Numerical Godeaux surfaces with an involution in positive characteristic

By Soonyoung KIM
Department of Mathematics, Sogang University, Sinsu-dong, Mapo-gu, Seoul 121-742, Republic of Korea

(Communicated by Shigefumi Mori, M.J.A., Sept. 12, 2014)

Abstract

A numerical Godeaux surface X is a minimal surface of general type with $\chi\left(\mathcal{O}_{X}\right)=K_{X}^{2}=1$. Over \mathbf{C} such surfaces have $p_{g}(X)=h^{1}\left(\mathcal{O}_{X}\right)=0$, but $p_{g}=h^{1}\left(\mathcal{O}_{X}\right)=1$ also occurs in characteristic $p>0$. Keum and Lee [9] studied Godeaux surfaces over \mathbf{C} with an involution, and these were classified by Calabri, Ciliberto, and Mendes Lopes [4]. In characteristic $p \geq 5$, we obtain the same bound \mid Tors $X \mid \leq 5$ as in characteristic 0 , and we show that the quotient X / σ of X by its involution is rational, or is birational to an Enriques surface. Moreover, we give explicit examples in characteristic 5 of quintic hypersurfaces Y with an action of each of the group schemes G of order 5 , and having extra symmetry by Aut $G \cong \mathbf{Z} / 4 \mathbf{Z}$, hence by the holomorph $H_{20}=\operatorname{Hol} G=G \rtimes \mathbf{Z} / 4 \mathbf{Z}$ of G.

Key words: Godeaux surface; involution; positive characteristic; action of group scheme.

1. Introduction. Godeaux surfaces are surfaces over \mathbf{C} of general type with the smallest invariants $p_{g}=q=0$ and $K_{X}^{2}=1$. Information on the torsion groups of numerical Godeaux surfaces was obtained by Bombieri, Miyaoka, and Reid. It is known that Tors X has order at most 5 and $\mathbf{Z} / 2 \mathbf{Z} \oplus$ $\mathbf{Z} / 2 \mathbf{Z}$ is impossible $[1,17,19]$. Simply connected examples were first constructed by Barlow in 1982, and Lee and Park [13] gave a more recent construction. Godeaux surfaces with an involution over C were studied by Keum and Lee [9], and subsequently Calabri, Ciliberto, and Mendes Lopes [4] classified the possibilities for the quotient space of a Godeaux surface by its involution, proving that it is either rational or birational to an Enriques surface.

Lang [11] showed Godeaux surfaces exist in every characteristic. In his treatment $\operatorname{Pic} X$ is reduced, $\operatorname{Pic}^{\tau} X=\mathbf{Z} / 5 \mathbf{Z}$, and X is a quotient of a quintic hypersurface Y in \mathbf{P}^{3} by an action of the multiplicative group scheme $\boldsymbol{\mu}_{5}$. A minimal surface X of general type over \mathbf{C} with $K_{X}^{2}=1$ and $\chi\left(\mathcal{O}_{X}\right)=$ 1 has $p_{g}(X)=h^{1}\left(\mathcal{O}_{X}\right)=0$, but $p_{g}(X)=h^{1}\left(\mathcal{O}_{X}\right)=1$ can also happen in characteristic $p=2,3$ and 5 [15]. These Godeaux surfaces are called nonclassical, and have nonreduced $\operatorname{Pic} X$.

Miranda [16] constructed a Godeaux surface with nonreduced Picard scheme in characteristic 5 via a Godeaux-like construction. In a similar way,

[^0]Liedtke constructed an action of the additive group scheme $\boldsymbol{\alpha}_{5}$ on a quintic in characteristic 5 [15] by a nowhere zero additive vector field.

In these three cases, $\mathrm{Pic}^{\tau} X$ is isomorphic to $\mathbf{Z} / 5 \mathbf{Z}, \boldsymbol{\mu}_{5}$ and $\boldsymbol{\alpha}_{5}$ respectively, and Pic^{τ} determines a finite flat morphism $\varphi: Y \rightarrow X$ which is a torsor over X under the group scheme $\left(\operatorname{Pic}^{\tau} X\right)^{\vee}$, where G^{\vee} denotes the Cartier dual group scheme of G. We obtain the same bound \mid Tors $X \mid \leq 5$ as in characteristic 0 , and we show that the quotient X / σ of X by its involution is rational, or is birational to an Enriques surface. We study the three families in characteristic 5 due to Lang [11], Miranda [16], and Liedtke [15] with $\mathrm{Pic}^{\tau} X$.

