Fibonacci and Lucas numbers of the form $2^{a}+3^{b}+5^{c}$

By Diego Marques*) and Alain Togbé**)
(Communicated by Shigefumi Mori, M.J.A., Feb. 12, 2013)

Abstract

In this paper, we find all Fibonacci and Lucas numbers written in the form $2^{a}+3^{b}+5^{c}$, in nonnegative integers a, b, c, with $\max \{a, b\} \leq c$.

Key words: Fibonacci; Lucas; linear forms in logarithms; reduction method.

1. Introduction. Let $\left(F_{n}\right)_{n \geq 0}$ be the Fibonacci sequence given by $F_{n+2}=\bar{F}_{n+1}+F_{n}$, for $n \geq 0$, where $F_{0}=0$ and $F_{1}=1$. These numbers are well-known for possessing amazing properties (consult [5] together with its very extensive annotated bibliography for additional references and history). We cannot go very far in the lore of Fibonacci numbers without encountering its companion Lucas sequence $\left(L_{n}\right)_{n \geq 0}$ which follows the same recursive pattern as the Fibonacci numbers, but with initial values $L_{0}=2$ and $L_{1}=1$.

The problem of finding for Fibonacci and Lucas numbers of a particular form has a very rich history. Maybe the most outstanding result on this subject is due to Bugeaud, Mignotte and Siksek [1, Theorem 1] who showed that $0,1,8,144$ and 1, 4 are the only Fibonacci and Lucas numbers, respectively, of the form y^{t}, with $t>1$ (perfect power). Other related papers searched for Fibonacci numbers of the forms $p x^{2}+1$, $p x^{3}+1 \quad[12], \quad k^{2}+k+2 \quad[7], \quad p^{a} \pm p^{b}+1 \quad[8]$, $p^{a} \pm p^{b}$ [9], $y^{t} \pm 1$ [2] and $q^{k} y^{t}$ [3]. Also, in 1993, Pethő and Tichy [11] proved that there are only finitely many Fibonacci numbers of the form $p^{a}+p^{b}+p^{c}$, with p prime. However, their proof uses the finiteness of solutions of S-unit equations, and as such is ineffective. Very recently, the authors [10] found all Fibonacci and Lucas numbers of the form $y^{a}+y^{b}+y^{c}$, with $2 \leq y \leq 9$.

In this paper, we are interested in Fibonacci and Lucas numbers which are sum of three perfect powers of some prescribed distinct bases. More precisely, our results are the following

[^0]Theorem 1.1. The only solutions of the Diophantine equation

$$
\begin{equation*}
F_{n}=2^{a}+3^{b}+5^{c} \tag{1}
\end{equation*}
$$

in integers n, a, b, c, with $0 \leq \max \{a, b\} \leq c$ are

$$
(n, a, b, c) \in\{(4,0,0,0),(6,1,0,1)\}
$$

Theorem 1.2. The only solutions of the Diophantine equation

$$
\begin{equation*}
L_{n}=2^{a}+3^{b}+5^{c} \tag{2}
\end{equation*}
$$

in integers n, a, b, c, with $0 \leq \max \{a, b\} \leq c$ are
$(n, a, b, c) \in\{(2,0,0,0),(4,0,0,1),(7,0,1,2)\}$.
2. Auxiliary results. First, we recall the well-known Binet's formulae for Fibonacci and Lucas sequences:

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \text { and } L_{n}=\alpha^{n}+\beta^{n}
$$

where $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2=-1 / \alpha$. These formulas allow to deduce the bounds

$$
\alpha^{n-2} \leq F_{n} \leq \alpha^{n-1} \text { and } \alpha^{n-1} \leq L_{n} \leq 2 \alpha^{n}
$$

which hold for all $n \geq 1$.
The next tools are related to the transcendental approach to solve Diophantine equations. First, we use a lower bound for a linear form in logarithms à la Baker and such a bound was given by the following result due to Laurent [6, Corollary 2] with $m=24$ and $C_{2}=18.8$.

