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Abstract: We study the growth of solutions of a certain difference equations, and study

the uniqueness question of entire functions of finite orders sharing an entire function of smaller

order with their shifts. The uniqueness results in this paper also extend and improve

Theorem 1 [11].
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1. Introduction and main results. In

1977, Rubel and Yang [20] proved that if an entire

function f shares two distinct finite values CM with

its derivative f 0, then f ¼ f 0. What can be said

about the relationship between f and f 0, if an entire

function f shares one finite value a CM with its

derivative f 0? In 1996, Brück [3] made the con-

jecture that if f is a nonconstant entire function of

hyper-order �2ðfÞ <1, where �2ðfÞ is not a positive

integer, and if f and f 0 share one finite value a CM,

then f � a ¼ cðf 0 � aÞ for some constant c 6¼ 0. If

a ¼ 0, the above conjecture was proved by Brück [3].

Brück [3] also proved the above conjecture is true,

provided that a 6¼ 0 and Nðr; 1=f 0Þ ¼ Sðr; fÞ, where

f is a nonconstant entire function. In 2005, Al-

Khaladi [1] showed that the conjecture remains true

for a nonconstant meromorphic function f , provid-

ed that Nðr; 1=f 0Þ ¼ Sðr; fÞ. But the conjecture is

still an open question by now.

Recently the value distribution theory of

difference polynomials, Nevanlinna characteristic

of fðzþ �Þ, Nevanlinna theory for the difference

operator and the difference analogue of the lemma

on the logarithmic derivative has been established

(see [4,7,8,13,14]). Using these theories, uniqueness

questions of meromorphic functions sharing values

with their shifts have been recently treated as well

(see [10,11,16,17,22]).

Throughout this paper, by meromorphic func-

tions we will always mean meromorphic functions in

the complex plane. We adopt the standard nota-

tions of the Nevanlinna theory of meromorphic

functions as explained in [9,12,21]. Let f and g be

two nonconstant meromorphic functions, and let a

be a value in the extended plane. We say that f and

g share the value a CM, provided that f and g have

the same a-points with the same multiplicities. We

say that f and g share the value a IM, provided that

f and g have the same a-points ignoring multi-

plicities (see [21]). Suppose that b is a meromorphic

function. If f � b and g� b share 0 CM, we say that

f and g share b CM. If f � b and g� b share 0 IM, we

say that f and g share b IM. In addition, we denote

by �ðfÞ, �ðfÞ, �2ðfÞ and �ðfÞ the lower order of f ,

the order of f , the hyper-order of f and the expo-

nent of convergence of zeros of f respectively (see

[9,12,21]). If �ðfÞ ¼ �ðfÞ, we say that f is of regular

growth. We also need the following definition:

Definition 1.1 ([21, Theorem 2.1 and Defini-

tion 2.1]). Let f be a transcendental meromorphic

function in the complex plane such that �ðfÞ ¼
� � 1. A complex number a is said to be a Borel

exceptional value if

lim sup
r�!1

logþ n r; 1
f�a

� �
log r

¼ lim sup
r�!1

logþN r; 1
f�a

� �
log r

< �:

In this paper, we will consider the growth of

entire functions sharing an entire function of small-

er order with their shifts, and study the uniqueness

question of entire functions sharing an entire

function of smaller order with their shifts.
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We recall the following result which was given

by Heittokangas, Korhonen, Laine, Rieppo and

Zhang:

Theorem A ([11, Theorem 1]). Let f be a

nonconstant meromorphic function of finite order

�ðfÞ :¼ lim sup
r!1

logT ðr; fÞ
log r

< 2;ð1:1Þ

and let � be a nonzero complex number. If fðzþ �Þ
and fðzÞ share a finite complex value a CM, then

fðzþ �Þ � a ¼ cðfðzÞ � aÞ for all z 2 C, where c is

some nonzero complex number.

