A note on Hayman's problem and the sharing value

By Yuntong Li
Department of Basic Courses, Shaanxi Railway Institute, Weinan 714000, Shaanxi Province, P. R. China

(Communicated by Masaki Kashiwara, M.J.A., Sept. 12, 2014)

Abstract

Let f be a nonconstant meromorphic functions, n, k be two positive integers. Suppose that f^{n} and $\left(f^{n}\right)^{(k)}$ share the value $a(\neq 0, \infty)$ CM. If either (1) $n>k+2$, or (2) $n>k+1$ and $\bar{N}(r, f)=\lambda T(r, f)\left(\lambda \in\left[0, \frac{1}{2}\right)\right)$, then $f^{n}=\left(f^{n}\right)^{(k)}$ and f assumes the form $$
f(\mathrm{z})=\mathrm{ce}^{\frac{\lambda}{n} z}
$$

where c is a nonzero constant and $\lambda^{k}=1$.
Key words: Meromorphic functions; uniqueness theorems; shared value.

1. Introduction and main results. In this paper, a meromorphic function will mean meromorphic in the whole complex plane. We assume that the reader is familiar with the standard notations of the Nevanlinna theory such as $T(r, f), N(r, f), m(r, f)([1,2])$.

For any nonconstant meromorphic function f, we denote by $S(r, f)$ any quantity satisfying

$$
S(r, f)=\circ\{T(r, f)\}, r \rightarrow \infty
$$

possibly outside of a set of finite linear measure. Let $f(z)$ and $g(z)$ be two meromorphic functions, and let a be a finite complex number. If $f(z)-a$ and $g(z)-a$ assume the same zeros with the same multiplicities, then we say that f and g share the value $a \mathrm{CM}$ (counting multiplicities) (see [2] pp. 115-116).

In 1959, W. K. Hayman [3] proposed the following conjecture and until 1995 it was proved by W. Bergweiler and A. Eremenko [4], H. H. Chen and M. L. Fang [5] separately.

Theorem A. If f is a transcendental meromorphic function, then $f^{n} f^{\prime}$ assumes every finite non-zero complex value infinitely often for any positive integer n.

In 1998, Y. F. Wang and M. L. Fang [6] proved the following result.

Theorem B. If f is a transcendental meromorphic function, n, k be two positive integers and $n \geq k+1$, then $\left(f^{n}\right)^{(k)}$ assumes every finite non-zero complex value infinitely often.

The uniqueness theory of entire and meromor-

[^0]phic functions has grown up to an extensive subfield of the value distribution theory. In particular, the subtopic that a meromorphic function f and its derivative $f^{(k)}$ share one finite non-zero value $a \mathrm{CM}$ is well investigated (see [7-12]).

Theorem C ([7]). Let f be a nonconstant entire function and $k, n(\geq k+1)$ be two positive integers. If f^{n} and $\left(f^{n}\right)^{(k)}$ share $1 C M$, then $f^{n}=$ $\left(f^{n}\right)^{(k)}$ and f assumes the form

$$
f(\mathrm{z})=\mathrm{ce}^{\frac{\lambda}{n} z}
$$

where c is a nonzero constant and $\lambda^{k}=1$.
Theorem D ([8, Theorem 1]). Let f be a nonconstant meromorphic function and $n \geq 4$ be a positive integer. If f^{n} and $\left(f^{n}\right)^{\prime}$ share $1 C M$, then $f^{n}=\left(f^{n}\right)^{\prime}$ and f assumes the form

$$
f(\mathrm{z})=\mathrm{ce}^{\frac{1}{n} z}
$$

where c is a nonzero constant.
Theorem E ([8, Theorem 2]). Let f be a nonconstant meromorphic function and $n(\geq k+5), k$ be two positive integers. If f^{n} and $\left(f^{n}\right)^{(k)}$ share $1 C M$, then $f^{n}=\left(f^{n}\right)^{(k)}$ and f assumes the form

$$
f(\mathrm{z})=\mathrm{ce}^{\frac{\lambda}{n} z}
$$

where c is a nonzero constant and $\lambda^{k}=1$.
Theorem F ([11, Theorem 1.2]). Let f be a nonconstant meromorphic function and $n(>k+1+$ $\sqrt{k+1}), k$ be two positive integers. If f^{n} and $\left(f^{n}\right)^{(k)}$ share $1 C M$, then $f^{n}=\left(f^{n}\right)^{(k)}$ and f assumes the form

$$
f(\mathrm{z})=\mathrm{ce}^{\frac{\lambda}{n} z}
$$

where c is a nonzero constant and $\lambda^{k}=1$.
J. Zhang and L. Yang [11] asked a question: Can n in Theorem E be reduced? Recently, S. Li and Z. Gao [12, Theorem 1.1] answered this question in the case of $\bar{N}(r, f)=S(r, f)$, they proved the following theorem.