We show explicit examples of quintic hypersurface Y having symmetry by Aut $G \cong \mathbf{Z} / 4 \mathbf{Z}$ which is the holomorph $H_{20}=\operatorname{Hol} G=G \rtimes \mathbf{Z} / 4 \mathbf{Z}$ of G to give an involution on examples in each family in characteristic 5 .
2. Godeaux surfaces in positive characteristic.
2.1. Notation and basic results. We work over an algebraically closed field k of characteristic $p \neq 2$. Recall the following definitions.
$\chi\left(\mathcal{O}_{X}\right):=\sum_{i=0}^{n}(-1)^{i} h^{i}\left(\mathcal{O}_{X}\right)$
$b_{i}^{\text {et }}:=\operatorname{dim} H_{\mathrm{et}}^{i}\left(X, \mathbf{Q}_{l}\right)$
$e(X):=\chi_{\text {top }}(X):=\sum_{i=0}^{n}(-1)^{i} b_{i}^{\text {et }}(X)$
$\omega_{X}:=$ dualizing sheaf of X
$p_{g}:=h^{2}\left(X, \mathcal{O}_{X}\right)=\operatorname{dim} H^{0}\left(X, \omega_{X}\right)$
$q:=\operatorname{dim} \operatorname{Alb} X$
$T_{X}:=\mathcal{H o m}_{\mathcal{O}_{X}}\left(\Omega_{X}^{1}, \mathcal{O}_{X}\right)$
$\operatorname{Pic}^{\tau} X:=$ subscheme of $\operatorname{Pic} X$ of numerically trivial Cartier divisors
$W_{2}(k):=$ ring of second Witt vectors of k.
Proposition 2.1 (Proposition 1, [15]). Let X be a minimal surface of general type with $K_{X}^{2}=1$. Then the following equalities and inequalities hold:

$$
\begin{aligned}
& 1 \leq \chi\left(\mathcal{O}_{X}\right) \leq 3, \quad p_{g}(X) \leq 2, \quad h^{1}\left(\mathcal{O}_{X}\right) \leq 1 \\
& b_{1}(X)=0, \quad\left|\pi_{1}^{\mathrm{et}}(X)\right| \leq 6
\end{aligned}
$$

In particular, if $h^{1}\left(\mathcal{O}_{X}\right) \neq 0$, then X has nonreduced Picard scheme, which can happen only in positive characteristic.

Definition 2.2. A numerical Godeaux surface is a minimal surface X of general type over an algebraically closed field with $K_{X}^{2}=1$ and $\chi\left(\mathcal{O}_{X}\right)=1$. In this paper we abbreviate numerical Godeaux surface to Godeaux surface.

Theorem 2.3 (Corollary 1, [15]). Nonclassical Godeaux surfaces can exist only in characteristic $2 \leq p \leq 5$.
2.2. Tors \boldsymbol{X}. Let G be a subgroup scheme of order n in $\operatorname{Pic}^{\tau} X$. Then there is a finite morphism $\varphi: Y \rightarrow X$ that is a nontrivial G^{\vee}-torsor. If the cover is purely inseparable, Y may be singular, but is still an irreducible Gorenstein surface [6]. If $\varphi: Y \rightarrow X$ is a $\boldsymbol{\mu}_{p}$-torsor then

$$
\varphi_{*} \mathcal{O}_{Y}=\bigoplus_{0 \leq i \leq p-1} L_{i}
$$

where $L_{0}=\mathcal{O}_{X}, L_{1} \in \operatorname{Pic} X$ is a line bundle with $L_{1}^{\otimes p} \cong \mathcal{O}_{X}$, and $L_{i} \cong L_{1}^{\otimes i}$.

If $\varphi: Y \rightarrow X$ is a $\boldsymbol{\alpha}_{p}$-torsor then $\varphi_{*} \mathcal{O}_{Y}$ is a successive extension of sheaves isomorphic to \mathcal{O}_{X} [6, Proposition I.1.7]. And the equalities

$$
\begin{equation*}
\chi\left(\mathcal{O}_{Y}\right)=p \chi\left(\mathcal{O}_{X}\right) \quad \text { and } \quad K_{Y}^{2}=p K_{X}^{2} \tag{2.1}
\end{equation*}
$$

hold as for a finite degree n Galois étale cover [15].
Proposition 2.4. Let X be a minimal surface of general type over an algebraically closed field k. Suppose characteristic $p \geq 5$. If $K_{X}^{2}=1$ and $\chi\left(\mathcal{O}_{X}\right)=1$, then $\left|\operatorname{Pic}^{\tau} X\right| \leq 5$.

Proof. The proof is similar to Reid [18]. Let $\varphi: Y \rightarrow X$ be the G^{\vee}-torsor associated to $G=\operatorname{Pic}^{\tau} X$ of order n. Since char $k \neq 2,3$, the Noether inequality $K^{2} \geq 2 p_{g}-4$ and (2.1) imply $\left|\operatorname{Pic}^{\tau} X\right| \leq 6$.

Suppose $\left|\operatorname{Pic}^{\tau} X\right|=6$. There is 6 -to- 1 étale cover $\varphi: Y \rightarrow X$ with $p_{g}(Y)=5, K_{Y}^{2}=6$. Then Y is a Horikawa surface with $h^{1}\left(\mathcal{O}_{Y}\right)=0$. The canonical map is a double cover $\varphi_{K_{Y}}: Y \rightarrow Z$ and restricts to a g_{6}^{3} on a general $C \in\left|K_{Y}\right|$. The classical Clifford theorem on an irreducible Gorenstein curve says
that C is hyperelliptic [5]. The canonical image Z is an irreducible surface of degree 3 spanning \mathbf{P}^{4} [6, Proposition 0.1.2 (iii)], [14, Theorem 2.3], and Z is either \mathbf{F}_{1} embedded in \mathbf{P}^{4} as the cubic scroll or the cone over a rational normal curve of degree 3 in \mathbf{P}^{4} [14, Theorem 3.3]. In either case, the Horikawa double cover induces a biregular involution, and the composite $p \circ \varphi:=f$ (where p is the projection $p: F \rightarrow \mathbf{P}^{1}$) is a canonically defined pencil of curves $f: Y \rightarrow \mathbf{P}^{1}$ with fibers of genus 2. The Horikawa double cover induces a biregular involution since we work in characteristic $\neq 2$, and the surface Y has a canonically defined pencil of curves of genus 2 . This contradicts the free action of $\mathbf{Z} / 3 \mathbf{Z}$.

