, QðCpÞ is

rational over Q;

(ii) For p ¼ 5; 7, QðCp2Þ is rational over Q;

(iii) For l � 3, QðC2lÞ is not stably rational over Q.

Theorem 2.10 (Endo and Miyata [4, Theo-

rem 4.4]). Let G be a finite abelian group of odd

order and k be a field with char k ¼ 0. Then there

exists an integer m > 0 such that kðGmÞ is rational

over k.

Theorem 2.11 (Endo and Miyata [4, Theo-

rem 4.6]). Let G be a finite abelian group. Then

QðGÞ is rational over Q if and only if QðGÞ is stably

rational over Q.

Ultimately, Lenstra [19] gave a necessary and

sufficient condition of Noether’s problem for abelian

groups.

Theorem 2.12 (Lenstra [19, Main Theorem,

Remark 5.7]). Let k be a field and G be a finite

abelian group. Let kcyc be the maximal cyclotomic

extension of k in an algebraic closure. For k 	
K 	 kcyc, we assume that �K ¼ GalðK=kÞ ¼ h�ki is

finite cyclic. Let p be an odd prime with p 6¼ char k

and s � 1 be an integer. Let aKðpsÞ be a Z½�K �-ideal

defined by

�1) The author [9, Chapter 5] generalized Theorem 2.3 (ii) to

Frobenius groups Fpl of order pl with l j p� 1 (p � 11).
�2) Kang and Plans [15, Theorem 1.3] showed that Theorem

2.6 is also valid for any field k.
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aKðpsÞ ¼
Z½�K � if K 6¼ kð�psÞ
ð�K � t; pÞ if K ¼ kð�psÞ where t 2 Z

satisfies �Kð�pÞ ¼ �tp

8><
>:

and put aKðGÞ ¼
Q

p;s aKðpsÞmðG;p;sÞ where

mðG; p; sÞ ¼ dimZ=pZðps�1G=psGÞ. Then the follow-

ing conditions are equivalent:

(i) kðGÞ is rational over k;

(ii) kðGÞ is stably rational over k;

(iii) for k 	 K 	 kcyc, the Z½�K �-ideal aKðGÞ is

principal and if char k 6¼ 2, then kð�rðGÞÞ=k is cyclic

extension where rðGÞ is the highest power of 2

dividing the exponent of G.

Theorem 2.13 (Lenstra [19, Corollary 7.2],

see also [20, Proposition 2, Corollary 3]). Let n

be a positive integer. Then the following conditions

are equivalent:

(i) QðCnÞ is rational over Q;

(ii) kðCnÞ is rational over k for any field k;

(iii) QðCpsÞ is rational over Q for any ps k n;

(iv) 8 - n and for any ps k n, there exists � 2 Z½�’ðpsÞ�
such that NQð�’ðpsÞÞ=Qð�Þ ¼ �p.

Theorem 2.14 (Lenstra [19, Corollary 7.6],

see also [20, Proposition 6]). Let k be a field which

is finitely generated over its prime field. Let Pk be

the set of primes p for which kðCpÞ is rational over k.

Then Pk has Dirichlet density 0 inside the set of all

primes p. In particular,

lim
x!1

��ðxÞ
�ðxÞ ¼ 0

where �ðxÞ is the number of primes p � x, and ��ðxÞ
is the number of primes p � x for which QðCpÞ is

rational over Q.

Theorem 2.15 (Lenstra [20, Proposition 4]).

Let p be a prime and s � 2 be an integer. Then

QðCpsÞ is rational over Q if and only if ps 2
f22; 3m; 52; 72 j m � 2g.

However, even in the case k ¼ Q and p < 1000,

there exist primes p (e.g. 59, 83, 107, 251, etc.) such

that the rationality of QðCpÞ over Q is undeter-

mined (see Theorem 1.1). Moreover, we do not

know whether there exist infinitely many primes p

such that QðCpÞ is rational over Q. This derives a

motivation of this paper.

