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Abstract: In this paper, we shall prove, for any m � 1, the existence of an uncountable

subset of U-numbers of type � m (which we called the set of m-ultra numbers) for which there

exists uncountably many transcendental analytic functions mapping it into Liouville numbers.
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1. Introduction. A transcendental function

is a function fðxÞ such that the only complex

polynomial satisfying P ðx; fðxÞÞ ¼ 0, for all x in its

domain, is the null polynomial. For instance, the

trigonometric functions, the exponential function,

and their inverses.

The study of the arithmetic behavior of tran-

scendental functions at complex points has attract-

ed the attention of many mathematicians for

decades. The first result concerning this subject

goes back to 1884, when Lindemann proved that the

transcendental function ez assumes transcendental

values at all nonzero algebraic point. In 1886,

Weierstrass gave an example of a transcendental

entire function which takes rational values at all

rational points. Later, P. Stäckel [6] proved that for

each countable subset � � C and each dense subset

T � C, there is a transcendental entire function f

such that fð�Þ � T (F. Gramain showed that

Stäckel’s theorem is valid if � and T are subsets

of R). Another construction due to P. Stäckel [7]

produces a transcendental entire function f whose

derivatives f ðtÞ, for t ¼ 0; 1; 2; . . . , all map Q into Q.

Two years later, G. Faber refined this result by

showing the existence of a transcendental entire

function such that f ðtÞðQÞ � QðiÞ, for all t � 0. In

1968, A. J. Van der Poorten [5] proved the existence

of a transcendental function f , such that f ðsÞð�Þ 2
Qð�Þ, for all � 2 Q. In 2011, D. Marques [4] proved

some of these results in the hypertranscendental

context (for more on this subject, we refer the

reader to [8] and the references therein). Let denðzÞ

be the denominator of the rational number z. Very

recently, Marques and Moreira [3] proved the

existence of uncountable many transcendental en-

tire functions f , such that fðQÞ � Q and

denðfðp=qÞÞ < q8q2
, for all p=q 2 Q, with q > 1.

A real number � is called a Liouville number,

if there exists a rational sequence ðpk=qkÞk�1, with

qk > 1, such that

0 < � �
pk

qk

����
���� < q�kk ; for k ¼ 1; 2; . . . :

The set of the Liouville numbers is denoted by L

and it is a dense G� set (and therefore uncountable).

All the previously mentioned results deal with

the arithmetic behavior of a countable set by a

transcendental function. However, in 1984, in one of

his last papers, K. Mahler [2] raised the following

question:

Question. Are there transcendental analytic

functions fðxÞ such that if � is any Liouville

number, then so is fð�Þ?
He also said that: ‘‘The difficulty of this

problem lies of course in the fact that the set of

all Liouville numbers is non-enumerable’’. In this

direction, Marques and Moreira [3] showed the

existence of an uncountable subset of Liouville

numbers for which there exists uncountably many

transcendental entire functions mapping it into

itself.

As usual, Hð�Þ will denote the height of the

algebraic number � (that is, the maximum of the

absolute values of its primitive minimal polynomial

over Z) and exp½3�ðxÞ ¼ eee
x

. Now, let us define the

following class of numbers:
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Definition 1. A real number � is called an

m-ultra number if there exist infinitely many

m-degree real algebraic numbers ð�nÞn such that

0 < � � �nj j < ðexp½3�ðHð�nÞÞÞ�n; for n ¼ 1; 2; . . . :

The set of the m-ultra numbers will be denoted by

Um-ultra.

It follows from the definition that Um-ultra is a

subset of U-numbers of type at most m and it is also

a dense G� set (in particular it is uncountable) — it

means that Um-ultra is a large set in a topological

sense. In particular, every real number can be

written as the sum (and the product, provided it is

nonzero) of two m-ultra numbers, as in [1].

The aim of this paper is to prove the following

result in the direction of Mahler question:

Theorem 1.1. There exist uncountable many

analytic transcendental functions � : R! R such

that �ðUm-ultraÞ � L.

In particular, U1-ultra is an uncountable set of

Liouville numbers mapped into Liouville numbers

for a transcendental analytic function. This gives

evidence that the answer for the Mahler question

should be Yes.