Remark 2.5. Proposition 2.4 implies that if $\mathrm{Pic}^{\tau} X$ contains a nontrivial subgroup scheme of odd order, then $\operatorname{Pic}^{\tau} X$ has no 2 -torsion.
3. Numerical Godeaux surfaces with an involution in odd characteristic. Let X be a smooth Godeaux surface in positive characteristic $p \neq 2$ with an involution σ. The quotient double cover $\pi: X \rightarrow T:=X / \sigma$ fits in the diagram

Given an involution σ on X, its fixed locus is the union of a smooth curve R and n isolated fixed points p_{1}, \ldots, p_{n}. The singularities of T are canonical and the adjunction formula gives $K_{X} \equiv$ $\pi^{*} K_{T}+R$. In diagram (3.1), let ε be the blowup of X at n isolated fixed points in X of the action of σ. The quotient map π induces a double cover $\widetilde{\pi}$, where η is the minimal resolution of the n ordinary double points of T. We set $E_{i}:=\varepsilon^{*}\left(p_{i}\right), R_{0}:=\varepsilon^{*}(R)$ on V and $C_{i}:=\widetilde{\pi}\left(E_{i}\right), B_{0}:=\widetilde{\pi}\left(R_{0}\right)$ on the smooth surface W. The C_{i} are n disjoint - 2 -curves.

The map $\widetilde{\pi}$ is a finite flat double cover with branch locus $\widetilde{B}:=B_{0}+\sum_{i=1}^{n} C_{i}$. Thus there exists a line bundle L on W for which $2 L \equiv \widetilde{B}$ and $\widetilde{\pi}_{*} \mathcal{O}_{V}=\mathcal{O}_{W} \oplus L^{-1}$. Later in Lemma 3.6, we assume in addition that K_{X} is ample, so that H_{m} has no -2-curves other than the four C_{i}.

Proposition 3.1. Let X be a minimal surface of general type in odd characteristic with an involution σ. Then:
(i) $2 K_{W}+B_{0}$ is nef and big;
(ii) $\left(2 K_{W}+B_{0}\right)^{2}=2 K_{X}^{2}$;
(iii) $K_{W}\left(K_{W}+L\right) \leq 0$;
(iv) The Kodaira dimension $\kappa(W) \leq 0$.

Proof. (i) and (ii) follow from $\widetilde{\pi}^{*}\left(2 K_{W}+B_{0}\right)=$ $\varepsilon^{*}\left(2 K_{X}\right)$. Part (iii) is clear by formula (ii). For (iv), since the Kodaira dimension κ is a birational invariant, consider $\varphi: D \subset W \rightarrow D^{\prime} \subset W_{\min }:=W^{\prime}$, where $D \in\left|2 K_{W}+B_{0}\right|$ and $D^{\prime}=\varphi_{*} D$. Suppose by contradiction that $\kappa(W) \geq 1$. Then $D K_{W} \leq 0$, which implies $D^{\prime} K_{W^{\prime}} \leq 0$. For $m \gg 0$ we have $D^{\prime} m K_{W^{\prime}}=D^{\prime}(M+F)$, where M is the moving part and F the fixed part. Then $D^{\prime} K_{W^{\prime}}>0$, which contradicts $D^{\prime} K_{W^{\prime}} \leq 0$. Hence $\kappa(W) \leq 0$.
3.1. Vanishing theorem for $2 K_{W}+\boldsymbol{L}$. The Kodaira vanishing theorem and its extension due to Kawamata and Viehweg may fail in positive characteristic [7]. However, under additional assumptions, notably lifting to $W_{2}(k)$, the Kawamata-Viehweg vanishing theorem does hold.

Assumption 3.2. We fix the notation used in Theorem 3.3. X denotes a d-dimensional projective smooth variety over a perfect field k. Let $E=$ $\sum_{j=1}^{m} E_{j}$ be a reduced simple normal crossing divisor on X. Assume that $E \subset X$ has a lifting $\widetilde{E}=$ $\sum_{j=1}^{m} \widetilde{E}_{j} \subset \widetilde{X}$ to $W_{2}(k)$.

Theorem 3.3 (Corollary 3.8, [8]). Let X be projective over a Noetherian affine scheme and let D be an ample \mathbf{Q}-divisor on X such that $\operatorname{Supp}(D-[D]) \subseteq \operatorname{Supp}(E)$. Assume that $E \subset X$ admits a lifting $\widetilde{E} \subset \widetilde{X}$ to $W_{2}(k)$. Then, if $i+j>d=$ $\operatorname{dim} X$ and if $p>d$, we have

$$
\begin{equation*}
H^{i}\left(X, \Omega_{X}^{j}(\log E)(-E-[-D])\right)=0 \tag{3.2}
\end{equation*}
$$

Proposition 3.4 ([12]). Let X be an algebraic surface with isolated normal singularities, $\pi: V \rightarrow X$ its minimal resolution, and E the reduced exceptional divisor. If X has a cyclic quotient singularity of type $\frac{1}{n}(1, n-1)$, we assume that n is coprime to p. Then we have equality $\pi_{*} T_{V}(-\log E)=\pi_{*} T_{V}=T_{X}$.

