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Construction of positive integers with even period of minimal type

By Fuminori KAWAMOTO,” Yasuhiro KiSHI"™ and Koshi TOMITA**)
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Abstract:

Key words:
Introduction. In a previous paper [3], for
any positive integer ¢, we introduced the notion of
real quadratic fields with period ¢ of minimal type
(see Definition below) by using the simple contin-
ued fraction expansions with period ¢ of certain
quadratic irrationals, and proved that there exist
exactly 51 real quadratic fields of class number 1
that are not of minimal type, with one more possible
exception ([3, Proposition 4.4]). On the other hand,
Sasaki [7] and Lachaud [6] showed that for any
positive integers ¢ and h, there exist at most finitely
many real quadratic fields with period £ of class
number h. Hence we have to examine a construction
of real quadratic fields with non-fixed period ¢ of
minimal type in order to find many real quadratic
fields of class number 1. In [4, Theorem 1.1] we
proved, in the case where ¢ > 4 is an even integer
with 8% ¢, that there exist infinitely many real
quadratic fields with period ¢ of minimal type. In
this paper, for any even integer ¢ > 4, we shall
examine a construction of positive integers with
period £ of minimal type (see Definition below;
Theorem 2) in a different way, as the first step of
getting real quadratic fields with period ¢ of
minimal type. To see a usefulness of Theorem 2,
we show the infiniteness of real quadratic fields with
period 8 of minimal type (Example 2).

1. Positive integers of minimal type. Let
£ > 2 be a positive integer and let a1, as,...,ar_1 be
a symmetric string of £ — 1 positive integers. We
define nonnegative integers q,,r, by using a,:
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We give a construction of positive integers with even period of minimal type.

Real quadratic fields of minimal type; continued fractions.

(1.1) {QO =0,¢1=1, ¢ = an-1qn-1 + qu—2 (n > 2)7

ro=1,1r1 =0, 7 = ap17Tn1+ T2 (n>2).
Then we easily see that ¢, >r, (n>1). For
brevity, we put

A= qe, B:= qe—1, C:= Te—1,

and define polynomials g(x), h(z), f(z) by
g(x) = Az — (-1)'BC, h(z) = Bz — (-1)'C?,

f(z) = g(x)* + 4h(x).
Furthermore, let sy be the least integer x for
which z > (—=1)'BC/A. We consider three cases
separately:

() A=1 (mod 2), (II) (4,C) = (0,0) (mod 2),
(II) (A,C) = (0,1) (mod 2).

The following theorem was shown in [3, Theorem
3.1] which is an improvement of results of
Friesen  [1,Theorem] and of Halter-Koch
[2, Theorem 1A, Corollary 1A]. For a real number
x, we denote by [z] the largest integer < x.

Theorem 1. Let £>2 be a fized positive
integer and ai,...,ap—1 any symmetric string of
{ — 1 positive integers.

When Case (1) or Case (II) occurs, we let s be
any integer with s > sy, and put d:= f(s)/4 and
ag = g(s)/2. Here, we choose an even integer s in
Case (I), and assume that

(1.2) g9(s) > a1, ... ae1.

Then, d and aqy are positive integers, d is non-square,
ap = [V/d] and the simple continued fraction expan-

sion of Vd is

(13) \/E: [ag,al,..

with minimal period €. Also, in Case (II), there is
no positive integer d such that (1.3) is the simple
continued fraction expansion of Vd.

When Case (1) or Case (II1) occurs, we let s be
any integer with s> sy, and put d:= f(s) and
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ag = (g(s) + 1)/2. Here, we choose an odd integer s
in Case (I), and assume that (1.2) holds. Then, d
and ay are positive integers, d is mnon-square,
d=1 (mod 4), ap=[(1++Vd)/2] and the simple
continued fraction expansion of (1 ++/d)/2 is

1++d
2

(14) = [ao,al,...7ag,172ao— 1]

with minimal period £. Also, in Case (II), there is
no positive integer d such that d=1 (mod 4) and
(1.4) is the simple continued fraction expansion of
(1++d)/2.

