
Fibonacci and Lucas numbers of the form 2aþ 3bþ 5c

By Diego MARQUES
�Þ and Alain TOGBÉ
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Abstract: In this paper, we find all Fibonacci and Lucas numbers written in the form

2a þ 3b þ 5c, in nonnegative integers a; b; c, with maxfa; bg � c.
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1. Introduction. Let ðFnÞn�0 be the

Fibonacci sequence given by Fnþ2 ¼ Fnþ1 þ Fn, for

n � 0, where F0 ¼ 0 and F1 ¼ 1. These numbers are

well-known for possessing amazing properties

(consult [5] together with its very extensive anno-

tated bibliography for additional references and

history). We cannot go very far in the lore of

Fibonacci numbers without encountering its com-

panion Lucas sequence ðLnÞn�0 which follows the

same recursive pattern as the Fibonacci numbers,

but with initial values L0 ¼ 2 and L1 ¼ 1.

The problem of finding for Fibonacci and

Lucas numbers of a particular form has a very

rich history. Maybe the most outstanding result

on this subject is due to Bugeaud, Mignotte and

Siksek [1, Theorem 1] who showed that 0, 1, 8, 144

and 1, 4 are the only Fibonacci and Lucas num-

bers, respectively, of the form yt, with t > 1

(perfect power). Other related papers searched

for Fibonacci numbers of the forms px2 þ 1;
px3 þ 1 [12], k2 þ kþ 2 [7], pa � pb þ 1 [8],

pa � pb [9], yt � 1 [2] and qkyt [3]. Also, in 1993,

Peth}oo and Tichy [11] proved that there are only

finitely many Fibonacci numbers of the form

pa þ pb þ pc, with p prime. However, their proof

uses the finiteness of solutions of S-unit equations,

and as such is ineffective. Very recently, the

authors [10] found all Fibonacci and Lucas num-

bers of the form ya þ yb þ yc, with 2 � y � 9.

In this paper, we are interested in Fibonacci

and Lucas numbers which are sum of three perfect

powers of some prescribed distinct bases. More

precisely, our results are the following

Theorem 1.1. The only solutions of the

Diophantine equation

Fn ¼ 2a þ 3b þ 5cð1Þ

in integers n; a; b; c, with 0 � maxfa; bg � c are

ðn; a; b; cÞ 2 fð4; 0; 0; 0Þ; ð6; 1; 0; 1Þg:

Theorem 1.2. The only solutions of the

Diophantine equation

Ln ¼ 2a þ 3b þ 5cð2Þ

in integers n; a; b; c, with 0 � maxfa; bg � c are

ðn; a; b; cÞ 2 fð2; 0; 0; 0Þ; ð4; 0; 0; 1Þ; ð7; 0; 1; 2Þg:

2. Auxiliary results. First, we recall the

well-known Binet’s formulae for Fibonacci and

Lucas sequences:

Fn ¼
�n � �n

�� �
and Ln ¼ �n þ �n;

where � ¼ ð1þ
ffiffiffi
5
p
Þ=2 and � ¼ ð1�

ffiffiffi
5
p
Þ=2 ¼ �1=�.

These formulas allow to deduce the bounds

�n�2 � Fn � �n�1 and �n�1 � Ln � 2�n;

which hold for all n � 1.

The next tools are related to the transcenden-

tal approach to solve Diophantine equations. First,

we use a lower bound for a linear form in logarithms

à la Baker and such a bound was given by the

following result due to Laurent [6, Corollary 2] with

m ¼ 24 and C2 ¼ 18:8.

Lemma 1. Let �1; �2 be real algebraic num-

bers, with j�jj � 1, b1; b2 be positive integer numbers

and

� ¼ b2 log�2 � b1 log�1:

Let Aj be real numbers such that

logAj � maxfhð�jÞ; jlog�jj=D; 1=Dg; j 2 f1; 2g;
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where D is the degree of the number field Qð�1; �2Þ
over Q. Define

b0 ¼
b1

D logA2
þ

b2

D logA1
:

If �1; �2 are multiplicatively independent, then

log j�j � �18:8 �D4ðmaxflog b0 þ 0:38;m=D; 1gÞ2

� logA1 logA2:

As usual, in the above statement, the logarith-

mic height of an ‘-degree algebraic number � is

defined as

hð�Þ ¼
1

‘
log jaj þ

X‘
j¼1

log maxf1; j�ðjÞjg
 !

