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Euler products beyond the boundary for Selberg zeta functions

By Shin-ya KOYAMA® and Fumika SUZUKI*

(Communicated by Kenji FUKAYA, M.J.A., Sept. 12, 2014)

Abstract:

Convergence of Euler products in the critical strip is directly related to a proof

of the generalized Riemann hypothesis. Moreover its behavior on the critical line is called the
deep Riemann hypothesis (DRH). Kimura-Koyama-Kurokawa recently proved DRH over
function fields in case the L-function is regular at s =1 [3]. In this paper we generalize their
results to Selberg zeta functions. Our results imply the DRH for principal congruence groups over

function fields.
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1. Introduction.
Riemann zeta function

()= J] a=p)"

p:prime

The Euler product for the

is absolutely convergent in Re(s) > 1 and divergent
in Re(s) < 1. For proving this divergence we need
its pole at s = 1. Indeed, if we eliminate the pole by
considering a Dirichlet L-function

Ls,x)= [ a=xp ™)™,
p:prime
where x is a Dirichlet character with y # 1 with 1
denoting the principal character, its convergence in
0 < Re(s) < 1is an unsolved problem. In this region
we have to take care of the order of the Euler factors
participating in the Euler product, since it is not
absolutely convergent. So putting

Lis,0)= [[ =xwp)™,

p<t:prime

we consider its convergence as t — c0.
Conjecture 1. For any x and s € C such
that x # 1 and Re(s) > 3, it holds that

1tlim Li(s,x) = L(s, x)-

Whenever an infinite product converges, it is non-
zero by definition. Therefore Conjecture 1 implies
the (generalized) Riemann hypothesis for L(s, x). It
is known by Conrad [3] that Conjecture 1 is implied
by the following conjecture.
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Conjecture 2. For any x and s € C such
that x # 1, Re(s) = 1 and L(s, x) # 0, it holds that

\/§L(S>X> (X2 =1,s= %)
L(s,x)
Conjecture 2 is called the deep Riemann hypothesis
(DRH), because it is stroger than Conjecture 1
(RH).

In the previous paper [4], we proved an analog
of Conjecture 2 over function fields. Let F, be the
finite field of ¢ elements. We fix a conductor f(7T) €
F,[T] and introduce a “Dirichlet” character

x: (F[T]/(f) — C*.
We define the “Dirichlet” L-function as

Ly,ry(s:x) = [ [ = x(W)N(R) ™),
h

lim Ly(s, x) =
t—00 (s X) { (otherwise).

where h = h(T) € F,[T] runs through monic irre-
ducible polynomials, and N(h) = ¢%°¢". We proved
the following theorem in [4], which was extended to
automorphic L-functions in [7].

Theorem 3 (DRH over function fields). Let
g, f and x be as above. Put K =F ,(T) and assume
X # 1. Then the following (1) and (2) are true.
(1) For Re(s) > 1/2, we have

tim [T (= x()N() ™) = Li(s. ).
deg h<n

(2) Forte R with Lg (% +it,x) # 0, it holds that
im [T (1= x(mN() )

deg h<n

1 2 _ s
LK<§+it,X) x {\/5 W =Ltegg2),

1 (otherwise)

In this paper we generalize this result to Selberg
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zeta functions.
2. Results for 1/2 < Re(s) < 1.
from a general Euler product:

(1) Lx(s,p)= [ det,—p

pePrim(X)

We start

(L)NP) )

where Prim(X) is a set of prime elements in some
mathematical object X, p is a map from Prim(X) to
U(n) with n being a positive integer, and N is a
map from Prim(X) to R>;. We assume that (1) is
absolutely convergent in Re(s) > 1. The Riemann
zeta or Dirichlet L-functions (X =Z, Prim(Z) =
{prime numbers}, N(p) =p, p = Dirichlet charac-
ter, n=1) and the Selberg zeta function (X =T
a Fuchsian group, Prim(T") = {prime geodesics in
I'\H} with H the upper half plane, N(p) = elnteh®),
p a unitary representation of T', n = dim p) satisfy
this assumption.

In case X is defined over function fields over
F,, it often happens that Lx(s,x) satisfies the
following.