Conversely, we let d be any non-square positive
integer. By using a quadratic polynomial f(x) and
an integer sy obtained as above from the symmetric
part of the simple continued fraction expansion of
Vd, d becomes uniquely of the form d = f(s)/4
with some integer s > sg, and (1.2) holds. If d =
1 (mod 4) in addition then the same thing is true
for (14++/d)/2.

Definition ([3, Definition 3.1]). Let d be a
non-square positive integer. By Theorem 1, d is
uniquely of the form d = f(s)/4 with some integer
s > 89, where f(x) and sy are obtained as above
from the symmetric part aj,as,...,as1 of the
simple continued fraction expansion of v/d and ¢ is
the minimal period. If s = sg, that is, d = f(sg)/4
holds, then we say that d is a positive integer with
period ¢ of minimal type for (the simple continued
fraction expansion of) v/d. When d =1 (mod 4) in
addition, d is uniquely of the form d = f(s) with
some integer s > sy, where f(x) and sy are obtained
as above from the symmetric part ay,as,...,as_1 of
the simple continued fraction expansion of (1+
v/d)/2 and ¢ is the minimal period. If s = s, that is,
d = f(so) holds, then we say that d is a positive
integer with period £ of minimal type for (the simple
continued fraction expansion of) (1 +/d)/2.

Furthermore, for a square-free positive integer
d > 1, we say that Q(v/d) is a real quadratic field
with period £ of minimal type, if d is a positive
integer with period ¢ of minimal type for v/d when
d=2,3 (mod 4), and if d is a positive integer
with period ¢ of minimal type for (1 + v/d)/2 when
d=1 (mod 4).

In the next section, following [3], [4] and [5], we
calculate sp, g(sg), h(sp) in order to get positive
integers with even period of minimal type.

2. Calculation of sg, g(so) and h(s¢). Fix
a string of L (> 2) positive integers ay,...,a; and
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Table 1
d Uy Us w vy Vo z
19 1 1 1 3 0 0
70 2 0 1 2 0 0
111 0 1 0 8 2 0
put £ = 2L. Define
ar4+1 ‘= ar—1, 42 ‘= ar-2,...,021-1 = a1;

we get a symmetric string aj,...,a;—; of £—1
positive integers. From this string, we define non-
negative integers g¢,,r, by (1.1). Then it is well-
known that

(2'1) qnTn—-1 — qn—-1Tn = (_1)n—1 (1 <n< E)

Moreover the following hold.
Lemma. Under the above setting, we have

A=q = (q+1+9-1)qL,
B=q-1=(qr1+qr-1)rL — (—1)L7
C=rp1=(rop +70-1)71L,
B*—AC=(-1)'=1.

Proof. See [4,Lemma 2.2 (i)] and [4, (2.8)]. O
Now we define integers wui, us, w, v, v2, 2, 6 by

(2.2) (7"2L - (*1)L)(TL+1 +ri-1)
=qv+w (0<uw <qp),
(2-3) (*1)L(TL - QL—I)TL
=qrzt+w (0 <w< q),
(2.4) (=1)"(qr = r) + 2
=qrv2+ux (0 <wy <gqpr),
5= {0 ifU1 SUQ,
Sl i ug > e,

and calculate sg, g(so), h(so) by using them.

Remark. For d € {19,70,111}, the minimal
period of the simple continued fraction expansion of
V/d is 6. The calculations of uy, U9, W, v1, v and z
make Table I. We see that all of three cases,
uy < U9, U1 = ug and u; > ug, are possible.

Theorem 2. Under the above setting, the
value of f(so) is determined by that of so, g(so) and
h(sg) as follows:

(25) S) = U1 — Uy + (71)L + 5,
(26)  glso) = qiL{vQ g — 1)} +a,
27) h(so) = qiLw —(~1)E2 DR+ (1) s,
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where

(2.8) v = qr(bqr + ug — u1) + w,
Q = qr1 + qr-1(= arqr + 2q1-1),
R:=rpq+ri_i(=arrp +2rp).
Proof. First we show that
BC

¢ _
() —=v-nt (1"

1 w+1 2ry,
+— | u —ug — +—1.
qL qL Qqr

Noting Lemma, we have
B=——- (_1)La
qr
riC — (-1)"R= (2 — (-1)"R.