We keep the notation of diagram (3.1), $C:=$ $\sum_{i=1}^{n} C_{i}$ and $H_{m}:=K_{W}+L-\left(\frac{1}{2}+\frac{1}{m}\right) C$.

Lemma 3.5. H_{m} is an ample \mathbf{Q}-divisor for $m \gg 0$.

Proof. Let $N:=K_{W}+L-\frac{1}{2} \sum_{i=1}^{n} C_{i}, \quad$ then $N=\frac{1}{2}\left(2 K_{W}+B_{0}\right)$ in (3.1). $\widetilde{\pi}^{*} N=\frac{1}{2} \varepsilon^{*}\left(2 K_{X}\right)$ is a nef and big divisor on V. For $s \gg 0$ the linear system $|s N|$ is basepoint free and the associated morphism is birational, and contracts exactly C_{i}. Hence $N=\eta^{*} A$ for some ample \mathbf{Q}-divisor A, and then $L+\nu\left(\varepsilon^{*} K_{X}\right)=L+\nu\left(\widetilde{\pi}^{*} N\right)$ is ample for $\nu \gg 0$ by [10, Proposition 1.45]. Therefore H_{m} is ample for $m \gg 0$.

Consider the following sequence:

$$
\begin{equation*}
0 \rightarrow T_{W}(-\log C) \rightarrow T_{W} \rightarrow \bigoplus N_{C_{i} \mid W} \rightarrow 0 \tag{3.3}
\end{equation*}
$$

Lemma 3.6. (W, C) lifts over $W_{2}(k)$.
Proof. (3.3) gives the long exact sequence:

$$
\begin{aligned}
\cdots & \rightarrow H^{1}\left(T_{W}\right) \rightarrow H^{1}\left(\bigoplus N_{C_{i} \mid W}\right) \\
& \rightarrow H^{2}\left(T_{W}(-\log C)\right) \rightarrow H^{2}\left(T_{W}\right) \rightarrow 0 .
\end{aligned}
$$

By results of Lee and Nakayama in [12], and by Section 1 of Burns and Wahl [3], the morphism $H^{1}\left(T_{W}\right) \rightarrow \bigoplus H^{1}\left(N_{C_{i} \mid W}\right)$ is surjective. If W is rational or an Enriques surface, then $H^{2}\left(T_{W}\right)=0$ holds in any characteristic except possibly 2 . Hence $H^{2}\left(T_{W}(-\log C)\right)=0$ by the above exact sequence, so that (W, C) lifts to $W_{2}(k)$ by [20, Lemma 4.1].

Lemma 3.7. Let W, L be as above. Then $H^{i}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)=0$ for $i>0$.

Proof. By Lemma 3.5, H_{m} is ample for $m \gg 0$. Now (W, C) lifts over $W_{2}(k)$ by Lemma 3.6. Applied to Theorem 3.3, this gives the vanishing

$$
H^{i}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)=0 \quad \text { for } i>0
$$

By Riemann-Roch on surfaces, and $\widetilde{\pi}_{*} \mathcal{O}_{V}=$ $\mathcal{O}_{W} \oplus L^{-1}$, we get $\chi\left(\mathcal{O}_{V}\right)=2 \chi\left(\mathcal{O}_{W}\right)+\frac{1}{2} L\left(K_{W}+L\right)$, which holds in odd characteristic.

Theorem 3.8. Let X, V and W be as above, and n the number of fixed points of σ. Then:

$$
\text { (i) } \chi\left(\mathcal{O}_{W}\right)=1, \quad \text { and } \quad \text { (ii) } n \geq 5
$$

Proof. By the Riemann-Roch theorem, Lemma 3.7 and the standard double cover formula

$$
\begin{aligned}
0 & \leq h^{0}\left(2 K_{W}+L\right)=\chi\left(2 K_{W}+L\right) \\
& =\chi\left(\mathcal{O}_{W}\right)+\frac{1}{2}\left(2 K_{W}+L\right)\left(K_{W}+L\right) \\
& =\chi\left(\mathcal{O}_{V}\right)-\chi\left(\mathcal{O}_{W}\right)+K_{W}\left(K_{W}+L\right) .
\end{aligned}
$$

Suppose by contradiction that $\chi\left(\mathcal{O}_{W}\right) \leq 0$. Then,

$$
\begin{aligned}
K_{V}^{2} & =2\left(K_{W}+L\right)^{2} \\
& =2\left(\left(K_{W}+L\right) K_{W}+2 \chi\left(\mathcal{O}_{V}\right)-4 \chi\left(\mathcal{O}_{W}\right)\right) \\
& =2\left(h^{0}\left(K_{W}+L\right)+\chi\left(\mathcal{O}_{V}\right)-3 \chi\left(\mathcal{O}_{W}\right)\right) \geq 2 .
\end{aligned}
$$

A contradiction, and hence $\chi\left(\mathcal{O}_{W}\right)=1$. From the standard double cover formula, (i), and by Proposition 3.1 (iii), we have $\left(K_{W}+L\right)^{2} \leq-2$. So that $K_{V}^{2}=\widetilde{\pi}^{*}\left(K_{W}+L\right)^{2} \leq-4$, hence $n \geq 5$.

