On dependence of meromorphic functions sharing some finite sets IM

By Manabu Shirosaki
Department of Mathematical Sciences, School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

(Communicated by Masaki Kashiwara, m.J.A., Nov. 12, 2015)

Abstract

In connection with Nevanlinna's five-value theorem ([2]), the author showed in [3] that two meromorphic functions sharing five one-point or two-point sets IM are Möbius transforms of each other. Now, we consider $n+1$ meromorphic functions sharing some finite sets IM.

Key words: Uniqueness theorem; sharing sets; Nevanlinna theory.

1. Introduction. For nonconstant meromorphic functions f and g on C and a finite set S in $\overline{\boldsymbol{C}}=\boldsymbol{C} \cup\{\infty\}$, we say that f and g share S IM (ignoring multiplicities) if $f^{-1}(S)=g^{-1}(S)$. In particular if S is a one-point set $\{a\}$ IM, then we say also that f and g share a IM.

In [2], R. Nevanlinna showed the following theorem:

Theorem A. Let f and g be two nonconstant meromorphic functions on \boldsymbol{C} sharing distinct five points in $\overline{\boldsymbol{C}}$ IM, then $f=g$.

Let n, q be two positive integer such that $q>n+1+2 / n$. We can easily see, by the same method as the proof of Theorem A, that if $n+1$ meromorphic functions on C share q pairwise disjoint n-point sets IM, then at least two of them are identical (see, also, Theorem 4).

On the other hand, the author proved in [3]:
Theorem B. Let S_{1}, \cdots, S_{5} be one-point or two-point sets in $\overline{\boldsymbol{C}}$. Assume that S_{1}, \cdots, S_{5} are pairwise disjoint. If two nonconstant meromorphic functions f and g on \boldsymbol{C} share $S_{1}, \cdots, S_{5} I M$, then f is a Möbius transform of g.

In the proof of Theorem B, we can see that there is a Möbius transformation T such that $T(f)+T(g)=0$ if $f \neq g$, and that the case where the number of two-point sets is one and the case where it is greater than one slightly differ. In this paper we consider $n+1$ meromorphic functions on \boldsymbol{C} sharing some finite sets, and we show the following two theorems:

Theorem 1. Let n be a positive integer and let S_{1}, \cdots, S_{p+q} be pairwise disjoint non-empty finite

[^0]sets in $\overline{\boldsymbol{C}}$ with at most $n+1$ elements, where p and q are non-negative integers with $q \geq 2$. Let $m_{j}=\sharp S_{j}$ be the number of elements of S_{j}. Assume that $m_{j} \leq n$ for $j=1, \cdots, p$ and $m_{j}=n+1$ for $j=p+1, \cdots$, $p+q$, and assume that $n+1$ mutually distinct nonconstant meromorphic functions f_{1}, \cdots, f_{n+1} on C share S_{1}, \cdots, S_{p+q} IM. If $m_{1}+\cdots+m_{p}+\frac{(n+1) q}{2}>$ $n(n+1)+2$, then there exists a Möbius transformation T such that $T\left(f_{1}\right)+\cdots+T\left(f_{n+1}\right)=0$.

Theorem 2. Let n be a positive integer and let S_{1}, \cdots, S_{5} be pairwise disjoint non-empty finite sets in $\overline{\boldsymbol{C}}$ such that $\sharp S_{1}=\cdots=\sharp S_{4}=1, \sharp S_{5}=n+1$. Assume that $n+1$ mutually distinct nonconstant meromorphic functions f_{1}, \cdots, f_{n+1} on \boldsymbol{C} share S_{1}, \cdots, S_{5} IM. Then there exists a Möbius transformation T such that $T\left(f_{1}\right)+\cdots+T\left(f_{n+1}\right)=0$.

We assume that the reader is familiar with the standard notations and results of the value distribution theory (see, for example, [1]). In particular, we express by $S(r, f)$ quantities such that $\lim _{r \rightarrow \infty, r \notin E} S(r, f) / T(r, f)=0$, where E is a subset of $(0, \infty)$ with finite linear measure and it is variable in each cases.
2. A lemma. Before beginning the proofs of Theorems, we show the following

Lemma 3. Let ξ_{1}, \cdots, ξ_{m} and $\eta_{1}, \cdots, \eta_{n}$ be mutually distinct points in $\overline{\boldsymbol{C}}$, where m and n are positive integers with $m+n \geq 3$. Then there exists a Möbius transformation T such that all $T\left(\xi_{j}\right), T\left(\eta_{j}\right)$ are in \boldsymbol{C} and that $\sum_{j=1}^{m} T\left(\xi_{j}\right) / m=\sum_{j=1}^{n} T\left(\eta_{j}\right) / n$.