(2.9)

Hence by using (2.2) and ¢ even, we have

BC  riC c

e10) (="
_i-(DHR (R C
B qa (=1 (qL A)
o r M (BC
B 1+qL+( D <QL A)'

Let E; be the last term of the right hand-side of
Eq. (2.10). Then we have

Moreover, we put

_art (-1)*(rp —qr-1)R
0 )

Here we remark that the relation
(2.11) quro—1 — qrorg = (=17
holds by (2.1). Then we have

(2.12) Qrp,—C

= (arqr + 2qr—1)rr—1 — (arry + 2rp_1)rg

Es:

=az(qrrr—1 —r3) +2(qr-1 — L)1

= ar(grare + (=1 =)
+2(qr1 — )T

= —(-D"ar +ar(gr—1 —r1)rr
+2(qr1 — )T

= —(-D"ar + (qo_1 — ro)(arrs + 2rp 1)
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= _(_1)LaL —(rc —qr1)R

= _(_1)LE2Q1
and hence
L
(2.13) B = (=1) (rm g — 9)
qr Q
(-1*

= {TLH + é (Qrp—1 — C)}

qr
(-1)'rpna B
@ @
On the other hand, by (2.11) we have
(2.14) Qro—qR=qrarr +qr1re
—4qL’r+1 — qLrr-1

= ()" = (=) = (D",

and hence
R rp (-2
Q q Qqr '

From this together with (2.3), we have

(2.15) Fy = Ay (-1)"(rp — q1)

R
Q Q

qrL
n arqr — 2rp + 291
Qar
w n Q —2rp .
aw  Qa
Note that (2.4) gives the equation

=z+4+

(—1)LTL+1 -z L U2
(2.16) — = (=1)" —vy— —.

qr qr

Then by (2.13), (2.15) and (2.16), we have

E, = (—1) rp — 2 Lw Q=2
qa G Qq
1 +1 2
e L (gt Y

qL qr QqL

Substituting this into (2.10), we get (2.9).
For brevity, we denote by E the last term of
the right hand-side of (2.9) and then
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1 w+ 1 2r
E_—(ul—UQ— + )+—L2
qr qL Qqz

Then by 0 < w < qr — 1, we have
1 1
w + <

— < <1.
qrL qL

(2.17)

Since Q = arqr + 2qr,—1 > qr, + 2, we have
(218)  Qqr—2rp > q; +2(qr — 1) > 0.

When u; < us, it holds from u; > 0 and us < g7, — 1
that 1 —g¢q;, <wu; —ug < —1. Then by (2.17), we
have

w+1 1
—qr, <up —uz — <-1-—< -1,
qr qr
and consequently,
1 2r 1
l<BE<-— 42t (Qqr — 2r1).

@ Q¢  Qf

Then by (2.18), we have —1 < E < 0, that is, £ + 1
is the decimal part of (—=1)'BC/A. Hence by the
definition of sy, we have sy = v; — vy + (—1)L. When
uy = ug, by (2.17), we have

1 2 1

S +—=——=(Q —2rp).

G Q4 Qdq

First, assume that @ > 2r;. Then this inequality
yields that —1 < E <0 and we have sy = v; —
vy + (—1)L. Next, assume that Q <2r;. If we
assume w = 0 then (2.3) implies that

—-1< FE<-—

(_1)L(7’L —qr-1)r; =0 (mod qr).

As ged(rp,qr) =1 by (2.1), we obtain rp — qp1 =
0 (mod qr). So, rp — qr—1 = tqr, with some integer
t. It follows from r; < q;, and 0 < ¢qr_1 that ¢ <O0.
Hence,

Q —2rp =arqr +2qr-1 — 2rg,
> 2(qp—1 —rr) = —2tqr > 0.

This contradicts @ < 2ry. Thus, w > 0 holds. Then
by @ > g, we have
w+1 2r 2 2r
A R

qay, Qq; g Qq
2 (1 - Q) < (L= 1) <0
=—5(rp— — (rp —qz) <0.