;

where a is the leading coefficient of the minimal

polynomial of � (over Z) and ð�ðjÞÞ1�j�‘ are the

conjugates of � (over Q).

After finding an upper bound on n which is

general too large, the next step is to reduce it. For

that, we need a variant of the famous Baker-

Davenport lemma, which is due to Dujella and

Peth}oo [4]. For a real number x, we use kxk ¼
minfjx� nj : n 2 Ng for the distance from x to the

nearest integer.

Lemma 2. Suppose that M is a positive

integer. Let p=q be a convergent of the continued

fraction expansion of the irrational number � such

that q > 6M and let � ¼ k�qk �Mk�qk, where � is a

real number. If � > 0, then there is no solution to the

inequality

0 < m� � nþ � < AB�m

in positive integers m;n with

logðAq=�Þ
logB

� m < M:

See Lemma 5, a.) in [4]. Now, we are ready to

deal with the proofs of our results.

3. Proof of the Theorem 1.1. Combining

Binet formula together with (2), we get

�nffiffiffi
5
p � 5c ¼ 2a þ 3b þ

�nffiffiffi
5
p > 0;ð3Þ

because j�j < 1 while 2a � 1. Thus

�n5�cffiffiffi
5
p � 1 ¼

2a

5c
þ

3b

5c
þ

�n

5c
ffiffiffi
5
p

yields

�n5�cffiffiffi
5
p � 1

����
���� < 3

50:3c
;

where we use that 2 <
ffiffiffi
5
p

; 3 < 50:7 and c �
maxfa; bg. Therefore,

je�F � 1j <
3

50:3c
;ð4Þ

where �F ¼ n log�� ð2cþ 1Þ log
ffiffiffi
5
p

. By (3), �F >

0 and in particular e�F 6¼ 1. Thus �F < e�F � 1 and

so

log �F < log 3� 0:48c:ð5Þ

In order to apply Lemma 1, we take

�1 :¼
ffiffiffi
5
p

; �2 :¼ �; b1 :¼ 2cþ 1; b2 :¼ n:

For this choice, we have D ¼ 2, hð�1Þ ¼
log

ffiffiffi
5
p

< 0:81 and hð�2Þ ¼ ðlog�Þ=2 < 0:25. In con-

clusion, logA1 :¼ 0:81 and logA2 :¼ 0:25 are suit-

able choices. We also obtain the estimate

�n�2 < Fn ¼ 2a þ 3b þ 5c < 2 � 5c;

which implies that n < 3:4cþ 3:5 (as we know that

2a þ 3b � 2c þ 3c < 5c). Thus we have

b0 ¼
2cþ 1

0:5
þ n

1:62
< 6:1cþ 4:2:

As � and 5 are multiplicatively independent,

we have, by Lemma 1, that

log j�F j > �58:97ð6Þ
� maxflogð6:1cþ 4:2Þ þ 0:38; 11gð Þ2:

We now combine (5) and (6) to get

c < 122:86

� maxflogð6:1cþ 4:2Þ þ 0:38; 11gð Þ2 þ log 3

and so c < 17585 and n < 59793.

Since 0 < �F < 3=50:3c, we can rewrite this as

0 < n log�� c log 5þ logð1=
ffiffiffi
5
p
Þ < 3 � ð1:6Þ�c:

Since c > ðn� 3:5Þ=3:4 > 0:29n� 1:03, we obtain

(dividing by log 5)

0 < n� � cþ � < 3:1 � ð1:14Þ�n;ð7Þ

with � :¼ log�= log 5 and � :¼ logð1=
ffiffiffi
5
p
Þ= log 5 ¼

�1=2.

We claim that � is irrational. In fact, if � ¼ p=q,
then �2q 2 Q, which is an absurdity. Let qn be the

denominator of the n-th convergent of the contin-

ued fraction of �. Taking M :¼ 59793, we have
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q12 ¼ 369777 > 6M

and then � :¼ k�q12k �Mk�q12k ¼ 0:44198 . . . .

Note that the conditions to apply Lemma 2 are

fulfilled for A ¼ 3:1 and B ¼ 1:14, and hence there

is no solution to inequality (7) (and then no solu-

tion to the Diophantine equation (1)) for n in the

range

logðAq12=�Þ
logB

� �
þ 1;M

� �
¼ ½113; 59793Þ:

Thus n � 112 and the estimate 5c < Fn � F112

yields c � 33.

