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Abstract: We prove the sets of polynomials on configuration spaces are cores of Dirichlet

forms describing interacting Brownian motion in infinite dimensions. Typical examples of these

stochastic dynamics are Dyson’s Brownian motion and Airy interacting Brownian motion. Both

particle systems have logarithmic interaction potentials, and naturally arise from random matrix

theory. The results of the present paper will be used in a forth coming paper to prove the identity

of the infinite-dimensional stochastic dynamics related to the random matrix theories

constructed by apparently different methods: the method of space-time correlation functions

and that of stochastic analysis.
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1. Introduction. In random matrix theory,

one of the main issues is to clarify the distribution of

the eigenvalues and its asymptotic behavior as the

size of the matrices goes to infinity. The prototypes

of random matrices are Gaussian ensembles, di-

vided into three classes and called Gaussian orthog-

onal/unitary/symplectic ensembles (GOE/GUE/

GSE), according to their invariance under conjuga-

tion by orthogonal/unitary/symplectic groups.

The eigenvalue distributions of Gaussian ran-

dom matrices of N �N size are then given as

�mN
� ðdxNÞ ¼

1

Z
hNðxNÞ�e�

�
4 jxN j

2

dxN;

where dxn ¼ dx1dx2 � � � dxN , xN ¼ ðxiÞ 2 RN , and

hNðxNÞ ¼
YN
i<j

jxi � xjj:

Here and after Z denotes the normalizing constant.

The GOE, GUE, and GSE correspond to inverse

temperature � ¼ 1; 2 and 4, respectively [2,9].

The celebrated Wigner’s theorem asserts that

the empirical measure

1

N

XN
j¼1

�xj=
ffiffiffi
N
pð1Þ

of the eigenvalues under the distribution �mN
� ðdxNÞ

converges to the semicircle law &ðxÞdx as N !
1 [2,9], where &ðxÞdx is the probability on R such

that

&ðxÞdx ¼
1

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2
p

1½�2;2�ðxÞdx:ð2Þ

For a countable subset fxng, we call the �-finite

measure � ¼
P

n �xn a configuration if it becomes a

Radon measure. The set of all configurations on R is

a Polish space equipped with the vague topology,

and is called the configuration space over R. We

call � unlabeled particles, and x ¼ ðx1; x2; . . .Þ
labeled particles.

Note that for N-particle systems, there exists

an obvious bijection between the distribution of the

unlabeled N-particles and the symmetric distribu-

tion of the labeled N-particles, where N 2 N. We

note that this is not the case for infinite particle

systems.

For a given distribution � of N-unlabeled

particles, we denote by �� the symmetric density of

the associated N-labeled particles in the sequel.

To examine the behavior of the distribution of

the configuration � ¼
PN

i¼1 �xj under �mN
� ðdxNÞ,

N !1 there are two typical scalings, called the

bulk and the soft edge. The former corresponds to

the scaling such that yj ¼
ffiffiffiffiffi
N
p

xj, and the distribu-

tion of fyjgNj¼1 under �mN
� ðdxNÞ is given by

��Nbulk;�ðdyNÞ ¼
1

Z
hNðyNÞ

�e�
�

4N jyN j
2

dyN:

The latter corresponds to the scaling such that
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yj ¼ N1=6ðxj � 2
ffiffiffiffiffi
N
p
Þ, and the distribution of

fyjgNj¼1 under �mN
� is given by

��Nsoft;�ðdyNÞ ¼
1

Z
hNðyNÞ�e

��
4N1=3 jyN�2N2=31N j2dyN;

where 1N ¼ ð1; 1; . . . ; 1Þ 2 RN .

Let � ¼ 2. Then the limit of �Nbulk;2 is the

determinantal random point field �sin;2 with sine

kernel

Ksin;2ðx; yÞ ¼
sinðx� yÞ
�ðx� yÞ

;ð3Þ

and the limit of �Nsoft;2 is the determinantal random

point field �Ai;2 with Airy kernel

KAi;2ðx; yÞ ¼
AiðxÞAi0ðyÞ �Ai0ðxÞAiðyÞ

x� y ;ð4Þ

where Ai denotes the Airy function and Ai0 its

derivative [20,21,9]. It is proved that these random

point fields are quasi-Gibbsian in [14,15].

