On the invariant $M(A_{/K}, n)$ of Chen-Kuan for Galois representations

By Hyunsuk MOON

Department of Mathematics, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea

(Communicated by Shigefumi MORI, M.J.A., June 12, 2014)

Abstract: Let X be a finite set with a continuous action of the absolute Galois group of a global field K. We suppose that X is unramified outside a finite set S of places of K. For a place $\mathfrak{p} \notin S$, let $N_{X,\mathfrak{p}}$ be the number of fixed points of X by the Frobenius element $\operatorname{Frob}_{\mathfrak{p}} \subset G_K$. We define the average value M(X) of $N_{X,\mathfrak{p}}$ where \mathfrak{p} runs through the non-archimedean places in K. This generalize the invariant of Chen-Kuan and we apply this for Galois representations. Our results show that there is a certain relationship between M(X) and the size of the image of Galois representations.

Key words: Galois representations; torsion points; distribution.

Let A be an abelian variety over a number field K. For a prime \mathfrak{p} in K, denote the residue field by $\mathbf{F}_{\mathfrak{p}}$. If A has good reduction at \mathfrak{p} , let $N_{\mathfrak{p},n}$ be the number of *n*-torsion $\mathbf{F}_{\mathfrak{p}}$ -rational points of the reduction of A modulo \mathfrak{p} , where n is a positive integer. When dim A = 1, Chen and Kuan determined the average value $M(A_{/K}, n)$ of $N_{\mathfrak{p},n}$ as the prime \mathfrak{p} varies. In this paper, we generalize their invariant $M(A_{/K}, n)$ for Galois representations.

Let K be a global field (i.e., finite extension of \mathbf{Q} or algebraic function field in one variable over a finite field) and G_K its absolute Galois group. Let X be a finite set with a continuous action of G_K . We call this X a finite G_K -set. For example, the set of n-torsion points of an abelian variety A over K is a finite G_K -set. We suppose that X is unramified outside a finite set S of places of K (including all archimedean places) in the sense that if $\mathfrak{p} \notin S$, the inertia group $I_{\mathfrak{p}}$ of \mathfrak{p} acts trivially on X. For a place $\mathfrak{p} \notin S$, the Frobenius element $\operatorname{Frob}_{\mathfrak{p}} \subset G_K$, which is considered as a well-defined conjugacy class, acts on X. Let $N_{X,\mathfrak{p}}$ be the number of fixed points of X by Frob_p. We are interested in the average value of $N_{X,\mathfrak{p}}$ where \mathfrak{p} runs through the non-archimedean places in K, namely the limit

$$\lim_{x\to\infty}\frac{1}{\pi_K(x)}\sum_{N\mathfrak{p}\leq x,\ \mathfrak{p}\notin S}N_{X,\mathfrak{p}}$$

where $\pi_K(x)$ is the number of places \mathfrak{p} with norm

 $N\mathfrak{p} \leq x.$ ($N\mathfrak{p}$ means the number of elements of the residue field of \mathfrak{p}). We denote this limit by M(X), if it exists. Note that M(X) does not depend on the choice of S. The following theorem is a straightforward generalization of Chen and Kuan's Theorem 1.2 in [1]; here we reproduce their proof for the convenience of the reader.

Theorem 1. The limit M(X) exists and it is equal to the number of orbits of G_K in X.

Proof. Let L be a finite Galois extension of Ksuch that the action of G_K on X factors through $G := \operatorname{Gal}(L/K)$. For $1 \leq m \leq |X|$, let G(m) be the set of elements $g \in G$ which have exactly m fixed points. Then G(m) is a union of conjugacy classes for each m. Observe that, for a prime \mathfrak{p} which is unramified in L, we have $N_{X,\mathfrak{p}} = m$ if and only if the Artin symbol $(\mathfrak{p}, L/K) \subset G(m)$. One derives

$$\begin{split} M(X) &= \lim_{x \to \infty} \frac{1}{\pi_K(x)} \sum_{m=1}^{|X|} \sum_{\mathfrak{p} \notin S, \ N\mathfrak{p} \le x, \ (\mathfrak{p}, L/K) \subset G(m)} m \\ &= \sum_{m=1}^{|X|} m \lim_{x \to \infty} \frac{1}{\pi_K(x)} \sum_{\mathfrak{p} \notin S, \ N\mathfrak{p} \le x, \ (\mathfrak{p}, L/K) \subset G(m)} 1 \\ &= \sum_{m=1}^{|X|} m \frac{|G(m)|}{|G|}, \end{split}$$

using the Chebotarev density theorem for the last equality. The proof of the theorem is complete by applying Burnside's lemma ([5]). \Box

It is well-known ([4]) that if M(X) exists, the Dirichlet version of M(X) exists and is equal to M(X):

²⁰¹⁰ Mathematics Subject Classification. Primary 11F80; Secondary 11G05, 11N45.

No. 7]

Corollary 2.

$$M(X) = \lim_{s \to 1+} \frac{\sum_{\mathfrak{p} \notin S} N_{X,\mathfrak{p}} \cdot (N\mathfrak{p})^{-s}}{\sum_{\mathfrak{p}} (N\mathfrak{p})^{-s}}$$

For finite G_K -sets X_1 and X_2 , we define that X_1 and X_2 are *independent from each other* if the Galois image over $X_1 \times X_2$ is the direct product of the Galois images over X_1 and X_2 , where the Galois image over X means $\operatorname{Im}(G_K \to \operatorname{Aut}(X))$.

Corollary 3. M(X) is multiplicative in X, that is, if X_1 and X_2 are finite G_K -sets independent from each other, then $M(X_1 \times X_2) = M(X_1)M(X_2)$.