Corollary 3.9. Either W is rational or its minimal model is birational to an Enriques surface.

Proof. From Theorem 3.8 (i), Proposition 3.1 (iv) and the Table of possible invariants for surfaces with $\kappa=0$ in [2], $p_{g}(W)=h^{1}\left(\mathcal{O}_{W}\right)=0$. The result thus follows from the classification of surfaces.

Lemma 3.10. $H^{i}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)=0$ for $i>0$, hence $h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)=0$.

Proof. By Theorem 3.8 (i), $\chi\left(\mathcal{O}_{W}\right)=1$ and $L\left(K_{W}+L\right)=-2$. Therefore $\chi\left(2 K_{W}+L\right) \leq 0$. Thus $H^{i}\left(2 K_{W}+L\right)=0$ if $i>0$, hence $h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+\right.\right.$ L) $)=0$.

Corollary 3.11. Let φ be the bicanonical map of X. Then:
(i) φ is composed with σ;
(ii) $\left(K_{W}+L\right) K_{W}=0$;
(iii) $n=5$.

Proof. Lemma 3.10 gives (i). Vanishing for $2 K_{W}+L$ and (i) give $h^{0}\left(2 K_{W}+L\right)=K_{W}\left(K_{W}+\right.$ $L)=0, K_{V}^{2}=\widetilde{\pi}^{*}\left(K_{W}+L\right)^{2}=2\left(K_{W}+L\right)^{2}$, and $n=$ $K_{X}^{2}-K_{V}^{2}=1-2\left(K_{W}+L\right)^{2}=5$.

Lemma 3.12. Let $f: X \rightarrow E$ be a double cover with X a nonsingular surface of general type and E birational to an Enriques surface in characteristic $p \neq 2$. Then $f^{*} K_{E}$ is a nontrivial torsion element in Pic X. Equivalently, if $K \rightarrow E$ is the $K 3$ double cover, then the fiber product $Y=X \times_{E} K$ is irreducible.

Proof. Consider

We can assume that $X \rightarrow E$ is the quotient by an involution, so E has only $\frac{1}{2}(1,1)$ singularities. The ramification locus of $X \rightarrow E$ is a nonzero divisor D_{E}. For otherwise $K_{X}=f^{*} K_{E}$ is numerically zero, which contradicts X of general type. Consider the fiber product $Y=X \times_{E} K$ as the composite $Y \rightarrow$ $K \rightarrow E$. Here $\varphi: K \rightarrow E$ is the K3 double cover. Also $Y \rightarrow K$ is ramified in the divisor $D_{K}=\varphi^{*} D_{E}$ by fiber product. Now $D_{K}>0$ and therefore Y is an irreducible surface. By base change, $Y \rightarrow X$ is the double cover corresponding to $f^{*} K_{E}$, so that $f^{*} K_{E} \neq 0$ in Pic X if and only if Y is irreducible.

Corollary 3.13. Let X be a Godeaux surface with 5 -torsion in characteristic 5 . Then the birational type of the quotient space of X by an involution cannot be an Enriques surface.

Proof. Assume that the quotient of X is an Enriques surface W. We may assume W is minimal. An Enriques surface W in characteristic $\neq 2$ has K_{W} a 2 -torsion class. Therefore the algebraic fundamental group $\pi_{1}^{\mathrm{et}}(W)$ is isomorphic to $\mathbf{Z} / 2 \mathbf{Z}$. The fundamental group is a birational invariant of
surfaces with at worst rational singularities. There is an étale 2-to-1 cover $f: S \rightarrow W_{\min }$ with S a K3 surface in any characteristic [2]

If the quotient of X by its involution is birational to an Enriques surface W, the pullback of the 2 -torsion class K_{W} defines a nontrivial 2torsion class on X by Lemma 3.12, so $\left|\operatorname{Pic}^{\tau} X\right|$ must have even order. This contradicts Remark 2.5.
4. Godeaux surfaces in characteristic 5 with an involution. The Godeaux surfaces in characteristic 5 due to Lang [11], Miranda [16], and Liedtke [15] are constructed as quotients $X=Y / G$ of a quintic hypersurface $Y \subset \mathbf{P}^{3}$ by a group scheme G of order 5 action freely. Here if $G=\mathbf{Z} / 5 \mathbf{Z}$, free means that G acts without fixed points. In the inseparable cases $\boldsymbol{\mu}_{5}$ or $\boldsymbol{\alpha}_{5}$, it means that G acts by a nowhere zero vector field. They prove the nonsingularity of X by using Bertini's theorem for a very ample linear system on \mathbf{P}^{3} / G. Instead, in each case, we give an explicit example of Y having symmetry by Aut $G \cong \mathbf{Z} / 4 \mathbf{Z}$, hence by the holomorph $H_{20}=\operatorname{Hol} G=G \rtimes \mathbf{Z} / 4 \mathbf{Z}$ of G. For the two inseparable cases, the nonsingularity of X involves a nonclassical calculation: as we show in $4.4, Y$ has exactly 11 singular points of type A_{4}.
4.1. The case $\boldsymbol{G}=\mathbf{Z} / \mathbf{5 Z}$. Miranda [16] takes the linear map σ given by the matrix:

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

He constructs a quintic surface Y invariant under $\langle\sigma\rangle$ using the subspace V of quintic forms generated by norms $N(l)=\prod_{i=0}^{4} \sigma^{i}(l)$ of linear forms l; these forms define an embedding $\mathbf{P}^{3} /\langle\sigma\rangle \subset \mathbf{P}(V)$, and his X is a hyperplane section.