The following example shows that the assump-

tion (1.1) of Theorem A is necessary:

Example A ([11]). Let fðzÞ ¼ ez2 þ 1, and

let � be a nonzero finite complex value. Then

it immediately yields that fðzþ �Þ � 1 ¼
ðfðzÞ � 1Þe2�zþ�2

for all z 2 C. Moreover, we find

that Nðr; 1=f � 1Þ ¼ 0 and so �ðf � 1Þ < �ðfÞ.
Regarding Theorem A and Example A, we now

consider the growth of solutions of the difference

equation

fðzþ �Þ � aðzÞ ¼ ðfðzÞ � aðzÞÞe�ðzÞ;ð1:2Þ

where � and a are entire functions, a is such that

�ðaÞ < �ðfÞ and �ðf � aÞ < �ðfÞ? In this direction,

we will prove the following result:

Theorem 1.1. Suppose that f is a noncon-

stant entire solution of the difference equation

fðzþ �Þ � aðzÞ ¼ ðfðzÞ � aðzÞÞeP ðzÞ;ð1:3Þ

where a is an entire function such that �ðaÞ < �ðfÞ,
P is a nonconstant polynomial. If �ðf � aÞ < �ðfÞ,
then �ðfÞ ¼ 1þ degðP Þ.

We also get the following result to improve

Theorem A:

Theorem 1.2. Let f be a nonconstant entire

function such that �ðfÞ < 2, let a 6� 0 be an entire

function such that �ðaÞ < �ðfÞ, and let � be a

nonzero complex number. If fðzÞ � aðzÞ and

fðzþ �Þ � aðzÞ share 0 CM, then fðzþ �Þ � aðzÞ ¼
cðfðzÞ � aðzÞÞ for some nonzero constant c.

Proceeding as in the proof of Theorem 1.2, we

can get the following result:

Theorem 1.3. Let f be a transcendental

entire function such that �ðfÞ < 2, let � be a nonzero

complex number, and let Q be a nonzero polynomial.

If fðzÞ �QðzÞ and fðzþ �Þ �QðzÞ share 0 CM, then

fðzþ �Þ �QðzÞ ¼ cðfðzÞ �QðzÞÞ for some nonzero

constant c.

2. Some lemmas. The following lemmas

will be used in the proof of main results in this

paper:

Lemma 2.1 ([4, Theorem 2.1]). Let f be a

transcendental meromorphic function of a order

�ðfÞ <1, and let � be a nonzero complex number.

Then

T ðr; fðzþ �ÞÞ ¼ T ðr; fðzÞÞ þOðr�ðfÞ�1þ"Þ þOðlog rÞ;

as r!1, where " is any positive number.

Lemma 2.2 ([21, Theorem 2.11]). Let f be a

transcendental meromorphic function in the com-

plex plane such that �ðfÞ > 0. If f has two distinct

Borel exceptional values in the extended complex

plane, then �ðfÞ ¼ �ðfÞ and �ðfÞ is a positive integer

or 1.

Lemma 2.3 ([5, Theorem 2.1]). Let f be a

nonconstant meromorphic function of an order

�ðfÞ ¼ � <1, and let �1 and �2 be, respectively,

the exponent of convergence of the zeros and poles of

f. Then for any " > 0, there exists a set E � ð1;1Þ
of jzj ¼ r of a finite logarithmic measure, such that

fðzþ �Þ
fðzÞ ¼ exp �

f 0ðzÞ
fðzÞ þOðr

�þ"Þ
� �

holds for r 62 E [ ½0; 1�, where � ¼ maxf�� 2; 2��
2g if � < 1 and � ¼ maxf�� 2; �� 1g if � � 1 and

� ¼ maxf�1; �2g.
Lemma 2.4 ([6, Corollary 1]). Let f be tran-

scendental entire function of finite order �, let � ¼
fðk1; j1Þ; ðk2; j2Þ; 	 	 	 ; ðkm; jmÞg denote a finite set of

distinct pairs of integers that satisfy ki > ji for

i ¼ 1; 2; 	 	 	 ;m, and let " > 0 be a given constant.

Then, there exists a subset E � ð1;1Þ that has a

finite logarithmic measure, such that for all z

satisfying jzj 62 E [ ½0; 1� and for all ðk; jÞ 2 �, we

have

f ðkÞðzÞ
f ðjÞðzÞ

����
���� � jzjðk�jÞð��1þ"Þ:

Lemma 2.5 ([18]). Let QðzÞ ¼ anznþ an�1z
n�1

þ 	 	 	 þ a1zþ a0, where n is a positive integer and

an ¼ �nei�n , �n > 0, �n 2 ½0; 2	Þ. For any given

positive number " satisfying 0 < " < 	
4n, consider

2n angles:

Sj :�
�n

n
þ ð2j� 1Þ

	

2n
þ " < �

< �
�n

n
þ ð2jþ 1Þ

	

2n
� ";
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where j ¼ 0; 1; 	 	 	 ; 2n� 1. Then there exists a posi-

tive number R ¼ Rð"Þ such that for jzj ¼ r > R,

RefQðzÞg > �nð1� "Þrn sinðn"Þ if z 2 Sj where j is

even, while RefQðzÞg < ��nð1� "Þrn sinðn"Þ if z 2
Sj where j is odd.