We finally remark that although CðGÞ is

rational over C for any abelian group G by

Theorem 2.1, Saltman [33] gave a p-group G of

order p9 for which Noether’s problem has a negative

answer over C using the unramified Brauer group

B0ðGÞ. Indeed, one can see that B0ðGÞ 6¼ 0 implies

that CðGÞ is not retract rational over C, and hence

not (stably) rational over C.

Theorem 2.16. Let p be any prime.

(i) (Saltman [33]) There exists a meta-abelian

p-group G of order p9 such that B0ðGÞ 6¼ 0;

(ii) (Bogomolov [1]) There exists a group G of order

p6 such that B0ðGÞ 6¼ 0;

(iii) (Moravec [26]) There exist exactly 3 groups G of

order 35 such that B0ðGÞ 6¼ 0;

(iv) (Hoshi, Kang and Kunyavskii [11]) For groups

G of order p5 ðp � 5Þ, B0ðGÞ 6¼ 0 if and only if G

belongs to the isoclinism family �10. There exist

exactly 1þ gcdf4; p� 1g þ gcdf3; p� 1g groups G of

order p5 ðp � 5Þ such that B0ðGÞ 6¼ 0.

In particular, for the cases where B0ðGÞ 6¼ 0,

CðGÞ is not retract rational over C. Thus CðGÞ is

not (stably) rational over C.

The reader is referred to [3,12,11,2,13,14] and

the references therein for more recent progress

about unramified Brauer groups and retract ration-

ality of fields.

3. Proof of Theorem 1.1. By Swan’s theo-

rem (Theorem 2.4), Noether’s problem for Cp over

Q has a negative answer if the norm equation

NF=Qð�Þ ¼ �p has no integral solution for some

intermediate field Q 	 F 	 Qð�p�1Þ with ½F : Q� ¼
d. When d ¼ 2, Endo and Miyata gave the following

result:

Proposition 3.1 (Endo and Miyata [4, Prop-

osition 3.6]). Let p be an odd prime satisfying one

of the following conditions:

(i) p ¼ 2q þ 1 where q 
 �1 (mod 4Þ, q is square-

free, and any of 4p� q and q þ 1 is not square;

(ii) p ¼ 8q þ 1 where q 6
 �1 (mod 4Þ, q is square-

free, and any of p� q and p� 4q is not square. Then

QðCpÞ is not rational over Q.

By Proposition 3.1 and case-by-case analysis

for d ¼ 2 and d ¼ 4, Endo and Miyata confirmed

that Noether’s problem for Cp over Q has a negative

answer for some primes p < 2000 ([4, Appendix]).

The computational results of Proposition 3.1 for

p < 20000 are also given in an extended version of

the paper [10, Section 5].

In general, we may have to check all inter-

mediate fields Q 	 F 	 Qð�p�1Þ with degree 2 �
d � ’ðp� 1Þ. However, fortunately, it turns out

that for many cases, we can determine the ration-

ality of QðCpÞ by some intermediate field F of low

degree d � 8.
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We make an algorithm using the computer

software PARI/GP [29] for general d j p� 1. We

can prove Theorem 1.1 by function NP(j,{GRH},

{L}) of PARI/GP which may determine whether

Noether’s problem for Cpj over Q has a positive

answer for the j-th prime pj unconditionally, i.e.

without the GRH, if GRH ¼ 0 (resp. under the GRH

if GRH ¼ 1). The code of the function NP(j,{GRH},

{L}) can be obtained in an extended version of the

paper [10, Section 3].

NP(j,{GRH},{L}) returns the list ½dþ; d�; GRH�
for the j-th prime pj and L ¼ flþ; l�g without the

GRH if GRH ¼ 0 (resp. under the GRH if GRH ¼ 1)

where d� ¼ ½K�;i : Q� if the norm equation

NK�;i=Qð�Þ ¼ �pj has no integral solution for some

i-th subfield Q 	 K�;i 	 Qð�pj�1Þ with i � l�, d� ¼
Rational if the norm equation NQð�pj�1Þ=Qð�Þ ¼ �pj
has an integral solution. The second and third

inputs fGRHg, fLg may be omitted. If they are

omitted, the function NP runs as GRH ¼ 0 and L ¼
½1; 1�, namely it works without the GRH and for all

subfields Q 	 K�;i 	 Qð�pj�1Þ respectively.