Lemma 1. Let α_{1}, α_{2} be real algebraic numbers, with $\left|\alpha_{j}\right| \geq 1, b_{1}, b_{2}$ be positive integer numbers and

$$
\Lambda=b_{2} \log \alpha_{2}-b_{1} \log \alpha_{1}
$$

Let A_{j} be real numbers such that

$$
\log A_{j} \geq \max \left\{h\left(\alpha_{j}\right),\left|\log \alpha_{j}\right| / D, 1 / D\right\}, j \in\{1,2\}
$$

where D is the degree of the number field $\mathbf{Q}\left(\alpha_{1}, \alpha_{2}\right)$ over Q. Define

$$
b^{\prime}=\frac{b_{1}}{D \log A_{2}}+\frac{b_{2}}{D \log A_{1}}
$$

If α_{1}, α_{2} are multiplicatively independent, then

$$
\begin{aligned}
\log |\Lambda| \geq & -18.8 \cdot D^{4}\left(\max \left\{\log b^{\prime}+0.38, m / D, 1\right\}\right)^{2} \\
& \cdot \log A_{1} \log A_{2}
\end{aligned}
$$

As usual, in the above statement, the logarithmic height of an ℓ-degree algebraic number γ is defined as

$$
h(\gamma)=\frac{1}{\ell}\left(\log |a|+\sum_{j=1}^{\ell} \log \max \left\{1,\left|\gamma^{(j)}\right|\right\}\right),
$$

where a is the leading coefficient of the minimal polynomial of $\gamma($ over $\mathbf{Z})$ and $\left(\gamma^{(j)}\right)_{1 \leq j \leq \ell}$ are the conjugates of γ (over \mathbf{Q}).

After finding an upper bound on n which is general too large, the next step is to reduce it. For that, we need a variant of the famous BakerDavenport lemma, which is due to Dujella and Pethő [4]. For a real number x, we use $\|x\|=$ $\min \{|x-n|: n \in \mathbf{N}\}$ for the distance from x to the nearest integer.

Lemma 2. Suppose that M is a positive integer. Let p / q be a convergent of the continued fraction expansion of the irrational number γ such that $q>6 M$ and let $\epsilon=\|\mu q\|-M\|\gamma q\|$, where μ is a real number. If $\epsilon>0$, then there is no solution to the inequality

$$
0<m \gamma-n+\mu<A B^{-m}
$$

in positive integers m, n with

$$
\frac{\log (A q / \epsilon)}{\log B} \leq m<M
$$

See Lemma 5, a.) in [4]. Now, we are ready to deal with the proofs of our results.
3. Proof of the Theorem 1.1. Combining Binet formula together with (2), we get

$$
\begin{equation*}
\frac{\alpha^{n}}{\sqrt{5}}-5^{c}=2^{a}+3^{b}+\frac{\beta^{n}}{\sqrt{5}}>0 \tag{3}
\end{equation*}
$$

because $|\beta|<1$ while $2^{a} \geq 1$. Thus

$$
\frac{\alpha^{n} 5^{-c}}{\sqrt{5}}-1=\frac{2^{a}}{5^{c}}+\frac{3^{b}}{5^{c}}+\frac{\beta^{n}}{5^{c} \sqrt{5}}
$$

yields

$$
\left|\frac{\alpha^{n} 5^{-c}}{\sqrt{5}}-1\right|<\frac{3}{5^{0.3 c}},
$$

where we use that $2<\sqrt{5}, 3<5^{0.7}$ and $c \geq$ $\max \{a, b\}$. Therefore,

$$
\begin{equation*}
\left|e^{\Lambda_{F}}-1\right|<\frac{3}{5^{0.3 c}} \tag{4}
\end{equation*}
$$

where $\Lambda_{F}=n \log \alpha-(2 c+1) \log \sqrt{5}$. By (3), $\Lambda_{F}>$ 0 and in particular $e^{\Lambda_{F}} \neq 1$. Thus $\Lambda_{F}<e^{\Lambda_{F}}-1$ and so

$$
\begin{equation*}
\log \Lambda_{F}<\log 3-0.48 c \tag{5}
\end{equation*}
$$

In order to apply Lemma 1, we take

$$
\alpha_{1}:=\sqrt{5}, \alpha_{2}:=\alpha, b_{1}:=2 c+1, b_{2}:=n
$$

For this choice, we have $D=2, \quad h\left(\alpha_{1}\right)=$ $\log \sqrt{5}<0.81$ and $h\left(\alpha_{2}\right)=(\log \alpha) / 2<0.25$. In conclusion, $\log A_{1}:=0.81$ and $\log A_{2}:=0.25$ are suitable choices. We also obtain the estimate

$$
\alpha^{n-2}<F_{n}=2^{a}+3^{b}+5^{c}<2 \cdot 5^{c}
$$

which implies that $n<3.4 c+3.5$ (as we know that $2^{a}+3^{b} \leq 2^{c}+3^{c}<5^{c}$). Thus we have

$$
b^{\prime}=\frac{2 c+1}{0.5}+\frac{n}{1.62}<6.1 c+4.2
$$

As α and 5 are multiplicatively independent, we have, by Lemma 1 , that
(6) $\log \left|\Lambda_{F}\right|>-58.97$