We consider the dynamical scaling limit corre-

sponding to the static limit mentioned above. For

this we introduce the associated stochastic dynam-

ics describing the time evolution of N-particle

systems.

Let XNðtÞ ¼ ðXN
j ðtÞÞ

N
j¼1 be the solution of the

SDE

dXN
j ðtÞ ¼ dBjðtÞ þ

XN
k¼1;k 6¼j

dt

XN
j ðtÞ �XN

k ðtÞ
ð5Þ

or the SDE with Ornstein-Uhlenbeck’s type drifts

dXN
j ðtÞ ¼ dBjðtÞ �

1

2N
XN
j ðtÞdtð6Þ

þ
XN

k¼1;k 6¼j

dt

XN
j ðtÞ �XN

k ðtÞ
:

These are called Dyson’s Brownian motion model

with � ¼ 2, or simply the Dyson model [3]. The

solution of (6) is a natural reversible stochastic

dynamics with respect to ��Nbulk;2, and that of (5) is

also natural but has no invariant probability

measures. Both have the same N-limit as we see

below.

Let �N
sin be an unlabeled process defined by

�N
sinðtÞ ¼

XN
j¼1

�XN
j ðtÞ:

Suppose that the distribution of �N
sinð0Þ is �Nbulk;2.

Then �N
sin converges in distribution to the process

�sin whose generating function

�t
sin½f � � E exp

XM
m¼1

Z
R

fmðxÞ�sinðtm; dxÞ
( )" #

;

0 � t1 � t2 � � � � � tM , fm 2 C0ðRÞ, 1 � m �M, is

represented by the Fredholm determinant

Det
ðs;tÞ2ft1;...;tMg2;

ðx;yÞ2R2

�st�ðx� yÞ þKsinðs; x; t; yÞ�tðyÞ½ �;

with �tm ¼ efm � 1 and the extended sine kernel

Ksin [22,7]:

Ksinðs; x; t; yÞ

¼

1

�

Z 1

0

du eu
2ðt�sÞ=2 cosfuðy� xÞg; t 	 s

�
1

�

Z 1
1

du eu
2ðt�sÞ=2 cosfuðy� xÞg; t < s.

8>><>>:
For the soft edge scaling, we suppose that the

distribution of XNð0Þ is ��Nbulk;2, and introduce the

process YN defined by

YNðtÞ ¼
1

N1=3
XNðN2=3tÞ � 2N2=3 �N1=3tþ

t2

4
ð7Þ

corresponding to (5), and

YNðtÞ ¼
1

N1=3
XNðN2=3tÞ � 2N2=3ð8Þ

corresponding to (6). Then the unlabeled processes

�N
AiðtÞ ¼

XN
j¼1

�Y N
j ðtÞ

converge in distribution to the process �Ai whose

generating function is represented by the Fredholm

determinant with the extended Airy kernel

KAi [19,6,10,7]:

KAiðs; x; t; yÞ

¼

Z 1
0

du e�uðt�sÞ=2Aiðuþ xÞAiðuþ yÞ;

t 	 s

�
Z 0

�1
du e�uðt�sÞ=2Aiðuþ xÞAiðuþ yÞ;

t < s:

8>>>>>><>>>>>>:
From the fact that Ksinðs; x; s; yÞ ¼ Ksinðx; yÞ and

KAiðs; x; s; yÞ ¼ KAiðx; yÞ, we see that the processes

�sin and �Ai are reversible with respect to �sin;2 and

�Ai;2, respectively.

The scaling limits above are based on the

convergence of the associated space-time correla-

tion functions by the determinatal structures [7].

There exists another method of constructing infinite
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volume stochastic dynamics based on stochastic

analysis. In [14,15], unlabeled diffusion processesb�sin and b�Ai with reversible measures �sin;2 and �Ai;2

are constructed through the Dirichlet form tech-

nique. See [5] for Bessel random point field.