Lemma 4.1. The linear automorphisms

$$
A=\left(\begin{array}{llll}
1 & 3 & 3 & 1 \\
0 & 1 & 2 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right), \quad B=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

generate an action of $\operatorname{Hol} G=\mathbf{Z} / 5 \mathbf{Z} \rtimes \mathbf{Z} / 4 \mathbf{Z}$ on \mathbf{P}^{3}. Clearly A, B^{2} generate an action of D_{10}.

Proof. One checks directly that $A^{5}=1, B^{4}=1$ and $B A B^{-1}=A^{2}$.

Proposition 4.2. There exists a nonsingular hypersurface Y in \mathbf{P}^{3} invariant under $\operatorname{Hol} G$ action. Proof. Set

$$
\begin{aligned}
f:= & x^{5}+3 x^{3} y w+2 x^{3} z^{2}+3 x^{2} y^{2} z+2 x^{2} z w^{2}-x y^{4} \\
& -x y^{2} w^{2}+2 x z^{4}+3 x w^{4}+2 y^{3} z w+3 y^{2} z^{3}+y z w^{3} .
\end{aligned}
$$

One checks that f is invariant under A and B, and the quintic surface $Y \subset \mathbf{P}^{3}$ defined by $f=0$ is nonsingular. (This is easy by computer algebra, but it can also be done by hand.)

Now the quotient $Y \rightarrow X$ is an étale $\mathbf{Z} / 5 \mathbf{Z}$ cover of a Godeaux surface X with $p_{g}(X)=$ $h^{1}\left(\mathcal{O}_{X}\right)=1$ and $\pi_{1}=\mathbf{Z} / 5 \mathbf{Z}$, and the $\operatorname{Hol} G$ action on Y descends to a $\mathbf{Z} / 4 \mathbf{Z}$ action on X, so in particular an involution.
4.2. The case $\boldsymbol{G}=\boldsymbol{\mu}_{5}$. Lang's Godeaux surfaces [11] satisfy $p_{g}(X)=h^{1}\left(\mathcal{O}_{X}\right)=0$, and work in all characteristics. The group scheme $\boldsymbol{\mu}_{5}$ acts on \mathbf{P}^{3} by $\varepsilon\left(x_{i}\right) \rightarrow \varepsilon^{i} x_{i}$ and $\mathbf{P}^{3} / \boldsymbol{\mu}_{5}$ is nonsingular except at the 4 coordinate points. If Y does not pass through these points, the $\boldsymbol{\mu}_{5}$ action on \mathbf{P}^{3} restricts to a free action on Y. The general hyperplane $X=$ $Y / \boldsymbol{\mu}_{5}$ is a nonsingular Godeaux surface.

Lemma 4.3. Let $A=\boldsymbol{\mu}_{5}$ act on \mathbf{P}^{3} with coordinates x, y, z, w by $\frac{1}{5}(1,2,4,3)$. The permutation $B=(x, y, z, w)$ of S_{4} defines a linear map of \mathbf{P}^{3} that normalizes the $\boldsymbol{\mu}_{5}$ action, and generates an action of the semidirect product group scheme Hol $\boldsymbol{\mu}_{5}=\boldsymbol{\mu}_{5} \rtimes \mathbf{Z} / 4 \mathbf{Z}$. Then $\left\langle A, B^{2}\right\rangle$ is a dihedral group scheme D_{10}.

Proof. The 4-cycle $B=(x, y, z, w)$ corresponds to the generator $\varepsilon \mapsto \varepsilon^{2}$ of Aut $\boldsymbol{\mu}_{5} \cong \mathbf{Z} / 4 \mathbf{Z}$. One checks that $B A B^{-1}=A^{2}$.

Proposition 4.4. There exists a hypersurface $Y_{5} \subset \mathbf{P}^{3}$ invariant under Hol $\boldsymbol{\mu}_{5}$ such that the quotient $X=Y / \mu_{5}$ is a nonsingular Godeaux surface.

Proof. Set

$$
\begin{aligned}
f= & x^{5}+y^{5}+z^{5}+w^{5}+2\left(x^{3} z w+x y^{3} w+x y z^{3}\right. \\
& \left.+y z w^{3}\right)+3\left(x^{2} y^{2} z+x^{2} y w^{2}+x z^{2} w^{2}+y^{2} z^{2} w\right)
\end{aligned}
$$

Clearly Y is invariant under $\operatorname{Hol} \boldsymbol{\mu}_{5}$ and D_{10}. See 4.4 for the nonsingularity of X.
4.3. The case $G=\alpha_{5}$. Liedtke [15] uses the vector field $\delta:=y \frac{\partial}{\partial x}+z \frac{\partial}{\partial y}+w \frac{\partial}{\partial z}$ to generate an $\boldsymbol{\alpha}_{5}$ action on \mathbf{P}^{3}. Let V be the vector space of elements of degree 5 in the fixed ring of δ. The morphism $\varphi: \mathbf{P}^{3} \rightarrow \mathbf{P}(V)$ can be identified with the quotient $\operatorname{map} \mathbf{P}^{3} \rightarrow \mathbf{P}^{3} / \boldsymbol{\alpha}_{5}$, at least outside $[1: 0: 0: 0]$. Its general hyperplane is a nonsingular Godeaux
surface $X=Y / \boldsymbol{\alpha}_{5}$ quotient of a δ-invariant quintic $Y_{5} \subset \mathbf{P}^{3}$.