In order to still decrease the upper bound for c,

we note that �5ðFn � 2a � 3bÞ ¼ c. To get an upper

bound for this 5-adic valuation, we need to exclude

the trivial cases when Fn � 2a � 3b ¼ 0 (e.g.

ðn; a; bÞ ¼ ð5; 1; 1Þ giving an infinite valuation),

because clearly they don’t give any solution. Thus,

Mathematica returns �5ðFn � 2a � 3bÞ � 6, for n �
112, 0 � maxfa; bg � 33. Therefore c � 6 and then

n � 17.

Finally, we use a program written in Math-

ematica to find the solutions of Eq. (1) in the range

0 � maxfa; bg � c � 6 and n � 17. Quickly, the

program returns the following solutions

ðn; a; b; cÞ 2 fð4; 0; 0; 0Þ; ð6; 1; 0; 1Þg:

This completes the proof. �

4. Proof of the Theorem 1.2. By combin-

ing Binet formula together with (2), we get

�n � 5c ¼ 2a þ 3b � �n > 0ð8Þ

and similarly as in the proof of previous theorem,

we obtain

je�L � 1j <
3

50:3c
;

where �L :¼ n log�� c log 5. The estimates �L > 0

and �L < e�L � 1 lead to

log j�Lj < log 3� 0:48c:ð9Þ

To apply Lemma 1, we take

D ¼ 2; b1 ¼ c; b2 ¼ n; �1 ¼ 5; �2 ¼ �:

We choose logA1 ¼ 1:61 and logA2 ¼ 0:25. So we

get

b0 ¼
c

0:5
þ

n

3:22
< 3:1cþ 0:8;

where we use n < 3:4cþ 2:5, which is obtained from

�n�1 < Ln < 2 � 5c.
As � and 5 are multiplicatively independent,

by Lemma 1 we get

log j�Lj � �116:57ð10Þ
� maxflogð3:1cþ 0:8Þ þ 0:38; 11gð Þ2:

Now, we combine the estimates (9) and (10) to

obtain

c < 242:86ð11Þ
� maxflogð3:1cþ 0:8Þ þ 0:38; 11gð Þ2 þ 2:3:

Therefore inequality (11) gives c � 34790 and so

n � 118289.

In this case, the reduction method is not use-

ful for reducing the bounds. However, we use

the following approach. First, note that c ¼
�5ðLn � 2a � 3bÞ. To get an upper bound for this

5-adic valuation, we also need to exclude the tri-

vial cases when Ln � 2a � 3b ¼ 0 (e.g. ðn; a; bÞ ¼
ð3; 0; 1Þ), because it doesn’t give any solution.

Notice that contrarily to the Fibonacci case, the

bounds for n; a and b are very large, more precisely

n � 118289 and a; b � 34790. Thus, it roughly took

for Mathematica 102 hours on 2.5 GHz Intel Core

i5 4 GB Mac OSX to return �5ðLn � 2a � 3bÞ � 26.

Therefore, c � 26 and then n � 90.

To finish, we use again Mathematica to find the

solutions of Eq. (2) in the range 0 � maxfa; bg �
c � 26 and n � 90. We get the following solutions

ðn; a; b; cÞ 2 fð2; 0; 0; 0Þ; ð4; 0; 0; 1Þ; ð7; 0; 1; 2Þg:

This completes the proof. �

5. Final comments. We remark that we

can use our approach to prove that if ðGnÞn is an

linear recurrence sequence (under some weak tech-

nical assumptions), then there are only finitely

many solutions (and all of them are effectively

computable) for the Diophantine equation

Gn ¼ pa1

1 þ p
a2

2 þ � � � þ p
ak
k ;

in integers n; a1; . . . ; ak, with n > 0 and 0 �
maxfa1; . . . ; ak�1g � ak, where p1; . . . ; pk are distinct

primes previously fixed. However, it is important to

notice that for each choice of primes, this study

brings a lot of particular techniques.
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[ 9 ] F. Luca and P. Stănică, Fibonacci numbers of the
form pa � pb, Congr. Numer. 194 (2009), 177–
183.

[ 10 ] D. Marques and A. Togbé, Terms of a linear
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