Theorem G. Let f be a nonconstant meromorphic function, such that $\bar{N}(r, f)=S(r, f)$. Suppose that f^{n} and $\left(f^{n}\right)^{\prime}$ share 1 CM. If either (1) $n \geq 3$, or (2) $n=2$ and $\bar{N}\left(r, \frac{1}{f}\right)=O\left(N_{(3}\left(r, \frac{1}{f}\right)\right)$, then $f^{n}=\left(f^{n}\right)^{\prime}$ and f assumes the form

$$
f(\mathrm{z})=\mathrm{ce}^{\frac{1}{n} z}
$$

where c is a nonzero constant.
It is thus natural to ask whether the conditions in Theorem D and Theorem G holds for the $k_{t h}$ derivative, namely, $\operatorname{Can} n$ in Theorem E and Theorem F be reduced? In this paper we investigate this problem and prove the following result.

Theorem 1. Let f be a nonconstant meromorphic functions, n, k be two positive integers. Suppose that f^{n} and $\left(f^{n}\right)^{(k)}$ share the value $a(\neq 0, \infty) \quad C M$. If either (1) $n \geq k+2$, or (2) $n \geq k+1$ and $\bar{N}(r, f)=\lambda T(r, f)\left(\lambda \in\left[0, \frac{1}{2}\right)\right)$, then $f^{n}=\left(f^{n}\right)^{(k)}$ and f assumes the form

$$
f(\mathrm{z})=\mathrm{ce}^{\frac{\lambda}{n} z}
$$

where c is a nonzero constant and $\lambda^{k}=1$.
2. Some lemmas. To prove our results, we need some preliminary results.

Lemma 1 ([7, Lemma 3]). Let f be a nonconstant meromorphic function and $n(\geq k+2), k$ be two positive integers. If f^{n} and $\left(f^{n}\right)^{(k)}$ share the value $a(\neq 0, \infty) C M$, then one of the following two cases must occur:
(1) $f^{n}=\left(f^{n}\right)^{(k)}$;
(2) $N\left(r, \frac{1}{f}\right) \leq \frac{1}{n-k-1} \bar{N}(r, f)+S(r, f)$.

Lemma 2 ([10, Lemma 2.10]). Let f be a nonconstant meromorphic function and $n(\geq k+2), \quad k \quad$ be two positive integers. If $f^{n}=\left(f^{n}\right)^{(k)}$, then f assumes the form

$$
f(\mathrm{z})=\mathrm{ce}^{\frac{\lambda}{n} z}
$$

where c is a nonzero constant and $\lambda^{k}=1$.
Lemma 3 ([1, Theorem 3.1]). Let f be a nonconstant meromorphic function in the complex plane and k be a positive integer. If $f^{n}=\left(f^{n}\right)^{(k)}$, Then

$$
m\left(r, \frac{f^{(k)}}{f}\right)=S(r, f)
$$

3. Proof of Theorem.

3.1. Proof of Theorem 1. Suppose $a=1$ (the general case following by considering $\frac{f^{n}}{a}$ instead of f^{n}) and $f^{n} \not \equiv\left(f^{n}\right)^{(k)}$. We set

$$
\begin{equation*}
F=\frac{1}{f^{n}}\left(\frac{\left(f^{n}\right)^{(k+1)}}{\left(f^{n}\right)^{(k)}-1}-\frac{\left(f^{n}\right)^{\prime}}{f^{n}-1}\right) \tag{3.1}
\end{equation*}
$$