Assumption 1. For any p € Prim(X), there
exists a positive integer d such that N(p) = ¢’
Moreover Lx(s,p) is a rational power of a rational
function in ¢—* which can be put as

J
[T —ag)™
=1
for some J € Z, o; € C with |oy| < ¢ and v; € Q.
The following lemma will be a key to our proof.

Lemma 4. Let \y; € C with || =1 (i =
1,2,---,n) be the eigenvalues of p(p). If Lx(s,p)
satisfies Assumption 1, it holds that

Lx(s,p) =

J m
Zvja;-nzzn:Zd Z )\gi (m=1,2,3,---).
Jj=1 =1 djm N(p:;:q”

Proof. We compute that for Re(s) > 1,

Zv, log(1 ¢!
J
Z ,Uja;n,

where in the last identity we used the assumptions
laj| < ¢ and Re(s) > 1.
On the other hand, we calculate from (1) that

log Lx(s, p) Zzlog — XiN(p) ™)

log Lx(s, p)
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i=1 dm

Comparing these two expressions leads to the
result. (|

In what follows let p be a unitary representa-
tion of X =T = PGL(2,F,[T]). We define the Sel-
berg zeta function of T' attached by a unitary
representation p as the Euler product (1), where
Prim(T") is the set of primitive hyperbolic conjugacy
classes, and N(p) = ¢*! with d being the degree of
the larger eigenvalue of p. Here p is hyperbolic if and
only if p has two distinct eigenvalues in F,((T71)).
It is known that for such Selberg zeta functions,
the Euler product (1) is absolutely convergent in
Re(s) > 1 [8]. Put

Lr.(s,p) = H det(I, — p(p)N(p)~*)".

N(p)<z

Theorem 5. Assume 1/2 < Re(s) < 1.
der Assumption 1, it holds that

Un-

lim Ly ,(s, p) = Lr(s, p) (Re(s) > max log, |aj|>.
T—00 j

Proof. We divide the series

n o0 k
g Ln.lon) = 32 332N

i=1 k=
N(p)Sx
into
00 N(p)—ks n
A@) =3, > — 2 X
k=1 p . i=1
N(p)<at
and
o0 N(p) ks n
Bla)=>" > - SO
k=1 p i=1
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)T ILDY Z%l

1<m<log, = dlm
N (p) !

—_

1<m<log, x

<.

zjc:czv] log(1 — g™ %)~ ! (lajg™®l < 1)

=1

J
=log [[(1 — ayg )™
j=1

= log Lr (s, p),
where we used the assumption o > max;log, o] in
letting  — oo. It suffices to show that B(z) — 0 as
x — oo. Since Lr(s,p) is absolutely convergent in
Re(s) > 1, we have

S V)

“l=n>_ N(p)
pePrim(X) i=1 D

for o = Re(s) > 1. It implies that
(2) lim ZP: N(p) =0
N(p)>t

for o > 1. We evaluate B(z) as follows:

S N(p)™
_n; Z ——  (0:=Re(s))
st <N(p)<a
= n(Bi(z) + By(x) + Bs(z))
with
W=y ¥ Mo
k=3 P k
JL<N(p)§.T,5
:i Z N(p)_ka
k=3 p k
.TZ<N(p)§m
N(p)™
Bw= Y YW
Iz
1:%<N(p)§1:

First, we deal with B;(z) by changing the order of
the double sum:
N P —ko
By(x) = Np) ™
p L k>logy,)
N(p)<a?2
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1 —k
< Z - N(p)™™
7 logyg) k>log ) @

—a

Z’ 1 T _
D

logN(p) rl— N(p)
N(p)<a?

IA
a\d
DO | =
—_

8

— q*U
N(p)gz%

x—(f
< 1.
2(1-q) zp:

N(p)<a?