Lemma 4.5. The following matrices generate an action of $\operatorname{Hol} \boldsymbol{\alpha}_{5}=\boldsymbol{\alpha}_{5} \rtimes \mathbf{Z} / 4 \mathbf{Z}$ on \mathbf{P}^{3} :

$$
A=\left(\begin{array}{cccc}
1 & 3 t & 3 t^{2} & t^{3} \\
0 & 1 & 2 t & t^{2} \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right), \quad B=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

such that $\langle A\rangle \cong \boldsymbol{\alpha}_{5}$ with $t^{5}=0,\langle B\rangle \cong \mathbf{Z} / 4 \mathbf{Z}$. Moreover A, B^{2} generate a dihedral group scheme D_{10}.

Proof. The matrix A with $t^{5}=0$ defines a group scheme $\boldsymbol{\alpha}_{5}$. One sees that $B A B^{-1}=A^{2}$ as in Lemma 4.1. To prove $D_{10}=\left\langle A, B^{2}\right\rangle$ is clear.

Proposition 4.6. There exists a hypersurface $Y_{5} \subset \mathbf{P}^{3}$ invariant under $\operatorname{Hol} \boldsymbol{\mu}_{5}$ with quotient $Y / \boldsymbol{\alpha}_{5}$ a nonsingular Godeaux surface.

Proof. Set

$$
\begin{aligned}
f:= & x^{5}+2 x y^{2} w^{2}+x y z^{2} w+2 x z^{4} \\
& +2 x w^{4}-y^{3} z w+y^{2} z^{3}-y z w^{3}-z^{3} w^{2}
\end{aligned}
$$

Y is invariant under $\boldsymbol{\alpha}_{5}, \mathbf{Z} / 4 \mathbf{Z}$ and hence $\operatorname{Hol} G$. As in the $\boldsymbol{\mu}_{5}$ case, we show in 4.4 that X is nonsingular.
4.4. Nonsingularity of the quotient X. A quintic Y with an inseparable group action as in Proposition 4.4 and 4.6 must be singular. In fact a nonsingular quintic Y has $e(Y)=c_{2}(Y)=55$. But a nonsingular surface with an everywhere nonzero vector field has $c_{2}(Y)=0$. Alternatively, if Y is an inseparable cover of a nonsingular Godeaux surface X, then X and Y are homeomorphic in the étale topology, so $e(Y)=e(X)=11$. We define the singular subscheme of Y by $V(J) \subset Y$, where $J(f):=\left(f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}, \frac{\partial f}{\partial w}\right)$ is the Jacobian ideal.

Lemma 4.7. Let f be either of the invariant quintic polynomials of Proposition 4.4 and 4.6. Then $\quad \operatorname{dim} V(J)=0, \quad \operatorname{deg} V(J)=55 \quad$ and $\operatorname{deg} V(J)_{\text {red }}=11$.

Proof. Computer algebra. (A Magma script is available on request.)

Corollary 4.8. Y has 11 singularities of type A_{4} (of analytic type $x y=z^{5}$), and X is nonsingular.

Proof. Lemma 4.7 says that $V(J)$ is supported at 11 distinct singular points of $Y . \boldsymbol{\mu}_{5}$ or $\boldsymbol{\alpha}_{5}$ act freely on \mathbf{P}^{3} except at the fixed coordinate points and $V(J)$ is invariant under these G actions. Define $\mathcal{J}=J \cdot \mathcal{O}_{\mathbf{P}^{3}}$ to be the sheaf of ideals generated by J, and \mathcal{J}_{i} its stalks at the 11 singular points. Then $\mathcal{J}=\bigcap_{i=1}^{11} \mathcal{J}_{i}$. Each \mathcal{J}_{i} is G-invariant, so that $V\left(\mathcal{J}_{i}\right)$ contains an orbit of G. From Lemma 4.7, each
$V\left(\mathcal{J}_{i}\right)$ coincides with the G-orbit of P_{i}, which is a subscheme of length 5 . Hence $\mathcal{O}_{\mathbf{P}^{3}} / \mathcal{J}_{i} \cong k[G] \cong$ $k[z] / z^{5}$. We choose local regular coordinates x, y, z in the local ring $\mathcal{O}_{\mathbf{P}^{3}, P_{i}}$, so that $V\left(\mathcal{J}_{i}\right)=\left(x, y, z^{5}\right)$. Thus $x, y \in \mathcal{J}_{i}$, and after a coordinate change $f=$ $x y-z^{5}+$ higher order terms.

