On the invariant $M\left(A_{/ K}, n\right)$ of Chen-Kuan for Galois representations

By Hyunsuk Moon
Department of Mathematics, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea

(Communicated by Shigefumi Mori, M.J.A., June 12, 2014)

Abstract

Let X be a finite set with a continuous action of the absolute Galois group of a global field K. We suppose that X is unramified outside a finite set S of places of K. For a place $\mathfrak{p} \notin S$, let $N_{X, \mathfrak{p}}$ be the number of fixed points of X by the Frobenius element Frob $_{\mathfrak{p}} \subset G_{K}$. We define the average value $M(X)$ of $N_{X, \mathfrak{p}}$ where \mathfrak{p} runs through the non-archimedean places in K. This generalize the invariant of Chen-Kuan and we apply this for Galois representations. Our results show that there is a certain relationship between $M(X)$ and the size of the image of Galois representations.

Key words: Galois representations; torsion points; distribution.

Let A be an abelian variety over a number field K. For a prime \mathfrak{p} in K, denote the residue field by $\mathbf{F}_{\mathfrak{p}}$. If A has good reduction at \mathfrak{p}, let $N_{\mathfrak{p}, n}$ be the number of n-torsion $\mathbf{F}_{\mathfrak{p}}$-rational points of the reduction of A modulo \mathfrak{p}, where n is a positive integer. When $\operatorname{dim} A=1$, Chen and Kuan determined the average value $M\left(A_{/ K}, n\right)$ of $N_{\mathfrak{p}, n}$ as the prime \mathfrak{p} varies. In this paper, we generalize their invariant $M\left(A_{/ K}, n\right)$ for Galois representations.

Let K be a global field (i.e., finite extension of Q or algebraic function field in one variable over a finite field) and G_{K} its absolute Galois group. Let X be a finite set with a continuous action of G_{K}. We call this X a finite G_{K}-set. For example, the set of n-torsion points of an abelian variety A over K is a finite G_{K}-set. We suppose that X is unramified outside a finite set S of places of K (including all archimedean places) in the sense that if $\mathfrak{p} \notin S$, the inertia group $I_{\mathfrak{p}}$ of \mathfrak{p} acts trivially on X. For a place $\mathfrak{p} \notin S$, the Frobenius element Frob $_{\mathfrak{p}} \subset G_{K}$, which is considered as a well-defined conjugacy class, acts on X. Let $N_{X, p}$ be the number of fixed points of X by $\mathrm{Frob}_{\mathfrak{p}}$. We are interested in the average value of $N_{X, \mathfrak{p}}$ where \mathfrak{p} runs through the non-archimedean places in K, namely the limit

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi_{K}(x)} \sum_{N \mathfrak{p} \leq x, \mathfrak{p} \notin S} N_{X, \mathfrak{p}}
$$

where $\pi_{K}(x)$ is the number of places \mathfrak{p} with norm

[^0]$N \mathfrak{p} \leq x .(N \mathfrak{p}$ means the number of elements of the residue field of \mathfrak{p}). We denote this limit by $M(X)$, if it exists. Note that $M(X)$ does not depend on the choice of S. The following theorem is a straightforward generalization of Chen and Kuan's Theorem 1.2 in [1]; here we reproduce their proof for the convenience of the reader.

Theorem 1. The limit $M(X)$ exists and it is equal to the number of orbits of G_{K} in X.

Proof. Let L be a finite Galois extension of K such that the action of G_{K} on X factors through $G:=\operatorname{Gal}(L / K)$. For $1 \leq m \leq|X|$, let $G(m)$ be the set of elements $g \in G$ which have exactly m fixed points. Then $G(m)$ is a union of conjugacy classes for each m. Observe that, for a prime \mathfrak{p} which is unramified in L, we have $N_{X, p}=m$ if and only if the Artin symbol $(\mathfrak{p}, L / K) \subset G(m)$. One derives