$$
\cdot(\max \{\log (6.1 c+4.2)+0.38,11\})^{2}
$$

We now combine (5) and (6) to get

$$
\begin{aligned}
& c< 122.86 \\
& \quad \cdot(\max \{\log (6.1 c+4.2)+0.38,11\})^{2}+\log 3
\end{aligned}
$$

and so $c<17585$ and $n<59793$.
Since $0<\Lambda_{F}<3 / 5^{0.3 c}$, we can rewrite this as

$$
0<n \log \alpha-c \log 5+\log (1 / \sqrt{5})<3 \cdot(1.6)^{-c}
$$

Since $c>(n-3.5) / 3.4>0.29 n-1.03$, we obtain (dividing by $\log 5$)

$$
\begin{equation*}
0<n \gamma-c+\mu<3.1 \cdot(1.14)^{-n} \tag{7}
\end{equation*}
$$

with $\gamma:=\log \alpha / \log 5$ and $\mu:=\log (1 / \sqrt{5}) / \log 5=$ $-1 / 2$.

We claim that γ is irrational. In fact, if $\gamma=p / q$, then $\alpha^{2 q} \in \mathbf{Q}$, which is an absurdity. Let q_{n} be the denominator of the n-th convergent of the continued fraction of γ. Taking $M:=59793$, we have

$$
q_{12}=369777>6 M
$$

and then $\quad \epsilon:=\left\|\mu q_{12}\right\|-M\left\|\gamma q_{12}\right\|=0.44198 \ldots$ Note that the conditions to apply Lemma 2 are fulfilled for $A=3.1$ and $B=1.14$, and hence there is no solution to inequality (7) (and then no solution to the Diophantine equation (1)) for n in the range

$$
\left[\left\lfloor\frac{\log \left(A q_{12} / \epsilon\right)}{\log B}\right\rfloor+1, M\right)=[113,59793)
$$

Thus $n \leq 112$ and the estimate $5^{c}<F_{n} \leq F_{112}$ yields $c \leq 33$.

In order to still decrease the upper bound for c, we note that $\nu_{5}\left(F_{n}-2^{a}-3^{b}\right)=c$. To get an upper bound for this 5 -adic valuation, we need to exclude the trivial cases when $F_{n}-2^{a}-3^{b}=0 \quad$ (e.g. $(n, a, b)=(5,1,1)$ giving an infinite valuation), because clearly they don't give any solution. Thus, Mathematica returns $\nu_{5}\left(F_{n}-2^{a}-3^{b}\right) \leq 6$, for $n \leq$ $112,0 \leq \max \{a, b\} \leq 33$. Therefore $c \leq 6$ and then $n \leq 17$.

Finally, we use a program written in Mathematica to find the solutions of Eq. (1) in the range $0 \leq \max \{a, b\} \leq c \leq 6$ and $n \leq 17$. Quickly, the program returns the following solutions

$$
(n, a, b, c) \in\{(4,0,0,0),(6,1,0,1)\}
$$

This completes the proof.
4. Proof of the Theorem 1.2. By combining Binet formula together with (2), we get

$$
\begin{equation*}
\alpha^{n}-5^{c}=2^{a}+3^{b}-\beta^{n}>0 \tag{8}
\end{equation*}
$$

and similarly as in the proof of previous theorem, we obtain

$$
\left|e^{\Lambda_{L}}-1\right|<\frac{3}{5^{0.3 c}}
$$

where $\Lambda_{L}:=n \log \alpha-c \log 5$. The estimates $\Lambda_{L}>0$ and $\Lambda_{L}<e^{\Lambda_{L}}-1$ lead to

$$
\begin{equation*}
\log \left|\Lambda_{L}\right|<\log 3-0.48 c \tag{9}
\end{equation*}
$$

To apply Lemma 1 , we take

$$
D=2, b_{1}=c, b_{2}=n, \alpha_{1}=5, \alpha_{2}=\alpha
$$

We choose $\log A_{1}=1.61$ and $\log A_{2}=0.25$. So we get

$$
b^{\prime}=\frac{c}{0.5}+\frac{n}{3.22}<3.1 c+0.8
$$

where we use $n<3.4 c+2.5$, which is obtained from $\alpha^{n-1}<L_{n}<2 \cdot 5^{c}$.

As α and 5 are multiplicatively independent, by Lemma 1 we get
(10) $\log \left|\Lambda_{L}\right| \geq-116.57$

$$
\cdot(\max \{\log (3.1 c+0.8)+0.38,11\})^{2}
$$

Now, we combine the estimates (9) and (10) to obtain
(11) $c<242.86$

$$
\cdot(\max \{\log (3.1 c+0.8)+0.38,11\})^{2}+2.3
$$

Therefore inequality (11) gives $c \leq 34790$ and so $n \leq 118289$.