The group scheme G acts by an everywhere nonzero p-closed vector field D, and $D(f)=0$. It follows that $D=a_{0}\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)+b \frac{\partial}{\partial z}$, where $a_{0} \in$ $k \llbracket x, y, z \rrbracket$ and b is unit. We want to arrange that $D x=D y=0$ after coordinate change. Set
$\xi=x\left(1+\alpha_{1} z+\cdots+\alpha_{4} z^{4}\right), \eta=y\left(1+\cdots+\alpha_{4} z^{4}\right)^{-1}$.
We take $\alpha_{1}, \ldots, \alpha_{4} \in \mathcal{O}_{\mathbf{P}^{3}, P_{i}}$ then $D(\xi), D(\eta) \in\left(z^{4}\right)$. This coordinate change gives $D=a z^{4}\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)+$ $b \frac{\partial}{\partial z} . \quad D x=a x z^{4}$, so that $D^{5} x=4!b^{4}(a x)+\cdots=$ $\alpha \cdot a x z^{4} . D^{5}(x)=D^{4}\left(a z^{4} x\right)$ includes the term $a \cdot 4$!. $b^{4} x$ and other terms in $a \cdot m^{2}$, where m is a maximal ideal. But $D^{5}(x)=c D(x)=c a z^{4} x$ with $c=0$ or $1, a$ is divisible by z. Since $\mathcal{O}_{\mathbf{P}^{3}, P_{i}}$ is UFD, hence $a=0$. Similarly for $D(y)$, then the vector field acting on z only by $z \rightarrow \alpha z+\beta$ with $\alpha^{5}=1, \beta^{5}=0$. Thus $x, y \in$ $\mathcal{O}_{X, Q_{i}}$ are regular functions on the quotient $X=$ Y / G and the ideal they generate in $\mathcal{O}_{Y, P}$ is $\mathcal{J} \mathcal{O}_{Y}$. Therefore x, y generate the maximal ideal of $\mathcal{O}_{X, Q}$, which implies X is nonsingular.

Acknowledgements. I thank Prof. Lee deeply for being my supervisor and for all his support and patience. I also thank a lot Prof. Miles Reid for useful tutorials about Godeaux surfaces, including computer algebra calculations for nonsingularity of X, and Prof. Christian Liedtke for useful comments. I would like to thank the referee for careful advice.

References

[1] E. Bombieri, Canonical models of surfaces of general type, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 171-219.
[2] E. Bombieri and D. Mumford, Enriques' classification of surfaces in char. p. II, in Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1974, pp. 23-42.
[3] D. M. Burns, Jr. and J. M. Wahl, Local contributions to global deformations of surfaces, Invent. Math. 26 (1974), 67-88.
[4] A. Calabri, C. Ciliberto and M. Mendes Lopes,

Numerical Godeaux surfaces with an involution, Trans. Amer. Math. Soc. 359 (2007), no. 4, 1605-1632 (electronic).
[5] F. Catanese, Pluricanonical-Gorenstein-curves, in Enumerative geometry and classical algebraic geometry (Nice, 1981), 51-95, Progr. Math., 24, Birkhäuser Boston, Boston, MA, 1982.
[6] T. Ekedahl, Canonical models of surfaces of general type in positive characteristic, Inst. Hautes Études Sci. Publ. Math. 67 (1988), $97-$ 144.
[7] H. Esnault and E. Viehweg, Lectures on vanishing theorems, DMV Seminar, 20, Birkhäuser, Basel, 1992.
[8] N. Hara, A characterization of rational singularities in terms of injectivity of Frobenius maps, Amer. J. Math. 120 (1998), no. 5, 981-996.
[9] J. Keum and Y. Lee, Fixed locus of an involution acting on a Godeaux surface, Math. Proc. Cambridge Philos. Soc. 129 (2000), no. 2, 205-216.
[10] J. Kollár and S. Mori, Birational geometry of algebraic varieties, translated from the 1998 Japanese original, Cambridge Tracts in Mathematics, 134, Cambridge Univ. Press, Cambridge, 1998.
[11] W. E. Lang, Classical Godeaux surface in characteristic P, Math. Ann. 256 (1981), no. 4, 419427.
[12] Y. Lee and N. Nakayama, Simply connected surfaces of general type in positive characteristic via deformation theory, Proc. Lond. Math. Soc. (3) 106 (2013), no. 2, 225-286.
[13] Y. Lee and J. Park, A simply connected surface of general type with $p_{g}=0$ and $K^{2}=2$, Invent. Math. 170 (2007), no. 3, 483-505.
[14] C. Liedtke, Algebraic surfaces of general type with small c_{1}^{2} in positive characteristic, Nagoya Math. J. 191 (2008), 111-134.
[15] C. Liedtke, Non-classical Godeaux surfaces, Math. Ann. 343 (2009), no. 3, 623-637.
[16] R. Miranda, Nonclassical Godeaux surfaces in characteristic five, Proc. Amer. Math. Soc. 91 (1984), no. 1, 9-11.
[17] Y. Miyaoka, Tricanonical maps of numerical Godeaux surfaces, Invent. Math. 34 (1976), no. 2, 99-111.
[18] M. Reid, Godeaux and Campedelli surfaces. (http://homepages.warwick.ac.uk//masda/surf/ Godeaux.pdf).
[19] M. Reid, Surfaces with $p_{g}=0, K^{2}=1$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 25 (1978), no. 1, 75-92.
[20] Q. Xie, Kawamata-Viehweg vanishing on rational surfaces in positive characteristic, Math. Z. 266 (2010), no. 3, 561-570.

[^0]: 2010 Mathematics Subject Classification. Primary 14J29.