Recall that Qm denotes the set of all m-degree

real algebraic numbers. Since Qm and Q are dense

countable sets of R, there exist uncountable many

transcendental analytic functions � with �ðQmÞ �
Q. In order to prove Theorem 1.1 we shall find a

class of such functions with an upper bound for

denð�ð�ÞÞ in terms of m and Hð�Þ. More precisely,

we have

Theorem 1.2. For any given positive inte-

ger m � 1, there exist uncountably many transcen-

dental analytic functions � : R! R with j�0ðxÞj <
0:0001, �ðQmÞ � Q and such that for all � 2 Qm, it

holds that

denð�ð�ÞÞ � ð2qÞ450m5218m2
q6m

;ð1Þ
where q ¼ Hð�Þ.

2. The proofs.

2.1. Proof that Theorem 1.2 implies Theo-

rem 1.1. Given an m-ultra number �, there exist

infinitely many �n 2 Qm, with height at least

maxfm; 8g, and such that

0 < � � �nj j <
1

ðexp½3�ðHð�nÞÞn
; for n ¼ 1; 2; . . . :

Let � be a function as in Theorem 1.2. By the

Mean Value Theorem, we obtain

�ð�Þ � �ð�nÞj j � 0:0001 � � � �nj j

<
1

ðexp½3�ðHð�nÞÞÞn
:

We know that �ð�nÞ ¼ pn=qn, with qn �
ð2tnÞ450m5218m2

t6mn , where tn ¼ Hð�nÞ. Since tn �
maxfm; 8g, then a straightforward calculation gives

qn � exp½3�ðtnÞ and hence

�ð�Þ �
pn

qn

����
���� ¼ �ð�Þ � �ð�nÞj j <

1

qnn
; for n ¼ 1; 2; . . . :

This implies that �ð�Þ is a Liouville number as

desired. �

2.2. Proof of Theorem 1.2. Before starting

the proof, we shall state some useful facts

. For any distinct y; b 2 ½�1; 1�, it holds that

j sinðy� bÞj > jy� bj=3.

(Indeed, the function sinðxÞ=x is decreasing for

x 2 ð0; ��, and sinð2Þ=2 > 1=3.)

. For any x; y 2 Qm we have Hðy� xÞ �
24m2HðxÞmHðyÞm.

(Indeed, let WðxÞ be the absolute multiplica-

tive Weil height, we know that

1

2@ðxÞ
W ðxÞ@ðxÞ 6 HðxÞ 6 2@ðxÞWðxÞ@ðxÞ;ð2Þ

where @ðxÞ is the degree of the algebraic

number x. Using this together with the in-

equality W ðxþ yÞ � 2W ðxÞW ðyÞ the result

follows.)

. For any distinct x; y 2 Qm \ ½0; 1=2�, with

HðxÞ;HðyÞ � n, we have

jcosð�xÞ � cosð�yÞj �
�

24m2þ1n2mþ1
:

(Indeed, we can assume x < y. Then by the

mean value theorem, one has jcosð�xÞ �
cosð�yÞj � sinð�xÞð�y��xÞ � 2�xðy�xÞ. There

is a simple lower bound for the modulus of

a nonzero complex algebraic numbers �

in terms of the height Hð�Þ, namely j�j �
ðHð�Þ þ 1Þ�1 � ð2Hð�ÞÞ�1 (see [9, Page 82]).

Thus,

jcosð�xÞ � cosð�yÞj > �

2HðxÞHðy� xÞ

�
�

24m2þ1n2mþ1
:Þ

. For every � > 0, any interval of length > �

contains at least two rational numbers with
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denominator � d2=�e.
(Indeed, if m ¼ d2=�e and ða; bÞ is the interior

of the interval, we have b� a > � � 2=m, and

so, for k ¼ bmac þ 1, we have ma < k �
maþ 1, and so ma < k < kþ 1 � maþ 2 <
maþmðb� aÞ ¼ mb, which implies a < k=m <

ðkþ 1Þ=m < b.)

. Let f : R! R be a periodic function which

assumes infinitely many values. Then f is

transcendental.

(Indeed, suppose that f is algebraic, and let

P ðx; yÞ ¼
Pn

i¼0 aiðxÞyi be the polynomial with

minimal degree n in the variable y, such that

anðxÞ has minimal degree and P ðx; fðxÞÞ ¼ 0,

8x 2 R. We may suppose that anðxÞ is monic.

Since f assumes infinitely many values, then

a0ðxÞ; . . . ; anðxÞ cannot be all constants. Set

‘ as the largest index with a‘ðxÞ non constant.