In this case, the reduction method is not useful for reducing the bounds. However, we use the following approach. First, note that $c=$ $\nu_{5}\left(L_{n}-2^{a}-3^{b}\right)$. To get an upper bound for this 5 -adic valuation, we also need to exclude the trivial cases when $L_{n}-2^{a}-3^{b}=0$ (e.g. $(n, a, b)=$ $(3,0,1)$), because it doesn't give any solution. Notice that contrarily to the Fibonacci case, the bounds for n, a and b are very large, more precisely $n \leq 118289$ and $a, b \leq 34790$. Thus, it roughly took for Mathematica 102 hours on 2.5 GHz Intel Core i5 4 GB Mac OSX to return $\nu_{5}\left(L_{n}-2^{a}-3^{b}\right) \leq 26$. Therefore, $c \leq 26$ and then $n \leq 90$.

To finish, we use again Mathematica to find the solutions of Eq. (2) in the range $0 \leq \max \{a, b\} \leq$ $c \leq 26$ and $n \leq 90$. We get the following solutions

$$
(n, a, b, c) \in\{(2,0,0,0),(4,0,0,1),(7,0,1,2)\}
$$

This completes the proof.
5. Final comments. We remark that we can use our approach to prove that if $\left(G_{n}\right)_{n}$ is an linear recurrence sequence (under some weak technical assumptions), then there are only finitely many solutions (and all of them are effectively computable) for the Diophantine equation

$$
G_{n}=p_{1}^{a_{1}}+p_{2}^{a_{2}}+\cdots+p_{k}^{a_{k}}
$$

in integers n, a_{1}, \ldots, a_{k}, with $n>0$ and $0 \leq$ $\max \left\{a_{1}, \ldots, a_{k-1}\right\} \leq a_{k}$, where p_{1}, \ldots, p_{k} are distinct primes previously fixed. However, it is important to notice that for each choice of primes, this study brings a lot of particular techniques.

Acknowledgements. The first author is grateful to CNPq, DPP-UnB and FEMAT-Brazil for the financial support. The second author is supported in part by Purdue University North Central.

References

[1] Y. Bugeaud, M. Mignotte and S. Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math. (2) 163 (2006), no. 3, 969-1018.
[2] Y. Bugeaud, M. Mignotte, F. Luca, and S. Siksek, Fibonacci numbers at most one away from a perfect power, Elem. Math. 63 (2008), no. 2, 65-75.
[3] Y. Bugeaud, M. Mignotte and S. Siksek, Sur les nombres de Fibonacci de la forme $q^{k} y^{p}$, C. R. Math. Acad. Sci. Paris 339 (2004), no. 5, 327330.
[4] A. Dujella and A. Pethő, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 195, 291306.
[5] T. Koshy, Fibonacci and Lucas numbers with applications, Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2001.
[6] M. Laurent, Linear forms in two logarithms and
interpolation determinants. II, Acta Arith. 133 (2008), no. 4, 325-348.
[7] F. Luca, Fibonacci numbers of the form $k^{2}+k+2$, in Applications of Fibonacci numbers, Vol. 8 (Rochester, NY, 1998), 241-249, Kluwer Acad. Publ., Dordrecht, 1999.
[8] F. Luca and L. Szalay, Fibonacci numbers of the form $p^{a} \pm p^{b}+1$, Fibonacci Quart. 45 (2007), no. 2, 98-103.
[9] F. Luca and P. Stănică, Fibonacci numbers of the form $p^{a} \pm p^{b}$, Congr. Numer. 194 (2009), 177183.
[10] D. Marques and A. Togbé, Terms of a linear recurrence sequence which are sum of powers of a fixed integer. (Preprint).
[11] A. Pethő and R. F. Tichy, S-unit equations, linear recurrences and digit expansions, Publ. Math. Debrecen 42 (1993), no. 1-2, 145-154.
[12] N. Robbins, Fibonacci numbers of the forms $p X^{2} \pm 1, p X^{3} \pm 1$, where p is prime, in Applications of Fibonacci numbers (San Jose, CA, 1986), 77-88, Kluwer Acad. Publ., Dordrecht, 1988.

[^0]: 2010 Mathematics Subject Classification. Primary 11B39, 11J86.
 *) Departamento de Matemática, Universidade de Brasília, Brasília-DF, Brazil.
 **) Department of Mathematics, Purdue University North Central, 1401 S, U.S. 421, Westville, IN 46391, USA.