Let XðtÞ ¼ ðXjðtÞÞj2N be a labeled process

associated with b�sinðtÞ ¼
P

j2N �XjðtÞ. In [13] it is

proved that the process X ¼ ðXjÞj2N solves the

infinite-dimensional stochastic differential equation

(ISDE)

ðsinÞ dXjðtÞ ¼ dBjðtÞ þ
X1

k¼1;k 6¼j

dt

XjðtÞ �XkðtÞ
:

In [16] we prove that a labeled process YðtÞ ¼
ðYjðtÞÞj2N associated with b�AiðtÞ ¼

P
j2N �YjðtÞ solves

the ISDE

ðAiÞ dYjðtÞ ¼ dBjðtÞ

þ lim
r!1

X1
k 6¼j

jYkðtÞj<r

1

YjðtÞ � YkðtÞ
�
Z r

�r

b	ðxÞdx
�x

8>><>>:
9>>=>>;dt;

where

b	ðxÞ ¼ 1ð�1;0ÞðxÞ
�

ffiffiffiffiffiffiffi
�x
p

:

These two approaches are fundamentally dif-

ferent. Hence it is significant to prove that the

resulting stochastic dynamics are the same. From

the former construction we can obtain quantitative

information of the limit stochastic dynamics

through the calculation of space-time correlation

functions; while from the latter we deduce many

qualitative properties of the sample paths of the

labeled diffusions through the ISDE representation

of the processes. See [12,13,16] for examples.

Recently, we have proved the coincidence of

these pairs of stochastic dynamics �sin and b�sin, and

also �Ai and b�Ai, through the following three steps:

Below ? denotes sin or Ai for the sake of brevity.

(i) �? has the strong Markov property.

(ii) The Dirichlet forms associated with �? and b�?

are both extensions of the closable form ðE�? ;PÞ.
Here E�? are given by (11) and P is the set of

polynomials functions on M defined in (13) later.

(iii) The labeled process associated with �? and b�?

are solutions of the ISDE (?), and the ISDE (?) has

strong uniqueness.

The claim (i) is proved in [18], and (ii) is in this

article. The claim (iii) is proved in [16,17] partly

through the result in this paper. Putting these

together, we will complete the proof of �? ¼ b�? for

? 2 fsin;Aig in a forthcoming paper.

2. Preliminaries. Let S be a closed subset

of Rd such that the interior Sint is a connected open

set and that its closure Sint equals S. Let M ¼MðSÞ
be the configuration space over S of unlabeled

particles, the set of non-negative integer valued

Radon measures on S. The space M is a Polish

space endowed with the vague topology. An ele-

ment � of M can be represented as � ¼
P

j2� �xj for

some countable set �, and the restriction of � on

a subset A of S is denoted by �A ¼ �ð� \ AÞ. A

function f on M is called local if fð�Þ ¼ fð�KÞ for

some compact set K.

We write �K ¼
Pk

j¼1 �xj . For a local function f

with fð�Þ ¼ fð�KÞ we introduce the functions �fk on

Sk, k 2 N0 � f0g [N defined by �f0 ¼ fð;Þ, where ;
is the null configuration, and by, for k 2 N,

�fkðxkÞ ¼ f
Xk
j¼1

�xj

 !
for xk 2 Kk:

We extend the domain of �fkðxkÞ to SknKk by the

consistency coming from fð�Þ ¼ fð�KÞ. Hence �fk,

k 2 N0, satisfy the consistency relation

�fkþ1ðxk; yÞ ¼ �fkðxkÞ; xk 2 Sk; y =2 K:ð9Þ

The infinite sequence given by

ð�f0; �f1ðx1Þ; �f2ðx1; x2Þ; . . .Þ ¼ ð�fkðxkÞÞk	0ð10Þ

is a representation of the local function f .

A local function f is called smooth if the �fk are

smooth for k 2 N0. We denote by D1 the set of all

local smooth functions on M.