Proof. We may assume that all points are in \boldsymbol{C}. If $\sum_{j=1}^{m} \xi_{j} / m=\sum_{j=1}^{n} \eta_{j} / n$, then let T be the identity. Now we assume that $\sum_{j=1}^{m} \xi_{j} / m \neq \sum_{j=1}^{n} \eta_{j} / n$. Define
the polynomials $P(z)=\left(z-\xi_{1}\right) \cdots\left(z-\xi_{m}\right)$ and $Q(z)=\left(z-\eta_{1}\right) \cdots\left(z-\eta_{n}\right)$, and we consider Möbius transformations of the form $T(z)=\frac{1}{z+d}$. Since $P^{\prime}(z) / P(z)=\sum_{j=1}^{m} \frac{1}{z-\xi_{j}}$, we see that

$$
\sum_{j=1}^{m} T\left(\xi_{j}\right)=-\frac{P^{\prime}(-d)}{P(-d)}
$$

and similarly,

$$
\sum_{j=1}^{n} T\left(\eta_{j}\right)=-\frac{Q^{\prime}(-d)}{Q(-d)}
$$

Hence, $\sum_{j=1}^{m} T\left(\xi_{j}\right) / m=\sum_{j=1}^{n} T\left(\xi_{j}\right) / n$ is equivalent to the condition

$$
\frac{1}{m} \frac{P^{\prime}(-d)}{P(-d)}=\frac{1}{n} \frac{Q^{\prime}(-d)}{Q(-d)}
$$

Therefore it is enough to show that the equation

$$
n P^{\prime}(z) Q(z)-m P(z) Q^{\prime}(z)=0
$$

has a solution distinct from ξ_{j}, η_{j}. The assumption that $\sum_{j=1}^{m} \xi_{j} / m \neq \sum_{j=1}^{n} \eta_{j} / n$ implies that the degree of the left-hand side polynomial is $m+n-2(>0)$, and we see that any of ξ_{j} and η_{j} is not solution of the equation since ξ_{j}, η_{j} are mutually distinct. Therefore we complete the proof.

3. Proof of Theorem 1 and Corollar-

 ies. For the proof we may assume that any S_{j} does not contain ∞. Put $N=m_{1}+\cdots+m_{p+q}$. Then we have $N \geq 3$ and we can see, by the second fundamental theorem, that there is no need to distinguish $S\left(r, f_{j}\right)$. So we express them by $S(r)$. Put $\Phi=\prod_{1 \leq j<k \leq n+1}\left(f_{j}-f_{k}\right)(\not \equiv 0)$. Now, we consider the reduced counting functions $\bar{N}_{D}\left(r, S_{j}\right)$ and $\bar{N}_{E}\left(r, S_{j}\right)$. The former counts the points $z \in$ $f_{1}^{-1}\left(S_{j}\right)$ such that $f_{1}(z), \cdots, f_{n+1}(z)$ are all distinct, and the latter counts the points $z \in f_{1}^{-1}\left(S_{j}\right)$ such that at least two of $f_{1}(z), \cdots, f_{n+1}(z)$ are equal. Then we have, by the first main theorem,$$
\begin{gather*}
\sum_{j=1}^{p+q} \bar{N}_{E}\left(r, S_{j}\right) \leq \bar{N}(r, 1 / \Phi) \tag{3.1}\\
\leq n \sum_{j=1}^{n+1} T\left(r, f_{j}\right)+O(1)
\end{gather*}
$$

and, by this and the second main theorem,

$$
(N-2) T\left(r, f_{k}\right)
$$

$$
\begin{aligned}
& \leq \sum_{j=1}^{p+q}\left(\bar{N}_{D}\left(r, S_{j}\right)+\bar{N}_{E}\left(r, S_{j}\right)\right)+S(r) \\
& \leq \sum_{j=1}^{p+q} \bar{N}_{D}\left(r, S_{j}\right)+n \sum_{j=1}^{n+1} T\left(r, f_{j}\right)+S(r)
\end{aligned}
$$

for $k=1, \cdots, n+1$. By adding the above inequalities for $k=1, \cdots, n+1$, we obtain

$$
\begin{aligned}
\{N & -2-n(n+1)\} \sum_{k=1}^{n+1} T\left(r, f_{k}\right) \\
& \leq(n+1) \sum_{j=1}^{p+q} \bar{N}_{D}\left(r, S_{j}\right)+S(r) \\
& =(n+1) \sum_{j=1}^{q} \bar{N}_{D}\left(r, S_{p+j}\right)+S(r) .
\end{aligned}
$$