Lemma 2.6 ([15, Lemma 2.5]). Suppose that

f is a transcendental entire function of a finite order

�ðfÞ ¼ � <1, and that a set Er � Rþ has a finite

logarithmic measure. Then, there exists a sequence

of positive numbers rk 62 Er, rk �!1 such that

for given " > 0, as rk sufficiently large, we have

r��"k < 
ðrk; fÞ < r�þ"k and exp r��"k < Mðrk; fÞ <
exp r�þ"k .

Lemma 2.7 ([19, Corollary 1]). Let f be an

entire function of finite order and let fwng be

an unbounded sequence. Assume that
S1
n¼1

fz : fðzÞ ¼

wng has only k <1 distinct limiting directions, then

fðzÞ is a polynomial of degree at most k.

Lemma 2.8 ([4, Theorem 8.2]). Let f be a

meromorphic function, let � be a nonzero complex

number, and let � > 1 and " > 0 be given real

constants, then there exists a subset E � ð1;1Þ of a

finite logarithmic measure, such that for all jzj 62
E [ ½0; 1� we have

log
fðzþ �Þ
fðzÞ

����
����

����
����

� A
T ð�r; fÞ

r
þ
nð�rÞ
r

logð�rÞ logþ nð�rÞ
� �

;

where A is a positive constant which depends only on

� and �, nðtÞ ¼ nðt; fÞ þ nðt; 1=fÞ.
Lemma 2.9 ([21, Theorem 2.1]). Let f be a

transcendental meromorphic function with infinitely

many zeros and let � be the exponent of convergence

of zeros of f. Then

lim sup
r�!1

logNðr; 1=fÞ
log r

¼ lim sup
r�!1

lognðr; 1=fÞ
log r

¼ �:

3. Proof of theorems.

Proof of Theorem 1.1. First of all, by (1.3)

and the assumption �ðaÞ < �ðfÞ <1 we deduce

�ðeP Þ � �ðfÞ <1. Therefore P is a polynomial with

degree degðP Þ � �ðfÞ. Next we set

P ðzÞ ¼ pmzm þ pm�1z
m�1 þ 	 	 	 þ p1zþ p0;ð3:1Þ

where pm; pm�1; 	 	 	 ; p1; p0 are complex numbers and

pm ¼ �mei�m 6¼ 0, �m > 0, �m 2 ½0; 2	Þ, m � 1 is a

positive integer. From (1.3), (3.1) and Lemma 2.1

we can deduce �ðfÞ � �ðeP Þ ¼ m � 1. From �ðaÞ <

�ðfÞ we have �ðfÞ ¼ �ðf � aÞ. Suppose that �ðfÞ >
1. Then, by Lemma 2.2, the assumption �ðf � aÞ <
�ðfÞ <1 and �ðfÞ � 2 implies that �ðf � aÞ ¼
�ðfÞ ¼: l � 2 is a positive integer. By Lemma 2.3

and �ðfÞ � 2 we know that there exists some set

E � Rþ of finite logarithmic measure such that

fðzþ �Þ � aðzþ �Þ
fðzÞ � aðzÞ

f1þ oð1Þgð3:2Þ

¼ exp �
f 0ðzÞ � a0ðzÞ
fðzÞ � aðzÞ

þOðr�þ"Þ
� �

;

as jzj ¼ r 62 E and r!1, where � is a constant

satisfying � ¼ maxf�ðf � aÞ � 2; �ðf � aÞ � 1g. Let

z1; z2; 	 	 	 ; zn be nonzero zeros of fðzÞ � aðzÞ, and

each zero is repeated as many times as its multi-

plicity. Then

fðzÞ � aðzÞ ¼ egðzÞzm0

Y1
n¼1

Emn

z

zn

� �
¼: hðzÞegðzÞ;ð3:3Þ

where m0 � 0 is an integer,
Q1
n¼1

Emn

z
zn

� �
is the

canonical product of fðzÞ (see [12, pp. 6–7]), gðzÞ

is an entire function, hðzÞ ¼ zm0
Q1
n¼1

Emn
z
zn

� �
. From

Ash [2, Theorem 4.3.6] we have �ðhÞ ¼ �ðhÞ ¼
�ðf � aÞ. This together with (3.3) and the assump-