By the prime geodesic theorem, the number of p €
Prim(T") with N(p) < x is approximately known:

mr(z) := #{p € Prim(T') | N(p) < «}
- log z (@ = o).
Thus
Bi(z) = ﬁﬂr(ﬁ)

1
5—0‘
—o[ =),
T 21— q ) log logz
which tends to 0 as © — oo, if 0 > 5.
Next we treat Ba(x). It holds that

1S -
Byw) <y > N
k=3 P
VE<N(p)<

Loy N
3 Z 1- N(p)71/2
VZ<N(p)<
1 3 1
3G N -NE)T?)
VZ<N(p)<a
1 1
< =
3 ; N(p)*(1—q1/2)
VZ<N(p)<a
1 1
< ——mMm— — -
31 -q'?) Zp: N(p)**
VZ<N(p)

It follows from (2) that By(z) — 0 as x — oo.
Finally, Bs(z) is similarly bounded by the above
absolutely convergent function with s =20 > 1. O

Theorem 5 generally extends the region of
Euler products to a subdomain in the critical strip.
It agrees to the full strip 1/2 < Re(s) < 1 under the
following condition.
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Assumption 2. |oj| <,/q(j=1,2,3,...,J).

3. Results for Re(s) =1/2. We need a
lemma of Mertens’ type as follows:
Lemma 6 (Mertens’ theorem).  Assume

Re(s) = 1 and let p be any complex representation
of T' such that Ly(s, p) is rational in ¢~°. Then

tr(p(p))
zp: N(p)®
N(p)<q”

_ { mult(1, p)log D+ ci(p) +0(1) (s€1+ loqu>
e(p) + o(1) (otherwise)

as D — oo, where ci1(p), ca(p) are constants in-
dependent of D.

Proof. We follow the proof of Theorem 2.1 in
[6]. Write

1@mult(1,p)

pP= @p[b

where mult(1, py) = 0.
In what follows we show that if we put

Ko 3 )
N (plféq”

it holds that
(3) Tu(D, 1)
B { logD 4~y —1log2+o(l) (s€l+4L

Z)

logq
(otherwise),

log¢r(s) + o(1)

where (p(s) = Lr(s,1), and that

(4) Ts(D, po) = ¢(po) + o(1)

with some constant ¢(pyp).
We first show (3). We compute

10g< T o —N<p>s>1>
N(

p)<q”

1
A(D) = P ok Z L,
kd P
kd<D N(p)=¢"
1
Bo= Y e Y
kd P
d<D,kd>D N(p)=¢"

We evaluate A(D) by putting [ = kd as follows:
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We apply Lemma 4 to p =1, n = 1. Then it follows
from [1] or [5] that

1— ql—Qs
1— q2—2$ :

Namely, we have J =4 and a; =
az =q, ag = —q with v; = vy =
Lemma 4 asserts that

I A 1
o> t=d+ (-9 - - (-¢)"
di P

N(p)=¢*

(r(s) =
\/67 Qg = _\/aa

—1, 1}3:’04:1.

Then

B~

)

D s

qu —)' = ¢ — (—q)
1

D 1

Zj

The second half of the sum tends to

—

—1)) + gE6(1 + (=1)7)),

1. 1,
log(1 —@")(1+¢>7")
as D — oo. The first half behaves like
1

Z quuks)
1<k<¥
{ log %+~ +o(1) (s €1+ 5.2)
log(1 — ¢?*)) ™" 4 0(1) (otherwise)

as D — o0, since

L= {0 terere

For se€ 1+ lggq Z, we reach

1
A(D) = IOgD+7—10g2+log(1 — 5) +o(1).

Whereas if s ¢ 1+ 2= Z with Re(s) = 1, we have

logg
A(D) =log(r(s) + o(1) (D — o).

We next deal with B(D). It is easy to prove B(D) —
0 as D — 0 by the same way as Theorem 5. Indeed

00 N(p)—sk
BD)=> > —
k=2 b p
gk <N(p)<q”

is a partial sum of an absolutely convergent series
restricted to classes p with N(p) sufficiently large.
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Therefore we have

log [ (1-N@) ™)
P
N(p)<q”

{logg—l—'y—l—log(l—ql)—ko(l) (s €14 -7)

logg
log ¢r(s) + o(1) (otherwise)
as D — oo.