$$
\begin{aligned}
M(X) & =\lim _{x \rightarrow \infty} \frac{1}{\pi_{K}(x)} \sum_{m=1}^{|X|} \sum_{\mathfrak{p} \notin S, N \mathfrak{p} \leq x,(\mathfrak{p}, L / K) \subset G(m)} m \\
& =\sum_{m=1}^{|X|} m \lim _{x \rightarrow \infty} \frac{1}{\pi_{K}(x)} \sum_{\mathfrak{p} \notin S, N \mathfrak{p} \leq x,(\mathfrak{p}, L / K) \subset G(m)} 1 \\
& =\sum_{m=1}^{|X|} m \frac{|G(m)|}{|G|}
\end{aligned}
$$

using the Chebotarev density theorem for the last equality. The proof of the theorem is complete by applying Burnside's lemma ([5]).

It is well-known ([4]) that if $M(X)$ exists, the Dirichlet version of $M(X)$ exists and is equal to $M(X)$:

Corollary 2.

$$
M(X)=\lim _{s \rightarrow 1+} \frac{\sum_{\mathfrak{p} \notin S} N_{X, \mathfrak{p}} \cdot(N \mathfrak{p})^{-s}}{\sum_{\mathfrak{p}}(N \mathfrak{p})^{-s}}
$$

For finite G_{K}-sets X_{1} and X_{2}, we define that X_{1} and X_{2} are independent from each other if the Galois image over $X_{1} \times X_{2}$ is the direct product of the Galois images over X_{1} and X_{2}, where the Galois image over X means $\operatorname{Im}\left(G_{K} \rightarrow \operatorname{Aut}(X)\right)$.

Corollary 3. $M(X)$ is multiplicative in X, that is, if X_{1} and X_{2} are finite G_{K}-sets independent from each other, then $M\left(X_{1} \times X_{2}\right)=M\left(X_{1}\right) M\left(X_{2}\right)$.

Proof. If X_{1} and X_{2} are finite G_{K}-sets, then $X_{1} \times X_{2}$ is also a finite G_{K}-set. By the independentness, the number of Galois orbits in $X_{1} \times X_{2}$ is the product of the numbers of Galois orbits in X_{1} and X_{2}.

Next we apply Theorem 1 to Galois representations. Let R be a discrete valuation ring with maximal ideal $\mathfrak{m}=(\pi)$ and finite residue field of order $q:=|R /(\pi)|$. Set $R_{e}:=R / \mathfrak{m}^{e}$ for each $e \geq 1$. Let X be a free R_{e}-module of finite rank d. Let ρ_{X} : $G_{K} \rightarrow \mathrm{GL}_{R_{e}}(X)$ be a continuous Galois representation unramified outside a finite set S of places of K. First we consider two extreme cases. One is the case where the image of ρ_{X} is trivial. Then we have $M(X)=|X|$, the cardinal number of X. The other is the following case:

Theorem 4. If ρ_{X} is surjective, then $M(X)=e+1$.

Proof. For each $0 \leq i \leq e$, let $X_{i}=\pi^{i} X$. Then $X=X_{0} \supset X_{1} \supset \cdots \supset X_{e}=0$ and X_{i} 's are stable under the Galois action. If we let $U_{i}=X_{i} \backslash X_{i+1}$, then each U_{i} is also stable under the Galois action and by assumption G_{K} acts transitively on U_{i} for each i. So the number of orbits of G_{K} in X is equal to $e+1$.

Following the ideas of Chen-Kuan ([1], p. 341), we can combine Corollary 3 and Theorem 4 to show:

Corollary 5 ([1], Cor. 1.5). Let E be an elliptic curve defined over a number field K without complex multiplication. Then there exists an integer constant $C_{E / K}$ (depending on E and K) such that for all n prime to $C_{E / K}$, we have

$$
M(E[n])=d(n)
$$

where $d(n)$ is the number of positive divisors of n.
Proof. Let $n=\prod p^{e_{p}}$ be the prime factorization of n and

$$
\begin{aligned}
\rho: G_{K} \rightarrow \operatorname{Aut}(E[n]) & \simeq \mathrm{GL}_{2}(\mathbf{Z} / n \mathbf{Z}) \\
& \simeq \prod \mathrm{GL}_{2}\left(\mathbf{Z} / p^{e_{p}} \mathbf{Z}\right)
\end{aligned}
$$