Qq; Qe
Hence we have —1 < E' < 0 so that sg = v — vy +
(—1)L. Finally, when wu; > ug, it holds from wu; <
qr — 1 and uy > 0 that 1 <wu; —us < qr — 1. Then

E=-—
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by (2.17), we have

w+1

1
0<u; —ug — <g—-1-—<gqr—1,
qr,

qr,

and consequently,

27"L 1 27"L
O<—2§E<1——+—2
Qq7 qa.  Qq;
1
=1-—=(Qqr —2rp).
Qq}

By (2.18), we have 0 < E < 1, that is, E is the
decimal part of (—1)'BC/A. Thus we get sy =
v — vy + (=1 + 1.

Next, let us calculate g(sg). By using (2.2) and
(2.4), we have

(219)  quso = qr(vi —va + (=1)" +6)
= {(r} = (D" R —w}
—{(-1)"(qr — r241) + 2 — uz}
+a((-1)" +6)
=17 R— (~)'R+ (-1)'rp
—up — 2+ us + 6qr
=r;C— (—I)L’/‘L—l + 5,
where we put S := dq;, + us — u; — z. Then we have
Asy = Qqrso
= QriC— (-1)"Qri1 + QS
= (B+(=D)"C = (-)'Qrr1 +QS
= BC+ (-1)"(C = Qrr-1) + Q5.
Hence by (2.12), we have
(2.20)  g(so) = Asp — BC
= (-D)"(C~Qr-1) + QS
= EQ+ QS
=ar+ (-1)"(rp — qz-1)R + QS.
Here, it follows from (2.3) and (2.8) that
(2.21) S=6qr +us —uy — 2

(*1)L(TL - QLfl)TL —w
qr,

= 6qr + us —uy —
1

= —{q(éqr +up —w) +w
qL

— (=1)"(rp = qr—1)re}

_1 {v= (=D (e — qu1)re}
qr
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By substituting this into (2.20) and by using (2.14),
therefore, we get

g9(so) = ar, + (—1)L(TL —qr1)R
T T
qr

1
=ar+ m (—1)"(rt — qu-1)qr R
L

+Qv— (-D"(r; — qz-1)Qrr}

=ar+ qlL {Qv+ (—1)*(rL —qz-1)(qR — Qrp)}

ot {Qv+ 2qi — 1))
qr

Next let us calculate h(sp). By (2.14), we have
B=Qr,—(-1)" =qR+(-1)".
Then by (2.19), we have
Bsy = qrRsy + (—1)"sp
= Rr;.C — (—1)LR7‘L,1
+ R(5qr + 12 — w1 — 2) + (—1) s
=C?— (-1)"Rry 4
+ R(6qr +ug — uy — 2) + (—1)"s0.
By (2.21) and (2.11), therefore, we have
h(sy) = Bsy — C?
= —(—1)LRTL,1 + R(6qr, + us —us — 2) + (—1)L30
=—(-1)"Rrp

D = g + (1) s
qL

R
~ {v— (=1 02 + quri1 — q-irn)} + (=1) s
L

- qi;{v S CDE 4 ()R 4 (1) s
R

=~ (= (=DM + )+ (1) "s0.
qL
Theorem 2 is now proved. O
Example 1. Let L =2 and consider a sym-

metric string aq,a9,a;. Then we have Table II.
Hence by

(TQL - (*1)L)(7"L+1 +7rr-1) =0=0q; + 0,
(—1)"(r = qz-1)rr = 0= 0gr +0,

we obtain u; = 0,v; = 0,w = 0,z = 0. Moreover, we
have

(_1)L(QL —Trp) + 2= (_1)2(01 —ap) = a; — as.
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Table II
n 0 1 2 3
qn 0 1 ay a1az + 1
Tn 1 0 1 as

First we consider the case where a; | az. Since
qr, = a; and

(—1)%(qz = rr1) + 2 =0+ a1(1 — az/ay),
we have up =0, v9 = 1 — as/a;. Then we have u; =
0 = ug, so = 0. Hence by (2.5), we have
S0 =11 — vy + (—1)L = az/a;.
Since
v = qr(6qr +u2 —u1) +w =0,

it follows from (2.6), (2.7) that g(sg) =a2 and
h(So) = ag/al.

Next, we consider the case where a; { ag. Let r
be the remainder of the division of as by aq, that is,

az = apaz/ar] +r, 0<r<a.