From the fundamental estimate of logarithmic derivative it follows that

$$
\begin{align*}
& m(r, F) \leq m\left(r, \frac{\left(f^{n}\right)^{(k+1)}}{f^{n}\left(\left(f^{n}\right)^{(k)}-1\right)}\right) \tag{3.2}\\
&+ m\left(r, \frac{\left(f^{n}\right)^{\prime}}{f^{n}\left(f^{n}-1\right)}\right) \\
&= m\left(r, \frac{\left(f^{n}\right)^{(k+1)}}{\left(f^{n}\right)^{(k)}\left(\left(f^{n}\right)^{(k)}-1\right)} \frac{\left(f^{n}\right)^{(k)}}{f^{n}}\right) \\
&+m\left(r, \frac{\left(f^{n}\right)^{\prime}}{f^{n}\left(f^{n}-1\right)}\right) \\
& \leq m\left(r,\left(\frac{\left(f^{n}\right)^{(k+1)}}{\left(f^{n}\right)^{(k)}-1}-\frac{\left(f^{n}\right)^{(k+1)}}{\left(f^{n}\right)^{(k)}}\right) \frac{\left(f^{n}\right)^{(k)}}{f^{n}}\right) \\
& \leq m\left(r, \frac{\left(f^{n}\right)^{\prime}}{\left(f^{n}\right)-1}-\frac{\left(f^{n}\right)^{\prime}}{f^{n}}\right) \\
& m\left(r, \frac{\left(f^{n}\right)^{(k+1)}}{\left(f^{n}\right)^{(k)}-1}\right)+m\left(r, \frac{\left(f^{n}\right)^{(k+1)}}{\left(f^{n}\right)^{(k)}}\right) \\
&+m\left(r, \frac{\left(f^{n}\right)^{(k)}}{f^{n}}\right)+m\left(r, \frac{\left(f^{n}\right)^{\prime}}{\left(f^{n}\right)-1}\right) \\
&+m\left(r, \frac{\left(f^{n}\right)^{\prime}}{f^{n}}\right) \\
& \leq S(r, f)
\end{align*}
$$

From (3.1), if z_{0} is a pole of f with multiplicity $\geq m$, then z_{0} is a zero of F with multiplicity at least $n m-1$, i.e.,

$$
\begin{equation*}
F(z)=\mathrm{O}\left(\left(z-z_{0}\right)^{n m-1}\right) \tag{3.3}
\end{equation*}
$$

We consider the following two cases:
Case 1. $F^{2}-F^{\prime} \equiv 0$. Solving this equation, we have

$$
\begin{equation*}
F(z)=\frac{1}{c-z} \tag{3.4}
\end{equation*}
$$

where c is a constant. Substituting (3.4) into (3.1) gives

$$
\begin{equation*}
\frac{1}{c-z}=\frac{1}{f^{n}}\left(\frac{\left(f^{n}\right)^{(k+1)}}{\left(f^{n}\right)^{(k)}-1}-\frac{\left(f^{n}\right)^{\prime}}{f^{n}-1}\right) \tag{3.5}
\end{equation*}
$$

From (3.5), it is easy to deduce that $f(z)$ is a entire function.

From Theorem C, we get that

$$
f^{n} \equiv\left(f^{n}\right)^{(k)}
$$

This is a contradiction.
Case 2. $F^{2}-F^{\prime} \not \equiv 0$. Since $m(r, F)=S(r, f)$, so $m\left(r, F^{\prime}\right) \leq m(r, F)+m\left(r, \frac{F^{\prime}}{F}\right)=S(r, f)$.

From (3.3), we deduce that
(3.6) $N\left(r, f^{n}\right)-2 \bar{N}(r, f) \leq N\left(r, \frac{1}{F^{2}-F^{\prime}}\right)$

$$
\begin{aligned}
& \leq T\left(r, F^{2}-F^{\prime}\right)-m\left(r, \frac{1}{F^{2}-F^{\prime}}\right)+O(1) \\
& \leq N\left(r, F^{2}-F^{\prime}\right)-m\left(r, \frac{1}{F^{2}-F^{\prime}}\right)+S(r, f)
\end{aligned}
$$

Since f^{n} and $\left(f^{n}\right)^{(k)}$ share 1 CM, so

$$
\begin{equation*}
\frac{\left(f^{n}\right)^{(k)}-1}{f^{n}-1}=\frac{1}{g^{k}} \tag{3.7}
\end{equation*}
$$

where $g(z)(\not \equiv 0)$ is a entire function. It is easy to see that all of zeros of $g(z)$ are poles of $f(z)$ and are simple. Substituting this into (3.1), we get

$$
\begin{equation*}
F=\frac{1}{f^{n}} \frac{-k g^{\prime}}{g} \tag{3.8}
\end{equation*}
$$