tions �ðf � aÞ < �ðfÞ <1 and �ðaÞ < �ðfÞ implies

that �ðfÞ ¼ �ðf � aÞ ¼ �ðegÞ ¼ l. Therefore, gðzÞ
is a nonconstant polynomial with degree degðgÞ ¼
l. Let

gðzÞ ¼: qlz
l þ ql�1z

l�1 þ 	 	 	 þ q1zþ q0;ð3:4Þ

where ql; ql�1; 	 	 	 ; q1; q0 are complex numbers and

ql 6¼ 0. From (3.3) and (3.4) we have

f 0ðzÞ � a0ðzÞ
fðzÞ � aðzÞ

¼
h0ðzÞ
hðzÞ

þ lqlzl�1ð1þ oð1ÞÞ;ð3:5Þ

as jzj ! 1, hðzÞ 6¼ 0 and jzj 62 E. From (3.2) and

(3.5) we have

fðzþ �Þ � aðzþ �Þ
fðzÞ � aðzÞ f1þ oð1Þgð3:6Þ

¼ exp �
h0ðzÞ
hðzÞ þ l�qlz

l�1ð1þ oð1ÞÞ
� �

;

as jzj ! 1, hðzÞ 6¼ 0 and jzj 62 E. Noting that

�ðhÞ ¼ �ðhÞ ¼ �ðf � aÞ < �ðfÞ ¼ l, we can see from

Lemma 2.4 that there exists some subset ~EE � ð1;1Þ
that has finite logarithmic measure, we assume

w. l. o. g. E � ~EE such that for all z satisfying

jzj 62 ~EE [ ½0; 1�, we have
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�
h0ðzÞ
hðzÞ

����
���� � j�jjzj�ðf�aÞ�1þ" ¼ ofl�qlzl�1g:ð3:7Þ

From (3.7) we can see that (3.2) can be rewritten as

fðzþ �Þ � aðzþ �Þ
fðzÞ � aðzÞ f1þ oð1Þgð3:8Þ

¼ expfl�qlzl�1ð1þ oð1ÞÞg;
as jzj 62 ~EE [ ½0; 1�. Next we set �ql ¼ �lei#l 6¼ 0,

�l > 0. For given sufficiently small positive number

" satisfying 0 < " < 	
4l, we consider 2l angles:

Sj :�
#l

l
þ ð2j� 1Þ

	

2l
þ " < �ð3:9Þ

< �
#l

l
þ ð2jþ 1Þ

	

2l
� ";

where j ¼ 0; 1; 	 	 	 ; 2l� 1. Then, from (3.9) and

Lemma 2.5 we can see that there exists some

positive number R0 ¼ R0ð"Þ such that for every z

satisfying z 2 Sj1
and jzj > R0, where and in what

follows, j1 2 f0; 1; 	 	 	 ; 2l� 1g denotes an even inte-

ger, we have

RefgðzÞg > �lð1� "Þrl sinðl"Þ;ð3:10Þ

and such that for every z satisfying z 2 Sj2
and

jzj > R0, where and in what follows, j2 2
f0; 1; 	 	 	 ; 2l� 1g denotes an odd integer, we have

RefgðzÞg < ��lð1� "Þrl sinðl"Þ:ð3:11Þ

Noting that a is an entire function, we can get from

Lemma 2.1 that �ðaðzþ �ÞÞ ¼ �ðaðzÞÞ < �ðfÞ. Com-

bining this with �ðfÞ ¼ l � 2, we have

�ðaðzþ �Þ � aðzÞÞ � �ðaðzÞÞ < l� ";

where " is a sufficiently small positive number.

Hence

lim

z2Sj1
jzj!1

Mðjzj; aðzÞÞ þMðjzj; aðzþ �ÞÞ
exp jzjl�"

¼ 0:ð3:12Þ

From (3.10) and (3.12) we have

fðzþ �Þ � aðzÞ
fðzÞ � aðzÞ

¼ fðzþ �Þ � aðzþ �Þ
fðzÞ � aðzÞ

þ oð1Þ;ð3:13Þ

as z 2 Sj1
and jzj ! 1. From (1.3), (3.8) and (3.13)

we deduce

eP ðzÞ ¼
fðzþ �Þ � aðzÞ
fðzÞ � aðzÞð3:14Þ

¼ expfl�qlzl�1ð1þ oð1ÞÞg þ oð1Þ;
as z 2 Sj1

, jzj 62 E [ ½0; 1� and jzj ! 1. Next we let

�ql ¼ �l�1e
i#l�1 , where �l�1 > 0. For given sufficient-

ly small positive number " satisfying 0 < " < 	
4l�4,

we consider 2ðl� 1Þ angles ŜSj:

�
#l�1

l� 1
þ
ð2j� 1Þ	

2l� 2
þ " < �ð3:15Þ

< �
#l�1

l� 1
þ
ð2jþ 1Þ	

2l� 2
� ";

where 0 � j � 2l� 3. Then, from (3.15) and

Lemma 2.5 we can see that there exists some

positive number R0 ¼ R0ð"Þ such that for every z

satisfying z 2 ŜSk1
and jzj > R0, where and in what

follows, k1 2 f0; 1; 	 	 	 ; 2l� 3g denotes an even in-

teger, we have

Ref�qlzl�1g > �l�1ð1� "Þrl�1 sinððl� 1Þ"Þ;ð3:16Þ

and such that for every z satisfying z 2 ŜSk2
and

jzj > R0, where and in what follows, k2 2
f0; 1; 	 	 	 ; 2l� 3g denotes an odd integer, we have

Ref�qlzl�1g < ��l�1ð1� "Þrl�1 sinððl� 1Þ"Þ:ð3:17Þ

We discuss the following two cases:

Case 1. Suppose that there exist some j1 2
f0; 1; 	 	 	 ; 2l� 1g and some k1 2 f0; 1; 	 	 	 ; 2l� 3g
such that

Sj1
\ ŜSk1

6¼ ;:ð3:18Þ

Then, from (3.10) and (3.16) we deduce from (3.14)

and l � 2 that degðP Þ � l� 1. On the other hand,

from (3.1), (3.10), (3.14) and (3.16) we have

jeP ðzÞj ¼ jePmzmð1þoð1ÞÞjð3:19Þ
¼ e�mrm cosð�mþm�Þð1þoð1ÞÞ ! 1;

as r!1 and z 2 Sj1
\ ŜSk1

, where z ¼ rei� 2
Sj1
\ ŜSk1

. Then, for fixed � such that z ¼ rei� 2
Sj1
\ ŜSk1

, as r!1, we have

e
�mr

m cosð�mþm�Þ
2 � jeP ðzÞjð3:20Þ

� 2 expflj�jjqljjzjl�1ð1þ oð1ÞÞg
� 2 expf2lj�jjqljjzjl�1g:

From (3.20) we have m � l� 1. This together with

m ¼ degðP Þ and degðP Þ � l� 1 reveals the conclu-

sion of Theorem 1.1.

Case 2. Suppose that for every j1 satisfying

j1 2 f0; 1; 	 	 	 ; 2l� 1g and every k1 2 f0; 1; 	 	 	 ;
2l� 3g we have

Sj1
\ ŜSk1

¼ ;:ð3:21Þ

Then, it follows from (3.21) that for every j1
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satisfying j1 2 f0; 1; 	 	 	 ; 2l� 1g, there exists some

k2 2 f0; 1; 	 	 	 ; 2l� 3g such that

Sj1
� ŜSk2

:ð3:22Þ

By (3.9), (3.10), (3.14), (3.15), (3.17) and

Phragmén-Lindelöf principle (see [18, p. 270]) we

can deduce that l�qlz
l�1 is a constant, which is

impossible. Finally we suppose that �ðfÞ ¼ l ¼ 1.

Then, in the same manner as in the proof of

Theorem 1.1 we have (3.2)–(3.8). From (1.3),

(3.8) and �ðfÞ ¼ l ¼ 1 we can find that eP is a

nonzero constant, which reveals the conclusion of

Theorem 1.1. This proves Theorem 1.1.

Proof of Theorem 1.2. By the assumptions

of Theorem 1.2 we have (1.2). From (1.2),

Lemma 2.1 and the assumption �ðaÞ < �ðfÞ <1
we can deduce �ðe�Þ � �ðfÞ <1, which implies

that � ¼: P is a polynomial, and so (1.2) can be

rewritten as (1.3). From (1.3) and Lemma 2.1 we

have

T ðr; eP ðzÞÞð3:23Þ
� T ðr; fðzÞÞ þ T ðr; fðzþ �ÞÞ þ 2T ðr; aðzÞÞ
þOð1Þ
� T ðr; fðzÞÞ þ T ðr; fðzþ �ÞÞ þ 2r�ðaÞþ"

� 2T ðr; fðzÞÞ þOðr�ðfÞ�1þ"Þ þ 2r�ðaÞþ"