Then we have
(=1 (qr, = rr41) + 2 = a1 — 7 + a1 (~[as/a1]),
and hence ug = a; — r, v2 = —[az/a1]. Then we have
up =0<a; —r=uy, and hence 6 =0. By (2.5),
therefore, we have
S) = V1 — U2 + (—1)L = [ag/aﬂ + ].
Since
v = qr(0qr +uz —ur) +w = ai(a; — 1),

it follows from (2.6), (2.7) that

9(s0) = (a1 — r)(aras + 2) + as,

h(so) = (a1 — r)as + [ag/a1] + 1.

Example 2. Let L =4, t be a positive inte-

ger, and consider a symmetric string 2,2,1,7¢,1,
2,2. Then we have Table III. Hence by

(2 — (1)) (rps1 +rpo1) = T(24t +4) + 4,
(1) (rp — qr1)rp = —6="7(=1) + 1,
we obtain u; =4, v; =24t + 4, w =1, z = —1. Since
(=) (qp — ro11) + 2 = 7(=3t) + 4, we have uy = 4,
vy = —3t. This yields that 6 =0 and v = 1. Hence
we see by Theorem 2 that

So =27t +5, g(so) =2(Tt+1), h(sy) =6t+1,
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Table IIT
n 0 1 2 3 4 5
an 0 1 2 49t +5
T 1 0 1 3 21t + 2

so that
d(t) := f(s0)/4=T"* +4-5t +2.

Since A = 7(49¢ + 10) and C = 3(21t 4+ 4) by Lem-
ma, if ¢ is even (resp. odd) then Case (II) occurs
(resp. Case (I) occurs and sg is even). The assump-
tion (1.2) of Theorem 1 holds: g(s¢) > 2, 7t. Hence,
Theorem 1 implies that the simple continued frac-

tion expansion of \/d(t) is
V@) = [Tt+1,2,2,1,7,1,2,2, 14t + 2|

and d(t) is a positive integer with period 8 of
minimal type for \/d(t). The discriminant D(d(t))
of d(t) is 8(#0). We see by a result of Nagell
(cf. [3, Proposition 6.1]) that the set {d(2u) | u € N}
(resp. {d(2u — 1) | u € N}) contains infinite square-
free elements. Consequently, we can choose a
sequence {d,},-, of square-free positive integers
which is strictly monotonously increasing such that
d, =2 (mod 4) (resp. d, =3 (mod 4)). Thus there
exist infinitely many real quadratic fields with
period 8 of minimal type. (We see that d(1) =71,
d(3) =503 and the class numbers of real quadratic
fields Q(v/71) and Q(+/503) are both equal to 1.)

Finally, we give the factorization of f(z). We
will use it to construct systematically such fields
as in Example 2 for any even period (> 6).

Proposition. Put £ =2L. Then f(x) can be
factored into two polynomials of degree 1:

f@)={dz -} (R (-1)")}
x {Q% — R¥(Qrp + (-1)")},

where Q 1= qr1 +qr—1, R:=rp4 +rp-1.
Proof. By the definition of f(z), we have

f(z) = (Az — BC)* + 4(Bx — C?)
= A%2? — 2(AC — 2)Bx + (B? — 4)C%.

On the other hand, since it follows from (2.14) and
Lemma that

awR— (1) =Qr, — (-1)"3
=B+ (-1)f = (-1)'3
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— B (-1)*
Qry+ (~1)F = B+ (—1)*

2,
2,

we obtain
{Gz—r} (@R - (-1)")}
x {Q* — R*(Qr. + (-1)")}
_ q%QZxQ
—{@ERY(B+ (-1)"2) + Q*2(B— (-1)"2)}x
+ M R*(B - (-1)"2)(B+ (-1)*2)

_ AZI'Q
—{@GR*(B+ (-1)"2) + Q*r (B - (-1)"2)}x
+ C*(B* - 4).

Here, as B> = AC + 1 by Lemma, we have
G R (B+ (-1)"2) + Q*} (B - (-1)"2)

= (B-(-)"*(B+(-1)"2)
+(B+(-1)")*(B-(-1)"2)

= (B’ = (-1)"2B+1)(B+ (-1)"2)
+ (B + (-1)"2B+1)(B- (-1)"2)

= (2B% +2)B+ (—(-1)"4B)(-1)"2

=2(B*-3)B=2(AC - 2)B.

The proof is completed. (I
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