Proof. If X_1 and X_2 are finite G_K -sets, then $X_1 \times X_2$ is also a finite G_K -set. By the independentness, the number of Galois orbits in $X_1 \times X_2$ is the product of the numbers of Galois orbits in X_1 and X_2 .

Next we apply Theorem 1 to Galois representations. Let R be a discrete valuation ring with maximal ideal $\mathfrak{m} = (\pi)$ and finite residue field of order $q := |R/(\pi)|$. Set $R_e := R/\mathfrak{m}^e$ for each $e \ge 1$. Let X be a free R_e -module of finite rank d. Let $\rho_X :$ $G_K \to \operatorname{GL}_{R_e}(X)$ be a continuous Galois representation unramified outside a finite set S of places of K. First we consider two extreme cases. One is the case where the image of ρ_X is trivial. Then we have M(X) = |X|, the cardinal number of X. The other is the following case:

Theorem 4. If ρ_X is surjective, then M(X) = e + 1.

Proof. For each $0 \leq i \leq e$, let $X_i = \pi^i X$. Then $X = X_0 \supset X_1 \supset \cdots \supset X_e = 0$ and X_i 's are stable under the Galois action. If we let $U_i = X_i \smallsetminus X_{i+1}$, then each U_i is also stable under the Galois action and by assumption G_K acts transitively on U_i for each i. So the number of orbits of G_K in X is equal to e+1.

Following the ideas of Chen-Kuan ([1], p. 341), we can combine Corollary 3 and Theorem 4 to show:

Corollary 5 ([1], Cor. 1.5). Let E be an elliptic curve defined over a number field K without complex multiplication. Then there exists an integer constant $C_{E/K}$ (depending on E and K) such that for all n prime to $C_{E/K}$, we have

$$M(E[n]) = d(n),$$

where d(n) is the number of positive divisors of n.

Proof. Let $n = \prod p^{e_p}$ be the prime factorization of n and

$$\rho: G_K \to \operatorname{Aut}(E[n]) \simeq \operatorname{GL}_2(\mathbf{Z}/n\mathbf{Z})$$
$$\simeq \prod \operatorname{GL}_2(\mathbf{Z}/p^{e_p}\mathbf{Z})$$

be the Galois representation on E[n]. By a theorem of Serre ([3], Section 4.2, Theorem 2) together with Appendix of [2], there exists an integer constant $C_{E/K}$ such that ρ is surjective if n is prime to $C_{E/K}$. By Theorem 4, we have $M(E[p^{e_p}]) = e_p + 1$ for each p. By Corollary 3, we have

$$M(E[n]) = \prod M(E[p^{e_p}])$$

= $\prod (e_p + 1)$
= $d(n).$

Now we consider a more general image case.

Theorem 6. Let c be a positive integer such that $\rho_x(G_K) \supset 1 + \pi^c M_d(R_e)$. Then we have

 $M(X) \le (e-c)(q^{cd} - q^{(c-1)d}) + q^{cd},$

and the equality holds if and only if $\rho_{X}(G_{K}) = 1 + \pi^{c} M_{d}(R_{e}).$

Proof. Let $G := \rho_x(G_K) \subset \operatorname{GL}_d(R_e)$. We suppose that $G = 1 + \pi^c \operatorname{M}_d(R_e)$, $1 \le c \le e$. We denote $\operatorname{M}_d(R_e)$ by M. For each $0 \le i < e$, $U_i = X_i \setminus X_{i+1}$ is stable under the action of G; we calculate the number of orbits of G in each U_i . For $u \in U_i$, we have $Gu = (1 + \pi^c \operatorname{M})u = u + \pi^c \operatorname{M}u = u + X_{i+c}$. So,

$$|Gu| = |X_{i+c}| = \begin{cases} q^{(e-i-c)d}, & i \le e-c, \\ 1, & i \ge e-c, \end{cases}$$

Hence

$$\begin{aligned} |U_i/G| &= \frac{q^{(e-i)d} - q^{(e-i-1)d}}{|Gu|} \\ &= \begin{cases} q^{cd} - q^{(c-1)d}, & i \le e-c, \\ q^{(e-i)d} - q^{(e-i-1)d}, & i \ge e-c. \end{cases} \end{aligned}$$

Therefore the number of orbits of G is

$$|X/G| = \sum_{i=0}^{c} |U_i/G|$$

= $(e-c)(q^{cd} - q^{(c-1)d}) + q^{cd}$.

Moreover if $G \supseteq 1 + \pi^c M$, then we have $Gu \supseteq u + X_{i+c}$ and hence

$$|X/G| \leq (e-c)(q^{cd} - q^{(c-1)d}) + q^{cd}.$$

Acknowledgements. The author was supported by Kyungpook National University Research Fund, 2012 and Basic Science Research Program through the National Research Foun-

dation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2009-0066564).

References

- Y.-M. J. Chen and Y.-L. Kuan, On the distribution of torsion points modulo primes, Bull. Aust. Math. Soc. 86 (2012), no. 2, 339–347.
- [2] A. C. Cojocaru, On the surjectivity of the Galois representations associated to non-CM elliptic

curves, Canad. Math. Bull. **48** (2005), no. 1, 16–31.

- [3] J.-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331.
- [4] J.-P. Serre, A course in arithmetic, translated from the French, Springer, New York, 1973.
- [5] J.-P. Serre, On a theorem of Jordan, Bull. Amer. Math. Soc. (N.S.) 40 (2003), no. 4, 429–440 (electronic).