Set for xk ¼ ðxiÞki¼1 2 Sk, k 2 N0, f; g 2 D1

Dðf; gÞðxkÞ ¼
1

2

Xk
i¼1

Xd
j¼1

@ �fkðxkÞ
@xij

@�gkðxkÞ
@xij

;

where xi ¼ ðxi1; xi2; . . . ; xidÞ. For given f; g 2 D1,

the right hand side is a permutation invariant

function, and the square field Dðf; gÞ can be

regarded as a local function with variable � ¼P
i2N �xi 2M.

For a probability � on M, L2ðM; �Þ denotes

the space of square integrable functions on M with

the inner product h�; �i� and the norm k � kL2ðM;�Þ.
We consider the bilinear form ðE�;D�1Þ on L2ðM; �Þ
defined as

E�ðf; gÞ ¼
Z

M

Dðf; gÞd�;ð11Þ
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D�1 ¼ ff 2 D1 : kfk2
1 <1g;ð12Þ

where kfk2
1 � E�ðf; fÞ þ kfk

2
L2ðM;�Þ. A function F on

M is called a polynomial function if F is given as

F ð�Þ ¼ Qðh
1; �i; h
2; �i; . . . ; h
‘; �iÞð13Þ

with 
k 2 C10 ðRdÞ and a polynomial function Q on

R‘, where h
; �i ¼
R

Rd 
ðxÞ�ðdxÞ and C10 ðRdÞ is the

set of smooth functions with compact support.

We denote by P the set of all polynomial

functions on M, and by P0 if we replace the set of

polynomials Q on R‘ by C1b ðR‘Þ, the set of bounded

smooth functions with bounded derivaives of any

order. It is obvious that each element of P and P0 is

a local smooth function.

The closability and the quasi-regularity of

the bilinear form ðE�;D�1Þ have been proved in

[11,14,15], while those of ðE�;P0Þ in [23,1].

Let P�, P�0 , and D� be the closures with respect

to kfk1 of P, P0, and D�1, respectively. We see that

P 
 D�1 and P0 
 D�1 under the mild assumption

(A.0) below, and hence we obtain that

P� 
 D�; P�0 
 D�:ð14Þ

Then we deduce from Theorem 3.1 below that

P� ¼ P�0 ¼ D�:ð15Þ

The construction of unlabeled diffusions of

interacting Brownian motion in infinite dimensions

through the Dirichlet form approach was initiated

by [11]. Later [23,1] also used this approach but

with different cores P0 under a more restrictive

assumptions of interaction potentials than [11]. The

identity (15) above proves that these diffusions are

the same.

We refer to [8] and [4] for the notion of quasi-

regularity and Dirichlet forms.

3. Main results. We call a function 	n the

n-correlation function of � with respect to the

Lebesgue measure if 	n : Sn ! R is a permutation

invariant function such thatZ
Ak1

1
�����Akm

m

	nðx1; . . . ; xnÞdx1 � � � dxn

¼
Z

M

Ym
i¼1

�ðAiÞ!
ð�ðAiÞ � kiÞ!

d�ð�Þ

for any sequence of disjoint bounded subsets

A1; . . . ; An 
 S and a sequence of natural numbers

fkig with k1 þ � � � þ km ¼ n. We assume the follow-

ing conditions on the probability measure � on M:

(A.0) The measure � has an n-correlation function

	n for each n 2 N with 	n 2 LpðSnr ; dxnÞ for all r 2
N for some 1 < p � 1. Here Sr ¼ fx 2 S : jxj < rg.
(A.1) ðE�;D�1Þ is closable on L2ðM; �Þ and its

closure ðE�;D�Þ is a quasi-regular Dirichlet form.

From (A.0) we easily deduce (14). Hence from

(A.1) we see that ðE�;PÞ and ðE�;P0Þ are closable

on L2ðM; �Þ as well as ðE�;D�1Þ. Let ðE�;P�Þ,
ðE�;P�0 Þ, and ðE�;D�Þ be their closures as before.

The main result of this paper is the following.