From (3.8), we can get that the poles of $F^{2}-F^{\prime}$ can only occur at the zeros of f. However, from (3.1), we can deduce that the zeros of f with multiplicity m are all poles of $F^{2}-F^{\prime}$ with multiplicity $2(k+1)$, at most, thus

$$
\begin{align*}
& N\left(r, F^{2}-F^{\prime}\right) \leq 2(k+1) \bar{N}\left(r, \frac{1}{f}\right) \tag{3.9}\\
& \quad \leq \frac{2(k+1)}{n} N\left(r, \frac{1}{f^{n}}\right) .
\end{align*}
$$

From (3.8), we get $F^{\prime}=\frac{n f^{\prime}}{f^{n+1}} \frac{k g^{\prime}}{g}+\frac{1}{f^{n}}\left(\frac{-k g^{\prime}}{g}\right)^{\prime}$. It follows that
$F^{2}-F^{\prime}=\frac{1}{f^{2 n}}\left\{k^{2}\left(\frac{g^{\prime}}{g}\right)^{2}-k f^{n}\left[n \frac{f^{\prime}}{f} \frac{g^{\prime}}{g}-\left(\frac{g^{\prime}}{g}\right)^{\prime}\right]\right\}$
$F^{2}-F^{\prime}=\frac{1}{f^{2 n}}\left\{k^{2}\left(\frac{g^{\prime}}{g}\right)^{2}-k f^{n}\left[n \frac{f^{\prime}}{f} \frac{g^{\prime}}{g}-\frac{\left(\frac{g^{\prime}}{g}\right)^{\prime}}{\frac{g^{\prime}}{g}} \frac{g^{\prime}}{g}\right]\right\}$,
i.e.,
$f^{2 n}=\frac{1}{F^{2}-F^{\prime}}\left\{k^{2}\left(\frac{g^{\prime}}{g}\right)^{2}-k f^{n}\left[n \frac{f^{\prime}}{f} \frac{g^{\prime}}{g}-\frac{\left(\frac{g^{\prime}}{g}\right)^{\prime}}{\frac{g^{\prime}}{g}} \frac{g^{\prime}}{g}\right]\right\}$.
It follows that

$$
\begin{align*}
2 m\left(r, f^{n}\right) \leq & m\left(r, \frac{1}{F^{2}-F^{\prime}}\right) \tag{3.10}\\
& +m\left(r, f^{n}\right)+S(r, f)
\end{align*}
$$

From (3.6), (3.9), (3.10) and Lemma 1, we get
(3.11) $T\left(r, f^{n}\right)=m\left(r, f^{n}\right)+N\left(r, f^{n}\right)$

$$
\begin{aligned}
\leq & m\left(r, \frac{1}{F^{2}-F^{\prime}}\right)+2 \bar{N}(r, f) \\
& +N\left(r, F^{2}-F^{\prime}\right) \\
& -m\left(r, \frac{1}{F^{2}-F^{\prime}}\right)+S(r, f) \\
= & 2 \bar{N}(r, f)+N\left(r, F^{2}-F^{\prime}\right)+S(r, f) \\
\leq & 2 \bar{N}(r, f)+\frac{2(k+1)}{n} N\left(r, \frac{1}{f^{n}}\right)+S(r, f) \\
\leq & 2 \bar{N}(r, f)+\frac{2(k+1)}{n-k-1} \bar{N}(r, f)+S(r, f) \\
\leq & \frac{2 n}{n-k-1} \bar{N}(r, f)+S(r, f)
\end{aligned}
$$

$$
\begin{align*}
& T(r, f) \leq \frac{2}{n-k-1} \bar{N}(r, f)+S(r, f) \tag{3.12}\\
& \quad \leq 2 \bar{N}(r, f)+S(r, f)
\end{align*}
$$

Case 2.1. $n>k+1$ and $\bar{N}(r, f)=\lambda T(r, f)(\lambda \in$ $\left.\left[0, \frac{1}{2}\right)\right)$. By (3.12), we get

$$
(1-2 \lambda) T(r, f) \leq S(r, f)
$$

which contradicts the fact that f is nonconstant function.

