Absorbent property, Krasner type lemmas and spectral norms for a class of valued fields

Dedicated to the memory of our Professor Nicolae Popescu

By Sever Angel POPESCU

Technical University of Civil Engineering Bucharest, Department of Mathematics and Computer Science, B-ul Lacul Tei 122, sector 2, Bucharest 020396, OP 38, Bucharest, Romania

(Communicated by Kenji FUKAYA, M.J.A., Nov. 12, 2013)

Abstract: Let (K, φ) be a perfect valued field of rank 1, let $\overline{\varphi}$ be an extension of the absolute (multiplicative) value φ to a fixed algebraic closure \overline{K} and let $\|.\|_{\varphi}$ be the corresponding spectral norm on K. Let $(\overline{K}, \|.\|_{\varphi})$ be a fixed completion of $(\overline{K}, \|.\|_{\varphi})$. In this paper we generalize a result of A. Ostrowski [8] relative to the absorbent property of a subfield, from the case of a complete non-Archimedian valued field of characteristic 0 to our ring $(\overline{K}, \|.\|_{\varphi})$ (see Theorem 1, Theorem 4). We also apply these results to discuss in a more general context the following conjecture due to A. Zaharescu (2009): (For any $x, y \in \mathbf{C}_p$ -the complex *p*-adic field, there exists $t \in \mathbf{Q}_p$ -the *p*-adic number field, such that $\mathbf{Q}_p(x, y) = \mathbf{Q}_p(x + ty)$, where \widetilde{L} means the *p*-adic topological closure of a subfield *L* of \mathbf{C}_p in \mathbf{C}_p).

Key words: Valued fields; Krasner Lemma; spectral norms.

Introduction. In [8] (see also [11] or [5]) A. Ostrowski proved the following "mysterious" result: $\langle \text{Let} (K, \varphi) \rangle$ be a perfect complete non-Archimedian valued field relative to a nontrivial multiplicative valuation φ and let $\overline{\varphi}$ be the unique extension of φ to a fixed algebraic closure \overline{K} of K. Let $\alpha \in \overline{K \setminus K}$ and let L be a subfield of \overline{K} which contains K, such that the distance from α to L is strictly less than the distance of α to the nearest conjugate of α . Then L"absorbs" α , i.e., $\alpha \in L \rangle$.

It appears that this result is stronger than the classical Krasner Lemma. We shall prove later (see Section 2) that in fact they are equivalent in a more general context. The main point in proving the above result of Ostrowski or that one of Krasner is the equivariance property of the valuation $\overline{\varphi}$ with respect to the absolute Galois group $G = Gal(\overline{K}/K)$. This means that $\overline{\varphi}(\sigma(x)) = \overline{\varphi}(x)$ for any $x \in \overline{K}$ and $\sigma \in G$ (see [7], [5], or [4]). If (K, φ) is not a henselian field, this $\overline{\varphi}$ can be substituted with a special equivariant norm $\|.\|_{\varphi}$ which extends φ from K to \overline{K} . Now $\overline{\varphi}$ is not unique and a candidate for such a norm is the so called φ -spectral norm (Archimedean or non-Archimedean) defined on \overline{K}

as follows:

$$(0.1) \quad \|x\|_{\omega} = \max\{\overline{\varphi}(\sigma(x)) : \sigma \in G\}, x \in \overline{K}.$$

(See also [1], [2], [9], [10]). In the case of a henselian field (K, φ) , since for any $\sigma \in G$, $\overline{\varphi} \circ \sigma$ is a new multiplicative absolute value on \overline{K} , one has that $\overline{\varphi} \circ \sigma = \overline{\varphi}$ and then $||x||_{\varphi} = \overline{\varphi}(x)$ for any $x \in \overline{K}$. It is very easy to see that the φ -spectral norm depends only on φ and not on the fixed extension $\overline{\varphi}$ of it (see also [1]). This is true because any other valuation on \overline{K} which extends φ is of the form $\overline{\varphi} \circ \sigma$ for a *K*-automorphism σ of \overline{K} (see for instance [7], or [5]). The philosophy of this paper is to substitute the unique extension $\overline{\varphi}$ of φ in the complete or henselian cases with the above defined φ -spectral norm in the case of a general separable valued field of rank 1 (non-Archimedian or Archimedean).