þOðlog rÞ;
as r!1. Noting that �ðaÞ < �ðfÞ, we can get

from (3.23) that �ðeP Þ � �ðfÞ <1, which implies

that P is a polynomial. If P is a constant, from (1.3)

we get the conclusion of Theorem 1.2. Next we

suppose that P is a nonconstant polynomial. Then

we have (3.1). By Lemma 2.6 we know that there

exist some infinite sequence of points zrk ¼ rkei�k ,
where �k 2 ½0; 2	Þ, such that jfðzrkÞj ¼Mðrk; fÞ, and

such that for any given positive number ", as rk !
1 and rk 62 E, where E � Rþ is a subset with finite

logarithmic measure, we have

exp r
�ðfÞ�"
k < jfðzrkÞj < exp r

�ðfÞþ"
k :ð3:24Þ

Noting that �ðaÞ < �ðfÞ <1, we can get from

(3.24) that

lim
rk 62E
rk!1

Mðrk; aÞ
jfðzrkÞj

¼ 0:ð3:25Þ

From (1.3), (3.24) and (3.25) we have

eP ðzrk Þ ¼
fðzrk þ �Þ � aðzrkÞ
fðzrkÞ � aðzrkÞ

ð3:26Þ

¼
fðzrk þ j�Þ
fðzrkÞ

1þ oð1Þf g;

as rk 62 E and rk !1. Given a positive number ",

we set

T" ¼
[m�1

j¼0

fz : jarg z� �jj < "g;ð3:27Þ

where

�j ¼
2j

m
þ

1

2m

� �
	�

�m

m
; 0 � j � m� 1:ð3:28Þ

Next we let wk ¼ fðzrkÞ, k ¼ 1; 2; 	 	 	 . Then fwkg is

an unbounded sequence. We discuss the following

two cases:

Case 1. Suppose that T" are the only m

distinct limiting directions of
S1
k¼1

fz : fðzÞ ¼ wkg.

Then, from Lemma 2.7 and the assumption �ðfÞ <
1 we can see that f is a nonconstant polynomial,

which contradicts the assumption �ðfÞ > 0.

Case 2. Suppose that there exists some suf-

ficiently small positive number "0 and there exist

some infinite subsequence of the points zrk , say itself

such that

fzrkg � C n T"0
:ð3:29Þ

Noting that cosð�m þm�jÞ ¼ 0 for 0 � j � m� 1,

we can deduce from (3.26)–(3.29) that there exists

a positive number �ðm; "0Þ 2 ð0; �mÞ that depends

only upon m and "0 such that

jReP ðzrkÞj � �ðm; "0Þrmkð3:30Þ

or

jReP ðzrkÞj � ��ðm; "0Þrmk ;ð3:31Þ

as zrk 2 C n T"0
, rk 62 E and rk �!1. Noting that

�2ðfÞ ¼ 0, we can get from (3.26), (3.30), (3.31),

Lemmas 2.8 and 2.9 that

�ðm; "0Þrmk � jlogjeP ðzrk Þjj

� log
fðzrk þ j�Þ
fðzrkÞ

����
����

����
����þ oð1Þ

and

log
fðzrk þ j�Þ
fðzrkÞ

����
����

����
����þ oð1Þ

�
A1n �rk;

1
fðzÞ

� �
rk

logð�rkÞ logþ n �rk;
1

fðzÞ

� �
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þ
A1T ð�rk; fÞ

rk

� A1ð�ðfÞ þ "Þ��ðfÞþ"r�ðfÞ�1þ"
k log2ð�rkÞ

þ A1�
�ðfÞþ"r

�ðfÞ�1þ"
k ;

as zrk 2 C n T"0
, rk 62 E and rk �!1, where � > 1 is

some positive number, A1 is some positive constant

that depends on � and �. Combining this with (1.3),

we deduce

�ðeP Þ ¼ m � �ðfÞ � 1:ð3:32Þ

From (3.32) and �ðfÞ < 2 we can see that P is a

constant, which contradicts the above supposition.

Theorem 1.2 is thus completely proved.

4. Concluding remarks. Regarding Theo-

rem 1.1, we now give the following question:

Question 4.1. What can be said about

the relationship between fðzÞ and fðzþ �Þ, if

we remove the assumption ‘‘�ðf � aÞ < �ðfÞ’’ in

Theorem 1.1?

Remark 4.1. If the assumption ‘‘�ðf � aÞ <
�ðfÞ’’ in Theorem 1.1 can indeed be removed, then

Theorem 1.2 follows directly from Theorem 1.1.
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