Then we may assume that there exists a Borel subset I of $[1,+\infty)$ whose measure $|I|=+\infty$ and

$$
\begin{align*}
& {\left[\frac{2\{N-2-n(n+1)\}}{(n+1) q}+o(1)\right] \sum_{j=1}^{n+1} T\left(r, f_{j}\right)} \tag{3.2}\\
& \quad \leq \sum_{j=1}^{2} \bar{N}_{D}\left(r, S_{p+j}\right) \quad(r \in I)
\end{align*}
$$

by rearranging S_{p+1}, \cdots, S_{p+q}, if necessary. By Lemma 3, we can take a Möbius transformation T such that $T\left(S_{p+1}\right), T\left(S_{p+2}\right)$ are subsets in \boldsymbol{C} and the sum of all elements of each $T\left(S_{j}\right)$ is the origin for $j=p+1, p+2$. Put $\Psi=\sum_{j=1}^{n+1} T \circ f_{j}$. Assume that $\Psi \not \equiv 0$. If $f_{1}(z), \cdots, f_{n+1}(z)$ are distinct elements of $S_{p+1} \cup S_{p+2}$, then $\Psi(z)=0$. Hence we have, by (3.2),

$$
\begin{aligned}
& {\left[\frac{2\{N-2-n(n+1)\}}{(n+1) q}+o(1)\right] \sum_{j=1}^{n+1} T\left(r, f_{j}\right)} \\
& \quad \leq \bar{N}(r, 1 / \Psi) \leq \sum_{j=1}^{n+1} T\left(r, f_{j}\right)+O(1) \quad(r \in I) .
\end{aligned}
$$

Therefore we obtain the estimate

$$
2\{N-2-n(n+1)\} \leq(n+1) q,
$$

which is equivalent to

$$
m_{1}+\cdots+m_{p}+\frac{(n+1) q}{2} \leq n(n+1)+2
$$

So by assumption we conclude $\Psi \equiv 0$, which implies the conclusion of Theorem 1.

Remark. If we omit, in (3.1), terms $\bar{N}_{E}\left(r, S_{j}\right)(j=p+1, \cdots, p+q)$, then by the second main theorem we have

$$
\begin{aligned}
& \left(m_{1}+\cdots+m_{p}-2\right) T\left(r, f_{k}\right) \leq \sum_{j=1}^{p} \bar{N}_{E}\left(r, S_{j}\right)+S(r) \\
& \quad \leq \bar{N}(r, 1 / \Phi)+S(r) \leq n \sum_{j=1}^{n+1} T\left(r, f_{j}\right)+S(r)
\end{aligned}
$$

for $k=1, \cdots, n+1$, and hence

$$
\begin{aligned}
& \left(m_{1}+\cdots+m_{p}-2\right) \sum_{k=1}^{n+1} T\left(r, f_{k}\right) \\
& \quad \leq(n+1) \bar{N}(r, 1 / \Phi)+S(r) \\
& \quad \leq n(n+1) \sum_{j=1}^{n+1} T\left(r, f_{j}\right)+S(r)
\end{aligned}
$$

Therefore we obtain the inequality

$$
m_{1}+\cdots+m_{p} \leq n(n+1)+2
$$

In the above remark the last inequality holds under the assumption $\Phi \not \equiv 0$. Therefore we have

Theorem 4. Let n be a positive integer and let S_{1}, \cdots, S_{p} be pairwise disjoint non-empty finite sets in $\overline{\boldsymbol{C}}$ with at most n elements, where p is a positive integer. Let $m_{j}=\sharp S_{j}$ be the number of elements of S_{j}. Assume that $n+1$ nonconstant meromorphic functions f_{1}, \cdots, f_{n+1} on \boldsymbol{C} share S_{1}, \cdots, S_{p} IM. If $m_{1}+\cdots+m_{p}>n(n+1)+2$, then at least two of f_{1}, \cdots, f_{n+1} are identical.

Also, we get the following corollaries of Theorem 1:

Corollary 5. Let n be a positive integer and let S_{1}, \cdots, S_{p+q} be pairwise disjoint finite sets in $\overline{\boldsymbol{C}}$, where p and q are integers with $p \geq 0$ and $q \geq 2$. Assume that $\sharp S_{j}=n$ for $j=1, \cdots, p, \sharp S_{p+j}=n+1$ for $j=1, \cdots, q$ and $n p+\frac{(n+1) q}{2}>n(n+1)+2$. If $n+1$ mutually distinct nonconstant meromorphic functions f_{1}, \cdots, f_{n+1} on C share $S_{1}, \cdots, S_{p+q} I M$, then there exists a Möbius transformation T such that $T\left(f_{1}\right)+\cdots+T\left(f_{n+1}\right)=0$.