Some other interesting results connected with this paper one can find, for the particular case $K = \mathbf{Q}_p$ -the *p*-adic number field, in [6] and in [3].

By using the above defined φ -spectral norm $\|.\|_{\varphi}$ on a fixed algebraic closure \overline{K} of K, in both cases, non-Archimedian or Archimedean, we generalize Ostrowski's and Krasner's results (Theorem 1 and Theorem 2) for the valued field $(\overline{K}, \|.\|_{\varphi})$. If instead of $(\overline{K}, \|.\|_{\varphi})$ one takes its completion $(\overline{K}, \|.\|_{\varphi})$ relative to the φ -spectral norm $\|.\|_{\varphi}$, one

²⁰⁰⁰ Mathematics Subject Classification. Primary 12J10, 12J25, 12F09; Secondary 13A18, 12F99.

obtains another two variants for Ostrowki's and Krasner's results, this time for a class of closed subrings of the ring $\widetilde{\overline{K}}$ (Theorem 4 and Corollary 1).

In Section 2 we prove that the class of triplets $(K, \varphi, \|.\|)$, where $\|.\|$ is an arbitrary equivariant (relative to $G = Gal(\overline{K}/K)$ norm, for which the Ostrowski's absorbent property for closed subrings of $\overline{K}_{\parallel,\parallel}$ (the completion of $(\overline{K}, \parallel,\parallel)$) works, is the same with the class of triplets $(K, \varphi, \|.\|)$ for which Krasner's Lemma works (Theorem 5). In Definition 4 we introduce a new class of triplets $(K, \varphi, \|.\|)$, called *appropriate triples*. Shortly speaking, for such a triplet, any closed subring L of $\overline{K}_{\parallel,\parallel}$ is completely defined by its algebraic part, i.e., L = $L \cap \overline{K}$. They are important because for such triples one could have a Galois type theory which connects the set of closed subfields of $\overline{K}_{\|.\|}$ and the set of closed subgroups of G. Moreover, this last group can be identified with the group of all continuous K-automorphisms of \overline{K} . In 1 we discuss such a situation.

We also discuss the state of art of a Zaharescu's conjecture (Conjecture 1) for a more general case (see Corollary 2).

1. The spectral norm case. Let (K, φ) be a perfect valued field of rank 1, where φ is a nontrivial multiplicative Archimedean or non-Archimedean absolute value on K. Let \overline{K} be a fixed algebraic closure of K and let $\overline{\varphi}$ be a fixed extension of φ to \overline{K} . We define on \overline{K} the following norm, which will be called the φ -spectral norm of \overline{K} (it does not depend on $\overline{\varphi}$!):

(1.1)
$$||x||_{\varphi} = \max\{\overline{\varphi}(\sigma(x)) : \sigma \in G\},\$$

where $x \in \overline{K}$ and $G = Gal(\overline{K}/K)$ is the absolute Galois group of K.

Remark 1. Since any other multiplicative valuation on \overline{K} is of the form $\overline{\varphi} \circ \mu$, where $\mu \in G$ (see [7] or [5]) the φ -spectral norm does not depend on the choice of extension $\overline{\varphi}$ of φ to K. It is not complicated to prove (see also [1]) that this φ spectral norm is indeed a K-norm on \overline{K} :

i) ||x||_φ = 0 if and only if x = 0 for any x in K.
ii) ||αx||_φ = φ(α)||x||_φ for any x in K and for any α ∈ K.

iii) $||xy||_{\varphi} \leq ||x||_{\varphi} ||y||_{\varphi}$ for any x and y in \overline{K} .

$$\begin{split} \text{iv)} & \|x+y\|_{\varphi} \leq \max\{\|x\|_{\varphi}, \|y\|_{\varphi}\}, \text{ if } \varphi \text{ is non-} \\ \text{Archimedean and } & \|x+y\|_{\varphi} \leq \|x\|_{\varphi} + \|y\|_{\varphi}, \text{ if } \varphi \text{ is } \\ \text{Archimedean.} \end{split}$$

v) $\|\sigma(x)\|_{\varphi} = \|x\|_{\varphi}$ for any x in \overline{K} and for any $\sigma \in G$, i.e., the φ -spectral norm is G-equivariant.

