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Abstract: We give a complete classification of toroidal Seifert fibered surgeries on

alternating knots. Precisely, we show that if an alternating knot K admits a toroidal Seifert

fibered surgery, then K is either the trefoil knot and the surgery slope is zero, or the connected

sum of a ð2; pÞ-torus knot and a ð2; qÞ-torus knot and the surgery slope is 2ðpþ qÞ with jpj; jqj � 3.
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1. Introduction. The hyperbolic Dehn sur-

gery theorem, due to Thurston [18, Theorem 5.8.2],

states that all but finitely many Dehn surgeries on a

hyperbolic knot yield hyperbolic manifolds. Here a

knot is called hyperbolic if its complement admits a

complete hyperbolic structure of finite volume. In

view of this, a Dehn surgery on a hyperbolic knot

yielding a non-hyperbolic manifold is called excep-

tional. As a consequence of the Geometrization

Conjecture, raised by Thurston [19, Section 6, ques-

tion 1], and established by celebrated Perelman’s

works [14–16], exceptional surgeries are classified

into Seifert fibered surgeries, toroidal surgeries

or reducible surgeries. We refer the reader to [1]

for a survey.

Here we note that the classification is not

exclusive, for there exist Seifert fibered 3-manifolds

which are toroidal or reducible. However, a hyper-

bolic knot in the 3-sphere S3 is conjectured to admit

no reducible surgery. This is the Cabling Conjec-

ture [4] which is well known but still open. Thus,

we consider in this paper a Dehn surgery on a knot

in S3 yielding a 3-manifold which is toroidal and

Seifert fibered, called a toroidal Seifert fibered

surgery.

It was shown that there exist infinitely many

hyperbolic knots in S3 each of which admits a

toroidal Seifert fibered surgery by Eudave–

Muñoz [3, Proposition 4.5 (1) and (3)], and Gordon

and Luecke [5] independently. On the other hand,

Motegi [11] studied toroidal Seifert fibered surgeries

on symmetric knots, and gave several restrictions

on the existence of such surgeries. In particular,

he showed that just the trefoil knot admits a

toroidal Seifert fibered surgery among two-bridge

knots [11, Corollary 1.6]. Furthermore the authors

showed that if a Montesinos knot admits a toroidal

Seifert fibered surgery, then the knot is the trefoil

knot and the surgery slope is zero [6].

In this paper, we show the following.

Theorem 1. If an alternating knot K admits

a toroidal Seifert fibered surgery, then K is either

the trefoil knot and the surgery slope is zero, or the

connected sum of a ð2; pÞ-torus knot and a ð2; qÞ-to-

rus knot and the surgery slope is 2ðpþ qÞ. Here p and

q are odd integers with jpj; jqj � 3.

We note that Theorem 1 for hyperbolic alter-

nating knots also follows from a complete classi-

fication of exceptional surgeries on hyperbolic

alternating knots recently achieved by the first

author and Masai [7]. While the classification is

established by heavy computer-aided calculations,

the proof given in this paper is quite simpler and

direct.

2. Proof. We start with recalling definitions

and basic facts.

A knot in the 3-sphere S3 is called alternating

if it admits a diagram with alternately arranged

over-crossings and under-crossings running along

it. Menasco [9] showed that an alternating knot is

hyperbolic unless it is the connected sum of them or

a ð2; pÞ-torus knot.

Let K be a knot in S3 and EðKÞ the exterior of

K. A slope on the boundary torus @EðKÞ is an

isotopy class of a non-trivial simple closed curve on
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@EðKÞ. For a slope � on @EðKÞ, we denote by Kð�Þ
the 3-manifold obtained by Dehn surgery on K

along the slope �, i.e., Kð�Þ is obtained by gluing

a solid torus V to EðKÞ so that a simple closed

curve representing � bounds a meridian disk in V .

We call such a slope � the surgery slope. It is well

known that a slope on @EðKÞ is parameterized by

an element of Q [ f1=0g by using the standard

meridian-longitude system for K. Thus, when a

slope � corresponds to r 2 Q [ f1=0g, we call the

Dehn surgery along � the r-surgery for brevity,

and denote Kð�Þ by KðrÞ. See [17] for basic

references.

Proof of Theorem 1. Now we start the proof of

Theorem 1 which will be achieved by the following

two claims.

Claim 1. If a prime alternating knot K

admits a toroidal Seifert fibered surgery, then K is

the trefoil knot and the surgery slope is zero.

Proof. Let K be a prime alternating knot such

that KðrÞ is a toroidal Seifert fibered 3-manifold.

Then K is either a two-bridge knot or an alternat-

ing pretzel knot of length three, see [2, Lemma 3.1],

[13, p13].

If K is a two-bridge knot, then K must be the

trefoil knot and r ¼ 0 [11, Corollary 1.6].

Assume that K is an alternating pretzel knot of

length three P ða; b; cÞ which is not a two-bridge

knot. Then K is a small knot [12]. Therefore K

must be fibered and r ¼ 0 [8, Proposition 1]. If the

integers a, b, and c are odd, then P ða; b; cÞ is a genus

one knot. This contradicts to the assumption that

K is not a two-bridge knot since the genus one

fibered knots are just the trefoil knot and the figure-

eight knot. If one of the integers a, b, and c is even

and the others are odd, then the surgery slope r is a

boundary slope of a non-orientable surface with

crosscap number two [2], [13]. Without loss of

generality, we may assume that a is even and

b; c are odd. Then we have r ¼ 2ðbþ cÞ. Since K is

alternating, the sign of b coincides with that of

c. Therefore we have r ¼ 2ðbþ cÞ 6¼ 0. This con-

tradicts the condition r ¼ 0. �

Claim 2. If a composite alternating knot K

admits a toroidal Seifert fibered surgery, then K is

the connected sum of a ð2; pÞ-torus knot and a

ð2; qÞ-torus knot, and the surgery slope is 2ðpþ qÞ.
Here p and q are integers with jpj; jqj � 3.

Proof. According to the classification of non-

simple Seifert fibered surgeries on non-hyperbolic

knots [10, Theorem 1.2], a composite alternating

knot admitting a toroidal Seifert fibered surgery is

just the connected sum of a ð2; pÞ-torus knot and a

ð2; qÞ-torus knot, and the surgery slope is 2ðpþ qÞ
with jpj; jqj � 3. �

By Claims 1 and 2, the proof of Theorem 1 has

completed. �
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