Case 2.2. $n>k+2$.
It follows from (3.1) and (3.8) that the poles of F can only occur at the zeros of f. If z_{0} is a zero of f with multiplicity l, then z_{0} is a pole of F with multiplicity at most $k+1$, so

$$
\begin{align*}
N(r, F) & \leq(k+1) \bar{N}\left(r, \frac{1}{f}\right) \tag{3.13}\\
& \leq n N\left(r, \frac{1}{f}\right)=N\left(r, \frac{1}{f^{n}}\right) .
\end{align*}
$$

Suppose that z_{0} is a poles of f with multiplicity m. By (3.1), we deduce that z_{0} is a zero of F with multiplicity at least $n m-1$. From Lemma 1 and (3.2), we get

$$
\begin{aligned}
\bar{N}(r, f) & \leq \frac{1}{n-1} N\left(r, \frac{1}{F}\right) \leq \frac{1}{n-1} T(r, F)+O(1) \\
& \leq \frac{1}{n-1} N(r, F)+S(r, f)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{1}{n-1} N\left(r, \frac{1}{f^{n}}\right)+S(r, f) \\
& \leq \frac{n}{n-1} \frac{1}{n-k-1} \bar{N}(r, f)+S(r, f) \\
& \leq \frac{n}{2(n-1)} \bar{N}(r, f)+S(r, f) \\
& =\left(\frac{1}{2}+\frac{1}{2(n-1)}\right) \bar{N}(r, f)+S(r, f) \\
& \leq\left(\frac{1}{2}+\frac{1}{2(k+2)}\right) \bar{N}(r, f)+S(r, f) \\
& \leq \frac{2}{3} \bar{N}(r, f)+S(r, f)
\end{aligned}
$$

which implies that $\bar{N}(r, f)=S(r, f)$.
By (3.12), we get

$$
T(r, f) \leq S(r, f)
$$

which contradicts the fact that f is nonconstant function.

Thus $f^{n} \equiv\left(f^{n}\right)^{(k)}$, from Lemma 2, we can get Theorem 1.

Acknowledgments. This work was supported by Foundation of Shaanxi Railway Institute (Grant No. 2013-12). The authors thank the reviewer(s) for reading the manuscript very carefully and making a number of valuable and kind comments which improved the presentation.

References

[1] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
[2] C. C. Yang and H. X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557, Kluwer Acad. Publ., Dordrecht, 2003.
[3] W. K. Hayman, Research problems in function theory, The Athlone Press University of London, London, 1967.
[4] W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), no. 2, 355-373.
[5] H. H. Chen and M. L. Fang, The value distribution of $f^{n} f^{\prime}$, Sci. China Ser. A 38 (1995), no. 7, 789-798.
[6] Y. F. Wang and M. L. Fang, The value distributions of meromorphic functions with multiple zeros, Acta Math. Sinica (Chin. Ser.) 41 (1998), no. 4, 743-748.
[7] W. C. Lin and B. Huang, A note on Hayman's problem and the sharing value, Acta Math. Sci. Ser. A Chin. Ed. 24 (2004), no. 4, 449-453.
[8] C. L. Lei, M. L. Fang, D. G. Yang and X. Q. Wang, A note on unicity of meromorphic functions, Acta Math. Sci. Ser. A Chin. Ed. 28 (2008), no. 5, 802-807.
[9] J. Zhang, Meromorphic functions sharing a small function with their derivatives, Kyungpook Math. J. 49 (2009), no. 1, 143-154.
[10] L. Z. Yang and J. L. Zhang, Non-existence of meromorphic solutions of a Fermat type functional equation, Aequationes Math. 76 (2008), no. 1-2, 140-150.
[11] J. Zhang and L. Yang, A power of a meromorphic function sharing a small function with its derivative, Ann. Acad. Sci. Fenn. Math. 34 (2009), no. 1, 249-260.
[12] S. Li and Z. Gao, Results on a question of Zhang and Yang, Acta Math. Sci. Ser. B Engl. Ed. 32 (2012), no. 2, 717-723.

[^0]: 2000 Mathematics Subject Classification. Primary 30D35.