Corollary 6. Let n be a positive integer and let S_{1}, \cdots, S_{p+q} be pairwise disjoint finite sets in $\overline{\boldsymbol{C}}$, where p and q are integers with $p \geq 0$ and $q \geq 2$. Assume that $\sharp S_{j}=1$ for $j=1, \cdots, p, \sharp S_{p+j}=n+1$ for $j=1, \cdots, q$ and $p+\frac{(n+1) q}{2}>n(n+1)+2$. If $n+1$ mutually distinct nonconstant meromorphic functions f_{1}, \cdots, f_{n+1} on \boldsymbol{C} share $S_{1}, \cdots, S_{p+q} I M$, then there exists a Möbius transformation T such that $T\left(f_{1}\right)+\cdots+T\left(f_{n+1}\right)=0$.

Corollary 7. Let n be a positive integer and let S_{1}, \cdots, S_{q} be pairwise disjoint $(n+1)$-point sets in $\overline{\boldsymbol{C}}$, where q is a positive integer. Assume that
$q>2 n+\frac{4}{n+1}$. If $n+1$ mutually distinct nonconstant meromorphic functions f_{1}, \cdots, f_{n+1} on C share $S_{1}, \cdots, S_{q} I M$, then there exists a Möbius transformation T such that $T\left(f_{1}\right)+\cdots+T\left(f_{n+1}\right)=0$.
4. Proof of Theorem 2. For the proof we may assume that any S_{j} does not contain ∞. Let a_{j} be the unique element of $S_{j}(j=1, \cdots, 4)$. If $1 \leq k, l \leq n+1$ and $k \neq l$, then by the second main theorem and by the first main theorem

$$
\begin{aligned}
2 T\left(r, f_{k}\right) & \leq \sum_{j=1}^{4} \bar{N}\left(r, \frac{1}{f_{k}-a_{j}}\right)+S\left(r, f_{k}\right) \\
& \leq \bar{N}\left(r, \frac{1}{f_{k}-f_{l}}\right)+S\left(r, f_{k}\right) \\
& \leq T\left(r, f_{k}\right)+T\left(r, f_{l}\right)+S\left(r, f_{k}\right) .
\end{aligned}
$$

Hence we have $T\left(r, f_{k}\right) \leq T\left(r, f_{l}\right)+S\left(r, f_{k}\right)$ and $T\left(r, f_{l}\right) \leq T\left(r, f_{k}\right)+S\left(r, f_{k}\right)$. It follows that $S\left(r, f_{k}\right)=S\left(r, f_{l}\right)$ and

$$
\begin{equation*}
T\left(r, f_{l}\right)=T\left(r, f_{k}\right)+S(r) \tag{4.1}
\end{equation*}
$$

where $S(r)=S\left(r, f_{k}\right)$ as in the proof of Theorem 1. Also, we have

$$
\begin{align*}
2 T\left(r, f_{k}\right) & =\sum_{j=1}^{4} \bar{N}\left(r, \frac{1}{f_{k}-a_{j}}\right)+S(r) \tag{4.2}\\
& =\bar{N}\left(r, \frac{1}{f_{k}-f_{l}}\right)+S(r)
\end{align*}
$$

Put $S_{5}=\left\{a_{5}, \cdots, a_{n+5}\right\}$, then we have

$$
\begin{aligned}
& (n+3) T\left(r, f_{k}\right) \leq \sum_{j=1}^{n+5} \bar{N}\left(r, \frac{1}{f_{k}-a_{j}}\right)+S(r) \\
& \quad=2 T\left(r, f_{k}\right)+\sum_{j=5}^{n+5} \bar{N}\left(r, \frac{1}{f_{k}-a_{j}}\right)+S(r) \\
& \quad \leq(n+3) T\left(r, f_{k}\right)+S(r)
\end{aligned}
$$

for $k=1, \cdots, n+1$. It follows from this that

$$
\begin{equation*}
\sum_{j=5}^{n+5} \bar{N}\left(r, \frac{1}{f_{k}-a_{j}}\right)=(n+1) T\left(r, f_{k}\right)+S(r) \tag{4.3}
\end{equation*}
$$