If t is the period of f, then Qkðx; fðxÞÞ :¼
P ðxþ tk; fðxþ tkÞÞ �P ðx; fðxÞÞ ¼

P‘
i¼0ðaiðxþ

tkÞ � aiðxÞÞðfðxÞÞi ¼ 0, for all ðx; kÞ 2 R� Z.

Note that for some integer k0, a‘ðxþ tk0Þ �
a‘ðxÞ is nonzero. If ‘ ¼ n, then anðxþ tkÞ �
anðxÞ is nonzero having degree smaller than the

degree of anðxÞ which contradicts the minimal-

ity of the degree of anðxÞ. In the case of ‘ < n,

then Qk0
ðx; fðxÞÞ ¼ 0 and Qk0

has degree ‘ < n,

in y, which contradicts our assumption on the

minimality of n.)

. Let f : R! R be a transcendental function

and let g : R! R be a non constant algebraic

function. Then f 	 g is transcendental.

(Indeed, by assumption, Cðy; fðyÞÞ is tran-

scendental over CðyÞ. Setting y ¼ gðxÞ is mere-

ly making an algebraic extension of each,

so CðgðxÞ; fðgðxÞÞÞ is transcendental over

CðgðxÞÞ. Hence the tower CðgðxÞ; fðgðxÞÞÞ 

CðgðxÞÞ 
 CðxÞ is transcendental, so fðgðxÞÞ is

transcendental over CðxÞ.)
Now, we are ready to deal with the proof of the

theorem.

Consider the following enumeration of A :¼
Qm \ ½0; 1=2�:

A ¼ f�1; �2; �3; . . .g;

constructed as follows. Let Sk be the set of all

irreducible and primitive polynomials in Z½x� with

degree m and height k. Denote by tk :¼ jSkj <
ðmþ 1Þð2kþ 1Þm. Let Rk be the set all distinct

roots of polynomial in Sk belonging to the interval

½0; 1=2�, (Note that Rk \Rt ¼ ;, for k 6¼ t) and

lk ¼ jRkj, then Rk ¼ f�ðkÞ1 ; . . . ; �
ðkÞ
lk
g with �

ðkÞ
i < �

ðkÞ
iþ1

8k � 1. So the desired enumeration is given by

A ¼ f�1; �2; �3; . . .g ¼ fR1;R2;R3; . . .g:

Now, we will give estimates for the height of the

algebraic numbers in A as a function of the position

in the enumeration. Although estimates are not the

best, they will be sufficient for our purposes.

If �n 2 Rkþ1, then Hð�nÞ ¼ kþ 1. We have n �
l1þ � � � þ lkþ1� t1þ � � � þ tkþ1 � ðmþ 1Þð2kþ 3Þmþ1,

therefore

Hð�nÞ >
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n

mþ 1
mþ1

r
� 2:

On another hand, n � l1 þ � � � þ lk. Let j be an odd

number with 4 < j � k, then lj � 1 (because

ð2=jÞ1=m 2 Rj). Thus, if k � 5, we have n �
bk�4

2 c > k�6
2 , therefore Hð�nÞ < 2nþ 7 (the cases

k ¼ 1; 2; 3; 4 are trivial). Define Bn ¼ fy1; y2; . . . ; yng
with yk :¼ cosð��kÞ.

Set h : C! C given by

hðxÞ ¼ gðcosð�xÞÞ;

where gðyÞ ¼
P1

n¼1 cngnðyÞ, with gnðyÞ ¼Q
b2Bn

sinðy� bÞ.
Suppose that cn ¼ 0 for 1 � n � 5 and jcnj <

1=nn for every positive integer n. We claim that h is

an entire function. In fact, for all y belonging to the

open ball Bð0; RÞ one has that

jgnðyÞj <
Y
b2Bn

ejy�bj � enðRþ1Þ;

where we used that b 2 ½�1; 1�. Thus, since

jcnj < 1=nn, we get jcngnðyÞj � ðeRþ1=nÞn yielding

that g (and so h) is an entire function, since the

series gðyÞ ¼
P1

n¼1 cngnðyÞ, which defines g, con-

verges uniformly in any of these balls. Let f : R!
R be the restriction of h to R. In particular, f is

analytic and jf 0ðxÞj �
P1

n¼6 1=nn�1 < 0:0002, for all

x 2 R.

