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Abstract: In this note, we prove that if fa; b; c; d; eg with a < b < c < d < e is a

Diophantine quintuple, then d < 1074.
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A set of m distinct positive integers fa1; . . . ;

amg is called a Diophantine m-tuple if aiaj þ 1
is a perfect square. Diophantus studied sets of

positive rational numbers with the same property,

particularly he found the set of four positive ration-

al numbers f 1
16 ;

33
16 ;

17
4 ;

105
16 g. But the first Diophan-

tine quadruple was found by Fermat. In fact,

Fermat proved that the set f1; 3; 8; 120g is a

Diophantine quadruple, called Fermat’s set. More-

over, Baker and Davenport [1] proved that the set

f1; 3; 8; 120g cannot be extended to a Diophantine

quintuple.

Several results of the generalization of the

result of Baker and Davenport are obtained. In

1997, Dujella [2] proved that the Diophantine

triples of the form fk� 1; kþ 1; 4kg, for k � 2,

cannot be extended to a Diophantine quintuple.

The Baker-Davenport’s result corresponds to k ¼ 2.

In 1998, Dujella and Pethö [4] proved that the

Diophantine pair f1; 3g cannot be extended to a

Diophantine quintuple. In 2008, Fujita [7] ob-

tained a more general result by proving that the

Diophantine pairs fk� 1; kþ 1g, for k � 2, cannot

be extended to a Diophantine quintuple. A folklore

conjecture is

Conjecture. There does not exist a

Diophantine quintuple.

In 2004, Dujella [5] proved that there are only

finitely many Diophantine quintuples. Assuming

that fa; b; c; d; eg is a Diophantine quintuple with

a < b < c < d < e, the following upper bounds of the

element d are known:

i) d < 102171 by Dujella [5].

ii) d < 10830 by Fujita [8].

iii) d < 10100 by Filipin and Fujita [9].

iv) d < 3:5 � 1094 by Elsholtz, Filipin and

Fujita [6].

Moreover, by using upper bound of d, corre-

sponding upper bound of number of Diophantine

quintuples are obtained, 101930, 10276, 1096 and

6:8 � 1032, respectively.

In this paper, we prove the following result.

Theorem 1. If fa; b; c; d; eg is a Diophantine

quintuple with a < b < c < d < e, then d < 1074.

From now on, we will assume that fa; b; c; d; eg
is a Diophantine quintuple with a < b < c < d < e.

Let us consider a Diophantine triple fA;B;Cg. We

define the positive integers R; S; T by

ABþ 1 ¼ R2; AC þ 1 ¼ S2; BC þ 1 ¼ T 2:

In order to extend the Diophantine triple fA;B;Cg
to a Diophantine quadruple fA;B;C;Dg, we have

to solve the system

ADþ 1 ¼ x2; BDþ 1 ¼ y2; CDþ 1 ¼ z2;

in integers x; y; z. Eliminating D, we obtain the

following system of Pellian equations.

Az2 � Cx2 ¼ A� C;ð1Þ
Bz2 � Cy2 ¼ B� C:ð2Þ

All solutions of (1) and (2) are respectively given by

z ¼ vm and z ¼ wn for some integer m;n � 0, where

v0 ¼ z0; v1 ¼ Sz0 þ Cx0; vmþ2 ¼ 2Svmþ1 � vm;
w0 ¼ z1; w1 ¼ Tz1 þ Cy1; wnþ2 ¼ 2Twnþ1 � wn;

with some integers z0; z1; x0; y1.

By Lemma 3 of [5], we have the following

relations between m and n.

Lemma 1. If v2m ¼ w2n, then n � m � 2n.

We will give a new lower bound of m in this

paper.

Lemma 2. If B � 8 and v2m ¼ w2n has solu-

tions for m � 3; n � 2, then m > 0:48B�1=2C1=2.
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Proof. By Lemma 4 in [3] and z0 ¼ z1 ¼ � 2
f1;�1g, we have

Am2 þ �Sm � Bn2 þ �Tn (mod 4CÞ:

Suppose that m � 0:48B�1=2C1=2. From the relation

n � m, we get

maxfAm2; Bn2g � Bm2 � 0:25B � B�1C < 0:25C

and

maxfSm; Tng � Tm < 0:48ðBC þ 1Þ1=2B�1=2C1=2

< 0:5ðBCÞ1=2B�1=2C1=2 ¼ 0:5C:

We obtain that

Am2 �Bn2 ¼ �ðTn� SmÞ:

This implies

�ðTnþ SmÞðAm2 � Bn2Þ ¼ T 2n2 � S2m2

¼ ðBC þ 1Þn2 � ðAC þ 1Þm2

¼ CðBn2 �Am2Þ þ n2 �m2:

It follows that

m2 � n2 ¼ ðC þ �ðTnþ SmÞÞðBn2 �Am2Þ:

If Bn2 � Am2 ¼ 0, then m ¼ n, it is impossible.

Hence,

m2 � n2 ¼ jm2 � n2j � jC þ �ðTnþ SmÞj:

The case � ¼ 1 provides m2 > C, it is a contra-

diction to m < 0:48B�1=2C1=2. From Tnþ Sm <

2Tn < C, we need to consider

m2 � n2 ¼ jm2 � n2j � jC � ðTnþ SmÞj
¼ C � ðTnþ SmÞ:

Therefore, we get the inequality

C � Tnþ Smþm2 � n2 � 2Tmþ 0:75m2

< 0:96ðBC þ 1Þ1=2B�1=2C1=2 þ 0:173B�1C < C

when B � 8. We have a contradiction. This com-

pletes the proof. �

Proof of Theorem 1. Assume that fa; b; c; d; eg
is a Diophantine quintuple with a < b < c < d < e.

In [4], Dujella and Pethö have shown that the pair

f1; 3g cannot extend to a Diophantine quintuple.

This helps us to assume that b � 8.

We choose

A ¼ a; B ¼ b; C ¼ d; D ¼ e

in the Diophantine quintuple fa; b; c; d; eg. This

implies the system of Pellian equations (1) and (2)

has a positive integer solution ðx; y; zÞ with jzj > 1.

Equivalently, there are positive integers j and k

satisfying vj ¼ wk. By Lemma 5 and Lemma 6

of [8], we have j � k � 0 (mod 2Þ, k � 4, z0 ¼ z1 ¼
�1. We set j ¼ 2m and k ¼ 2n. Using Lemma 2,

we have m > 0:48B�1=2C1=2.

It is known that d � dþ > 4abc > 4b2, where

dþ ¼ aþ bþ cþ 2abcþ 2rst. It results B ¼ b <
d1=2=2 ¼ C1=2=2. Hence, we have

m � 0:678C1=4:ð3Þ

On the other hand, by used Theorem 2.1 in [10]

of Matveev, we have the relative upper bound (cf.

Proposition 4.2 of [8])

2m

logð351 � 2mÞ < 2:786 � 1012 � log2 C:ð4Þ

Combining (3) and (4), we obtain

C1=4 < 2:06 � 1012 � log2 C � logð476C1=4Þ:

Therefore, we have d ¼ C < 1074. This completes

the proof of Theorem 1. �
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