Theorem 3.1. Suppose that � satisfies (A.0)
and (A.1). Then ðE�;P�Þ ¼ ðE�;P�0 Þ ¼ ðE�;D�Þ.

In [14,15] the sufficient conditions (A.0) and

(A.1) were given: if � is a ð�;�Þ-quasi-Gibbs

measure, with Borel measurable functions � : S !
R [ f1g and � : S � S ! R [ f1g satisfying

c�1�0ðxÞ � �ðxÞ � c�0ðxÞð16Þ
c�1�0ðx� yÞ � �ðx; yÞ � c�0ðx� yÞð17Þ

for a positive constant c, and some upper semi-

continuous functions �0 and �0 being locally

bounded from below and with compact core

fx : �0ðxÞ ¼ 1g, then (A.0) and (A.1) are satisfied.

We next apply Theorem 3.1 to the stochastic

dynamics arising from the random matrix theory.

Since the processes �sin and �Ai have the strong

Markov property [18], they are associated with the

quasi-regular Dirichlet forms ðEsin;DsinÞ and

ðEAi;DAiÞ, respectively. Thus we have the desired

result as a corollary of Theorem 3.1.

Corollary 3.2. Let ? 2 fsin;Aig. The Di-

richlet forms associated with b�? and �? are both

extensions of the Dirichlet form ðE�? ;P�?Þ. Further-

more, P is a core of the Dirichlet form ðE�? ;D�?Þ,
and

D�? 
 D?:

Proof. It is proved in Proposition 7.2 of [7]

that

E�?ðf; gÞ ¼ E?ðf; gÞ; f; g 2 P:

From this we deduce the first claim. The second is a

direct consequence of Theorem 3.1. �

4. Proof of Theorem 3.1. For simplicity

we only prove the case S ¼ Rd. We set

A ¼ fa ¼ fargr2N : ar 2 N; ar � arþ1; r 2 Ng:

For a ¼ farg 2 A, let

M½a� ¼ f� 2M : �ðSrÞ � ar; for all rg:
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Then M½a� is compact in M endowed with the vague

topology. We introduce a cut off function X of M½a�
as follows

X ½a�ð�Þ ¼ h � dað�Þ;

dað�Þ ¼
X1
r¼1

X
j2Jr;�
ðr� jxjð�ÞjÞ2

8<:
9=;

1=2

:

Here fxjð�Þg is a sequence in S such that � ¼P
�xjð�Þ, jxjð�Þj � jxjþ1ð�Þj for all j, and

Jr;� ¼ fj : j > ar; xjð�Þ 2 Srg:

Furthermore, h : R! ½0; 1� is a function defined by

hðtÞ ¼
1; t 2 ð�1; 0Þ,
1� t; t 2 ½0; 1�,
0; t 2 ð1;1Þ.

8><>:ð18Þ

Note that dað�Þ ¼ 0 and Xað�Þ ¼ 1 if Jr;� ¼ ; for

all r 2 N. The following is proved in [11, Lemma

2.5].

Lemma 4.1. For any f 2 D�1 and " > 0 we

can take a 2 A such that X ½a�f 2 D� and that

kð1� X ½a�Þfk1 < ":

Let  be a smooth function on R with support

in ½�1; 1� such that
R

R  ðxÞdx ¼ 1. Then we put

 NðxÞ ¼ N ðNxÞ. For g 2 C10 ðRLÞ with support in

½�r; r�L we associate the following function

gNðxLÞ ¼
XN
j1¼1

� � �
XN
jL¼1

g
2j1r

N
� r; . . . ;

2jLr

N
� r

� �

�
YL
‘¼1


r;N;j‘ �  Nðx‘Þ

with xL ¼ ðx‘ÞL‘¼1 2 RL and


r;N;jðxÞ ¼ r�N
N

j

� �
ðrþ xÞjðr� xÞN�j;

where f � g stands for the convolution of f and g.

Then by a simple observation we have the follow-

ing.