We further define the set of primes:

S0 ¼ f5987; 7577; 9497; 9533; 10457; 10937;

11443; 11897; 11923; 12197; 12269; 13037;

13219; 13337; 13997; 14083; 15077; 15683;

15773; 16217; 16229; 16889; 17123; 17573;

17657; 17669; 17789; 17827; 18077; 18413;

18713; 18979; 19139; 19219; 19447; 19507;

19577; 19843; 19973; 19997g;
S1 ¼ f11699; 12659; 12899; 13043; 14243; 14723;

17939; 19379g 	 X;
T0 ¼ f197; 227; 491; 1373; 1523; 1619; 1783; 2099;

2579; 2963; 5507; 5939; 6563; 6899; 7187;

7877; 14561; 18041; 18097; 19603g;
T1 ¼ f8837g 	 X

with #S0 ¼ 40, #S1 ¼ 8, #T0 ¼ 20, #T1 ¼ 1.

We split the proof of Theorem 1.1 (p < 20000Þ
into three parts:

(i) p 2 S0 [ S1;

(ii) p 2 T0 [ T1;

(iii) p =2 U [ S0 [ S1 [ T0 [ T1.

We will treat the cases (i), (ii), (iii) in

Subsections 3.1, 3.2, 3.3 respectively.

3.1. Case p 2 S0 [ S1. When pj 2 S0 [ S1, we

should take a suitable list L for the function

NP(j,GRH,L). For pj 2 S0 (resp. pj 2 S1), we may

take the following L in L0 (resp. L1) respectively:

L0=[[20,19],[1,3],[1,3],[9,1],[1,3],[1,3],

[1,3],[1,3],[1,3],[3,1],[1,3],[9,3],

[1,3],[1,3],[1,3],[1,3],[10,1],[4,1],

[8,3],[1,3],[3,1],[1,3],[1,3],[1,3],

[1,3],[1,3],[9,3],[1,3],[9,3],[9,3],

[1,3],[1,3],[1,3],[1,3],[1,3],[1,3],

[1,3],[1,3],[3,1],[9,3]];

L1=[[3,1],[3,1],[1,3],[1,3],[1,3],[41,1],

[4,1],[3,1]];

Let S0;j (resp. S1;j) be the index set fjg of the set

S0 ¼ fpjg (resp. S1).

S0j=[783,962,1177,1180,1279,1328,

1380,1425,1428,1458,1467,1553,

1572,1584,1651,1661,1761,1831,

1840,1884,1886,1948,1974,2020,

2028,2030,2041,2044,2072,2109,

2136,2158,2171,2180,2205,2214,

2221,2245,2258,2262];

S1j=[1404,1513,1535,1554,1673,1723,

2057,2193];

For example, we take pj ¼ 5987 2 S0 with j ¼ 783.

Then NP(783,0) does not work well in a reasonable

time. However, NP(783,0,[20,19]) returns an

answer in a few seconds:

gp > NP(783,0,[20,19])

[8, 8, 0]

Namely, the norm equation NKþ;i=Qð�Þ ¼ pj has no

integral solution for some i-th subfield Q 	 Kþ;i 	
Qð�pj�1Þ with i � 20 and ½Kþ;i : Q� ¼ 8, and

NK�;i=Qð�Þ ¼ �pj has no integral solution for some

i-th subfield Q 	 K�;i 	 Qð�pj�1Þ with i � 19 and

½K�;i : Q� ¼ 8.

We can confirm Theorem 1.1 for pj 2 S0 (resp.

pj 2 S1Þ unconditionally, i.e. without the GRH,

(resp. under the GRH) using NP(j,GRH,L) with

GRH ¼ 0 (resp. GRH ¼ 1). For the actual com-

putation, see an extended version of the paper

[10, Subsection 3.1].