Now, we shall choose inductively cn’s in a con-

venient way such that f satisfies fð�kÞ 2 Q, for all

k, and denðfð�kÞÞ < ð72m2ð6qÞ4mÞ10m3ð6qÞ2m , where

q ¼ Hð�kÞ.
Suppose that c1; . . . ; cn�1 were chosen such that

fð�1Þ; . . . ; fð�nÞ have the desired properties (notice

that the choice of c1; . . . ; cn�1 determines the values

of fð�1Þ; . . . ; fð�nÞ, independently of the values of

ck; k � n; in particular, since ck ¼ 0 for 1 � k � 5,
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we have fð�nÞ ¼ 0 for 1 � n � 6). Now, we shall

choose cn for which fð�nþ1Þ satisfies the require-

ments.

Let t � n be positive integers with n � 5.

Then Hð�nþ1Þ;Hð�tÞ � 2nþ 9. Since cosð��nþ1Þ 6¼
cosð��tÞ, then

jynþ1 � ytj �
�

24m2þ1ð2nþ 9Þ2mþ1
:

Therefore

j sinðynþ1 � ytÞj >
jynþ1 � ytj

3
>

�=3

24m2þ1ð2nþ 9Þ2mþ1

yielding jgnðynþ1Þj > ð �=3

24m2þ1ð2nþ9Þ2mþ1Þn. Thus

cngnðynþ1Þ runs an interval of length larger than

2�nð3nÞ�n2�nð4m
2þ1Þð2nþ 9Þ�3mn. Now, we may

choose (in at least two ways) cn 6¼ 0 such that

gðynþ1Þ is a rational number with denom-

inator at most nn2nð4m
2þ1Þð2nþ 9Þ3mn. Thus

denðfð�kÞÞ ¼ denðgðcosð��kÞÞ ¼ denðgðykÞÞ � ðk �
1Þðk�1Þ2ðk�1Þð4m2þ1Þ ð2kþ 7Þ3mðk�1Þ < kk2kð4m

2þ1Þ ð2k þ
7Þ3mk. Since q :¼ Hð�kÞ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ðmþ 1Þmþ1

p
� 2, we

get k � ð2q þ 4Þðmþ1Þðmþ 1Þ. Then we have that

denðfð�kÞÞ is at most

ðð2q þ 4Þðmþ1Þðmþ 1ÞÞð2qþ4Þðmþ1Þðmþ1Þ

� 2ð2qþ4Þðmþ1Þðmþ1Þð4m2þ1Þ

� ð2ð2q þ 4Þðmþ1Þðmþ 1Þ þ 7Þ3mð2qþ4Þðmþ1Þðmþ1Þ

< ð72m2ð6qÞ4mÞ10m3ð6qÞ2m:

Now, consider the function  : R! R, given

by  ðxÞ :¼ x
2ð1þx2Þ. Note that  ðQmÞ � Qm \ ½0; 1=2�.

Therefore, our desired function is � :¼ f 	  . In fact,

�ðQmÞ � Q, j�0ðxÞj ¼ jf 0ð ðxÞÞjj 0ðxÞj < 0:0001, for

all x 2 R, and by our previous argument, if � 2 Qm,

then

denð�ð�ÞÞ ¼ denðfð ð�ÞÞÞ � ð72m2ð6tÞ4mÞ10m3ð6tÞ2m;

where t ¼ Hð ð�ÞÞ. On the other hand, we can use

(2) together with the fact that W ðx=yÞ �W ðxÞW ðyÞ
to obtain t ¼ Hð �

2ð1þ�2ÞÞ � 26mq3, where q ¼ Hð�Þ.
Thus

denð�ð�ÞÞ < ð2qÞ450m5218m2
q6m

;

as desired.

Note that since there is a binary tree of

different possibilities for f (if we have choosen

c1; c2; . . . ; cn�1, different choices of cn give different

values of fðynþ1Þ, which does not depend on the

values of ck for k > n, and so different functions f),

we constructed uncountably many possible func-

tions f . So there exist uncountable many functions

� (since  is non constant).

Now, it remains to prove that all functions

constructed above are transcendental: in fact, since

f assumes infinitely many values (because it is

continue and non constant) and it is periodic (with

period 2), then f is transcendental. Therefore f 	  
is transcendental, because  is a non constant

rational function. �
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