Lemma 4.2. Let g 2 C10 ðRLÞ with support

in ½�r; r�L. Then

lim
N!1

Z
RL
fjg� gN j2 þDðg� gN; g� gNÞgdxL ¼ 0:

Let L ¼ dk and xL ¼ xdk ¼ ðx1; . . . ; xkÞ, where

xi 2 S. If a function gðx1; . . . ; xkÞ is symmetric in

ðx1; . . . ; xkÞ, then we can and do regard g as a

function defined on the configuration space M

over S with support in f�ðSÞ ¼ kg. If gðx1; . . . ; xkÞ
is symmetric in ðx1; . . . ; xkÞ, where xj 2 S, then so

is gN . Hence, we deduce from Lemma 4.2 the

following.

Lemma 4.3. Let L ¼ dk. Let g 2 C10 ðRLÞ be

symmetric in ðx1; . . . ; xkÞ with support in ½�r; r�L.

Let g and gN be regarded as functions on M with

support in f�ðSÞ ¼ kg as above. Then

lim
N!1

kg� gNk1 ¼ 0:ð19Þ

Proof of Theorem 3.1. We prove only

ðE�;P�Þ ¼ ðE�;D�Þ because the proof of the rest is

similar. Let

Snoff ¼ fðx1; x2; . . . ; xnÞ 2 Sn;xi 6¼ xj for i 6¼ jg:

Let f 2 D1 such that fð�Þ ¼ fð�KÞ with compact

set K ¼ ½�r; r�d. For such an f we introduce

continuous functions bfn, n 2 N0 such that bf0 ¼ �f0

and that, for n 2 N and ðx1; x2; . . . ; xnÞ 2 Snoff ,bfnðx1; x2; . . . ; xnÞ

¼
Xn
k¼0

ð�1Þn�k
X

fi1;...;ikg
f1;2;...;ng

�fkðxi1 ; . . . ; xikÞ:

The values of bfn on fSnoffg
c are defined by continu-

ity. Then bfn is a smooth symmetric function on Sn

vanishing out of K for n 	 1. Note that bfn is the

Möbius transformation of �fk, k ¼ 0; 1; . . . ; n. Then

we easily deduce that, for ðx1; x2; . . . ; xnÞ 2 Snoff ,

�fkðx1; x2; . . . ; xkÞð20Þ

¼
Xk
n¼0

X
fi1;...;ing
f1;2;...;kg

bfnðxi1 ; xi1 ; . . . ; xinÞ:

This implies that �fk � �f0 can be represented by a

linear combination of symmetric smooth functions

vanishing out of Kk.

In (21) and (22) below, ðxi1 ; xi2 ; . . . ; xinÞ and

ðy1; y2; . . . ; ynÞ are taken to be in Snoff . The equalities

can be exteded to fSnoffg
c by continuity of the

functions.

Let k ¼ �KðSÞ and write �K ¼
Pk

i¼1 �xi . Then

from (20) we can rewrite f as

fð�Þ ¼ �fkðx1; x2; . . . ; xkÞð21Þ

¼
X�KðSÞ
n¼0

X
���K

bfnðy1; y2; . . . ; ynÞ:

Here n ¼ �ðSÞ, � ¼
Pn

i¼1 �yi , and � � �K means that

�ðAÞ � �KðAÞ for all A. We note that the right-hand
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side can be regarded as a symmetric function of

ðx1; . . . ; xnÞ by construction. For m 2 N we put

f½m�ð�Þ ¼
Xm
n¼0

X
���K

bfnðy1; y2; . . . ; ynÞ:ð22Þ

Let " > 0 be arbitrary. Then from Lemma 4.1 and

(22) we can take a 2 A and ar � m 2 N such that

kf � f½m�k1 � kð1� X ½a�Þðf � f½m�Þk1 < ":ð23Þ

From Lemma 4.3, we approximate the sym-

metric function bfn in (22) by a polynomial bFn.

Hence, for any " > 0, we can take polynomials Fn
such that

f ½m� �
Xm
n¼0

Fn

�����
�����

1

< ":ð24Þ

Results (23) and (24) complete the proof. �
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