3.2. Case p 2 T0 [ T1. When pj 2 T0 [ T1,

because the computation of NP(j,GRH) may take

more time and memory resources, we will do that by

case-by-case analysis. We can confirm Theorem 1.1

for pj 2 T0 (resp. pj 2 T1Þ unconditionally (resp.

under the GRH) using NP(j,GRH) with GRH ¼ 0
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(resp. GRH ¼ 1) as follows. In particular, for two

primes pj ¼ 5507 with j ¼ 728 and pj ¼ 7187 with

j ¼ 918, it takes about 55 days and 45 days

respectively in our computation. See an extended

version of the paper [10, Subsection 3.2] for the

actual computation.

3.3. Case p =2 U [ S0 [ S1 [ T0 [ T1. When

pj =2 U [ S0 [ S1 [ T0 [ T1, we just apply the func-

tion NP(j,GRH).

Let Uj (resp. Xj, T0;j, T1;j) be the index set fjg
of U ¼ fpjg (resp. X, T0, T1).

Uj=[54,69,107,364,410,463,616,643,

858,1302,1461,1676,1787,1963,2031,

2070,2117,2155];

Xj=[17,23,28,38,93,123,129,195,232,386,

526,584,953,1101,1323,1404,1513,

1535,1554,1569,1602,1673,1685,

1723,1741,1915,2057,2193];

T0j=[45,49,94,220,241,256,276,317,

376,427,728,780,848,887,918,

995,1707,2066,2074,2224];

T1j=[1101];

Then we can confirm Theorem 1.1 for pj =2 U [ S0 [
S1 [ T0 [ T1 unconditionally (resp. under the GRH)

when pj =2 X (resp. pj 2 X) using NP(j,GRH) with

GRH ¼ 0 (resp. GRH ¼ 1). The actual results of

NP(j,GRH) for primes pj < 20000 ðj � 2262Þ in

PARI/GP are described in an extended version of

the paper [10, Section 4].

Proof of Theorem 1.1. Let p < 20000 be a

prime. Theorem 1.1 follows from the result in

Subsection 3.1 (resp. Subsection 3.2, Subsection

3.3) for p 2 S0 [ S1 (resp. p 2 T0 [ T1, p =2 U [ S0 [
S1 [ T0 [ T1). �

Added remark 3.2. From the view point of

Theorems 2.4 and 2.5, Noether’s problem for Cp
over Q is closely related to Weber’s class number

problem (see e.g. Fukuda and Komatsu [6], [7], [8]).

Actually, after this paper was posted on the arXiv,

Fukuda announced to the author that he proved the

non-rationality of QðC59Þ over Q without the GRH.

Independently, Lawrence C. Washington pointed

out to John C. Miller that his methods for finding

principal ideals of real cyclotomic fields in [24], [25]

may be valid for Qð�p�1Þ at least some small primes

p. Indeed, Miller announced to the author that he

proved that QðCpÞ is not rational over Q for p ¼ 59
(resp. 251) without the GRH (resp. under the GRH)

by using a similar technique as in [24], [25]. It

should be interesting how to improve the methods

of Fukuda and Miller for higher primes p.
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stable cohomology of wreath products, in Bira-
tional geometry, rational curves, and arithme-
tic, Springer, New York, 2013, pp. 57–76.

[ 3 ] H. Chu, S.-J. Hu, M. Kang and B. E. Kunyavskii,
Noether’s problem and the unramified Brauer
group for groups of order 64, Int. Math. Res.
Not. IMRN 2010, no. 12, 2329–2366.

[ 4 ] S. Endo and T. Miyata, Invariants of finite abelian
groups, J. Math. Soc. Japan 25 (1973), 7–26.

[ 5 ] E. Fischer, Die Isomorphie der Invariantenkörper
der endlichen Abel’schen Gruppen linearer
Transformationen, Nachr. Königl. Ges. Wiss.
Göttingen (1915), 77–80.

[ 6 ] T. Fukuda and K. Komatsu, Weber’s class number
problem in the cyclotomic Z2-extension of Q,
Experiment. Math. 18 (2009), no. 2, 213–222.

[ 7 ] T. Fukuda and K. Komatsu, Weber’s class num-
ber problem in the cyclotomic Z2-extension of
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