be the Galois representation on $E[n]$. By a theorem of Serre ([3], Section 4.2, Theorem 2) together with Appendix of [2], there exists an integer constant $C_{E / K}$ such that ρ is surjective if n is prime to $C_{E / K}$. By Theorem 4, we have $M\left(E\left[p^{e_{p}}\right]\right)=e_{p}+1$ for each p. By Corollary 3, we have

$$
\begin{aligned}
M(E[n]) & =\prod M\left(E\left[p^{e_{p}}\right]\right) \\
& =\prod\left(e_{p}+1\right) \\
& =d(n)
\end{aligned}
$$

Now we consider a more general image case.
Theorem 6. Let c be a positive integer such that $\rho_{X}\left(G_{K}\right) \supset 1+\pi^{c} \mathrm{M}_{d}\left(R_{e}\right)$. Then we have

$$
M(X) \leq(e-c)\left(q^{c d}-q^{(c-1) d}\right)+q^{c d}
$$

and the equality holds if and only if $\rho_{X}\left(G_{K}\right)=1+$ $\pi^{c} \mathrm{M}_{d}\left(R_{e}\right)$.

Proof. Let $G:=\rho_{X}\left(G_{K}\right) \subset \mathrm{GL}_{d}\left(R_{e}\right)$. We suppose that $G=1+\pi^{c} \mathrm{M}_{d}\left(R_{e}\right), 1 \leq c \leq e$. We denote $\mathrm{M}_{d}\left(R_{e}\right)$ by M. For each $0 \leq i<e, U_{i}=X_{i} \backslash X_{i+1}$ is stable under the action of G; we calculate the number of orbits of G in each U_{i}. For $u \in U_{i}$, we have $G u=\left(1+\pi^{c} \mathrm{M}\right) u=u+\pi^{c} \mathrm{M} u=u+X_{i+c}$. So,

$$
|G u|=\left|X_{i+c}\right|= \begin{cases}q^{(e-i-c) d}, & i \leq e-c \\ 1, & i \geq e-c\end{cases}
$$

Hence

$$
\begin{aligned}
\left|U_{i} / G\right| & =\frac{q^{(e-i) d}-q^{(e-i-1) d}}{|G u|} \\
& = \begin{cases}q^{c d}-q^{(c-1) d}, & i \leq e-c \\
q^{(e-i) d}-q^{(e-i-1) d}, & i \geq e-c\end{cases}
\end{aligned}
$$

Therefore the number of orbits of G is

$$
\begin{aligned}
|X / G| & =\sum_{i=0}^{e}\left|U_{i} / G\right| \\
& =(e-c)\left(q^{c d}-q^{(c-1) d}\right)+q^{c d}
\end{aligned}
$$

Moreover if $G \supsetneq 1+\pi^{c} \mathrm{M}$, then we have $G u \supsetneq u+$ X_{i+c} and hence

$$
|X / G| \lesseqgtr(e-c)\left(q^{c d}-q^{(c-1) d}\right)+q^{c d}
$$

Acknowledgements. The author was supported by Kyungpook National University Research Fund, 2012 and Basic Science Research Program through the National Research Foun-
dation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 20090066564).

References

[1] Y.-M. J. Chen and Y.-L. Kuan, On the distribution of torsion points modulo primes, Bull. Aust. Math. Soc. 86 (2012), no. 2, 339-347.
[2] A. C. Cojocaru, On the surjectivity of the Galois representations associated to non-CM elliptic
curves, Canad. Math. Bull. 48 (2005), no. 1, 16-31.
[3] J.-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259-331.
[4] J.-P. Serre, A course in arithmetic, translated from the French, Springer, New York, 1973.
[5] J.-P. Serre, On a theorem of Jordan, Bull. Amer. Math. Soc. (N.S.) 40 (2003), no. 4, 429-440 (electronic).

[^0]: 2010 Mathematics Subject Classification. Primary 11F80; Secondary 11G05, 11N45.