Take distinct k, l with $1 \leq k, l \leq n+1$. Let $\bar{N}_{0}\left(r, \frac{1}{f_{k}-f_{l}}\right)$ be the reduced counting function of the zeros of $f_{k}-f_{l}$ outside $f_{1}^{-1}\left(S_{1} \cup \cdots \cup S_{4}\right)$. Then we get, by (4.2),

$$
\begin{align*}
& \bar{N}_{0}\left(r, \frac{1}{f_{k}-f_{l}}\right) \tag{4.4}\\
& \quad=\bar{N}\left(r, \frac{1}{f_{k}-f_{l}}\right)-\sum_{j=1}^{4} \bar{N}\left(r, \frac{1}{f_{k}-a_{j}}\right) \\
& \quad=S(r)
\end{align*}
$$

Let $\bar{N}_{D}\left(r, S_{5}\right)$ be the reduced counting function which counts the points $z \in f_{1}^{-1}\left(S_{5}\right)$ such that $f_{1}(z), \cdots, f_{n+1}(z)$ are all distinct. Then, we have, by (4.3),

$$
\begin{aligned}
\bar{N}_{D}\left(r, S_{5}\right) & \leq \sum_{j=5}^{n+5} \bar{N}\left(r, \frac{1}{f_{k}-a_{j}}\right) \\
& =(n+1) T\left(r, f_{k}\right)+S(r)
\end{aligned}
$$

and, by (4.3) and (4.4),

$$
\begin{aligned}
& \bar{N}_{D}\left(r, S_{5}\right) \\
& \quad \geq \sum_{j=5}^{n+5} \bar{N}\left(r, \frac{1}{f_{k}-a_{j}}\right)-\sum_{1 \leq l<m \leq n+1} \bar{N}_{0}\left(r, \frac{1}{f_{l}-f_{m}}\right) \\
& \quad=(n+1) T\left(r, f_{k}\right)+S(r) .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\bar{N}_{D}\left(r, S_{5}\right)=(n+1) T\left(r, f_{k}\right)+S(r) \tag{4.5}
\end{equation*}
$$

is obtained. Also, from the second main theorem for f_{1} and a_{1}, \cdots, a_{4}, we may assume that there exists a Borel set $I \subset[1,+\infty)$ whose measure $|I|=+\infty$ and that

$$
\begin{align*}
& \bar{N}\left(r, \frac{1}{f_{1}-a_{1}}\right) \tag{4.6}\\
& \quad \geq \frac{1}{2} T\left(r, f_{1}\right)+o\left(T\left(r, f_{1}\right)\right) \quad(r \in I)
\end{align*}
$$

by rearranging a_{1}, \cdots, a_{4}, if necessary. By Lemma 3 , we can take a Möbius transformation T such that
$T\left(a_{1}\right)=\sum_{j=5}^{n+5} T\left(a_{j}\right)=0$, and put $\Psi=T\left(f_{1}\right)+\cdots+$ $T\left(f_{n+1}\right)$. Assume that $\Psi \not \equiv 0$. Then by (4.1) we have

$$
\begin{aligned}
T(r, \Psi) & \leq \sum_{k=1}^{n+1} T\left(r, f_{k}\right)+O(1) \\
& =(n+1) T\left(r, f_{1}\right)+o\left(T\left(r, f_{1}\right)\right) \quad(r \in I)
\end{aligned}
$$

and

$$
\bar{N}_{D}\left(r, S_{5}\right)+\bar{N}\left(r, \frac{1}{f_{1}-a_{1}}\right) \leq \bar{N}(r, 1 / \Psi)
$$

Therefore we obtain, by (4.5), (4.6) and these inequalities,

$$
\begin{aligned}
(n & +1) T\left(r, f_{1}\right)+\frac{1}{2} T\left(r, f_{1}\right)+o\left(T\left(r, f_{1}\right)\right) \\
& \leq \bar{N}(r, 1 / \Psi)+o\left(T\left(r, f_{1}\right)\right) \leq T(r, \Psi)+o\left(T\left(r, f_{1}\right)\right) \\
& \leq(n+1) T\left(r, f_{1}\right)+o\left(T\left(r, f_{1}\right)\right) \quad(r \in I)
\end{aligned}
$$

which is a contradiction. Hence $\Psi \equiv 0$, which implies the conclusion of Theorem 2.

References

[1] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
[2] R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der Meromorphen Funktionen, Acta Math. 48 (1926), no. 3-4, 367-391.
[3] M. Shirosaki, On meromorphic functions sharing five one-point or two-point sets IM, Proc. Japan Acad. Ser. A Math. Sci. 86 (2010), no. 1, 6-9.

[^0]: 2010 Mathematics Subject Classification. Primary 30D35.