On the other hand, it is also computed as

log > (1-N@™)"

N(p)<q”
oy s
p k=1 k
N(p)<q”
1 o0 N(p)*?k
= S+
; N(p) ; ; k
N(p)<q” N(p)<q”
=T.D,1)+ Y (log(1—=N(p)™*)" = N(p)™)
P
N(p)<q¢”
oo N(p)fsk
=T,(D,1)+ +o(1 D — o0).
(1) + T o) (Do)

2
Hence we obtain (3). It remains to prove (4). We
apply Theorem 5 to p = py and = = ¢”. Then, since
Re(s) =1, we have as D — oo that

log Ly 4o (s, po) = log Lr (s, po) + o(1).
On the other hand, putting n = dim py,
log Ly (s, po)

Therefore, we conclude
Ts(D7 p())

i1 o (p)F
=logLr(s,p0) — »_ Y % N(p)™" +o(1).
P k=2

all
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The result follows with

% k
clpo) = Tog Lr(s p) — 2 3 T )
an =
O
Theorem 7. Assume Re(s) = 3 and
Lr(s,p) #0. If Lr(s,p) satisfies Assumptions 1
and 2, then

2C 1 i) 7
lim LF,m(S,P) = Lr(s’p) X \/. (S € 2 + logq )
o 1 (otherwise)

where ¢ is a constant depending on p, which is
explicitly written by

¢ = mult(1, Sym?(p)) — mult(1, A*(p)).

Proof. As in the proof of Theorem 5, we
decompose log Lr,(s,p) into A(x)+ B(x), where
A(z) and B(z) are given in the proof of Theorem 5.
The identity lim A(x) =log Lr(s,p) is valid for
Re(s) >0. %

We first deal with the partial sum for k=2 in
B(zx):

B N(p)—?.s n )

Blo)= Y, —5—2 X
. p i=1
22<N(p)<z

We use the fact that

n

SN2, = tr(p(p)?) = tr(Sym*(p)) — tr(A%(p).

=1
For each representation of Sym?(p) and A?(p), we
use Lemma 6 (Mertens’ theorem). Then putting
z=¢"” and ¢ = mult(1,Sym?*(p)) — mult(1, A%(p)),
we compute

B(¢")
2
Ly ) )
qg<N(p)§qD
:% Ty (D, Sme(p))Tzs< ,Symz(p)>

~ DD + T (5 4%0)) )

_ {g(logD—logg)Jro(l) (s €3+ 50 2)

o(1) (otherwise)
_ clog V2 + o(1) (se%—i—Ql’;;qZ)
o(1) (otherwise)

as D — oo.
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The remaining sum over k > 3 tends to o(1) as
D — oo by the same calculations as in the proof of
Theorem 5. Hence we proved Theorem 7. (]

Example 1. Let ¢ be odd, A € Fy[T], and
I'(A) be the principal congruence subgroup of T’
with level A. Denote by py the component of the
regular representation p of the group I'/T'(A) such
that p =1 ® py. Then we easily calculate by using
the formula in [8] that

(L—g")""
(1—g>)

where x = vol(T\PGL(2,F,(T""))))(¢—1)/2, r=
str(I, — ®(3)) with @ the scattering matrix, and
det(Tr(ay,s) is the determinant of the Laplacian
consisting of both discrete and continuous spectra,
which turns to be a rational function in ¢~°. Then
it satisfies Assumptions 1 and 2, and we obtain
the deep Riemann hypothesis for the Selberg zeta
functions for any principal congruence subgroups.

Example 2. If ¢ =3 and p is the nontrivial
1-dimensional character of

I'/PSL(2,Fy(T)) = Z/27Z,

L[‘(S,p) = det(Tr(A),S)il,

we have m =1 and )\12711 = 1. The Selberg zeta
function is given by [6] as

1— 31725
Lr(s,p) = 13

which satisfies Assumptions 1 and 2. Thus Theorem
7 holds with ¢ = 1.

If we consider more general ¢ (¢ >5), we
compute from [6] that

1— q1—25
L =
F(87p) 1 + (q _ 2)(]1728 bl

which does not satisfy Assumption 2, because we

[Vol. 90(A),

have |aj| =+/(¢—2)¢> /q for some j. Indeed
Lr(s,p) has a pole at s=3(1+log,(¢—2)) <1,
and our current method does not enable us to
extend the convergence region passing the pole. In
such case, however, we can obtain some asymptotic
behavior of the Euler product by the technique of
Kimura-Koyama-Kurokawa [4] and Akatsuka [2],
which will be treated in the forthcoming paper.
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