Let c_* be equal to 1/2 if φ is Archimedean and $c_* = 1$ if φ is non-Archimedean. Let $L \subset \overline{K}$ be a subfield of the algebraic closure \overline{K} of K such that $K \subset L$. For any $\alpha \in \overline{K}$ we define the φ -spectral distance of α to L as follows:

(1.2)
$$distspec_{\varphi}(L,\alpha) = \inf_{\beta \in L} \|\alpha - \beta\|_{\varphi}.$$

We shall prove later that $\alpha \in L$ if and only if $distspec_{\varphi}(L, \alpha) = 0$. Using a deep idea of Ostrowski ([8], or [5]) and looking at it at a more general level, we find the following result.

Theorem 1 (The absorbent theorem). Let $K \subset L \subset \overline{K}$ as above and let

$$\omega(\alpha) = \min_{\sigma \in G} \Big\{ \|\alpha - \sigma(\alpha)\|_{\varphi} : \alpha \neq \sigma(\alpha) \Big\},\$$

if $\alpha \notin K$ and $\omega(\alpha) = 0$ if $\alpha \in K$. Let now $\alpha \in \overline{K} \setminus K$ such that $distspec_{\varphi}(L, \alpha) < c_*\omega(\alpha)$. Then $\alpha \in L$, i.e., L absorbs α . The same statement is true if instead of the φ -spectral norm $\|.\|_{\varphi}$ we take any φ -norm $\|.\|$ on \overline{K} , which is G-equivariant.

Proof. We assume on contrary that $\alpha \notin L$. Then, by using the classical Galois theory, there exists at least one $\sigma_0 \in G$ such that $\sigma_0(x) = x$ for all $x \in L$ and $\sigma_0(\alpha) \neq \alpha$. a) If φ is a non-Archimedean valuation $(c_* = 1)$ then,

$$distspec_{\varphi}(L,\alpha) < \omega(\alpha) \le \|\alpha - \sigma_0(\alpha)\|_{\varphi}$$
$$\le \max\Big\{\|\alpha - x\|_{\varphi}, \|x - \sigma_0(\alpha)\|_{\varphi}\Big\},$$

for any $x \in L$. Since $\sigma_0(x) = x$ for any $x \in L$ and since (1.3) $\|\alpha - x\|_{\varphi} = \|\sigma_0(\alpha) - \sigma_0(x)\|_{\varphi} = \|\sigma_0(\alpha) - x\|_{\varphi}$,

we finally get:

$$distspec_{\varphi}(L,\alpha) < \omega(\alpha) \le \|\alpha - x\|_{\varphi}$$

for any $x \in L$. Taking infimum on the right, we obtain:

$$distspec_{\varphi}(L,\alpha) < \omega(\alpha) \leq distspec_{\varphi}(L,\alpha),$$

a contradiction. b) If φ is an Archimedean valuation $(c_* = 1/2)$ then:

$$\begin{aligned} distspec_{\varphi}(L,\alpha) &< \frac{1}{2}\omega(\alpha) \leq \frac{1}{2} \|\alpha - \sigma_0(\alpha)\|_{\varphi} \\ &\leq \frac{1}{2} \|\alpha - x\|_{\varphi} + \frac{1}{2} \|x - \sigma_0(\alpha)\|_{\varphi} \end{aligned}$$

But, as in (1.3), one has that

$$\|\alpha - x\|_{\varphi} = \|x - \sigma_0(\alpha)\|_{\varphi}$$

for any $x \in L$. So

$$distspec_{\varphi}(L, \alpha) < \frac{1}{2}\omega(\alpha) \le \|\alpha - x\|_{\varphi}$$

for any $x \in L$. Taking infimum on the right, we get:

$$distspec_{\varphi}(L,\alpha) < \frac{1}{2}\omega(\alpha) \leq distspec_{\varphi}(L,\alpha),$$

a contradiction. Thus, in any of the two cases we obtain a contradiction. So $\alpha \in L$.

Remark 2. Let $K, \overline{K}, L, \alpha$ be as above and assume that $\alpha \in \widetilde{L} \cap \overline{K}$, where \widetilde{L} is the topological completion of L with respect to the φ -spectral norm $\|.\|_{\omega}$. Then $distspec_{\omega}(L, \alpha) = 0$ and, from the last theorem, one has that $\alpha \in L$. This means that L is topologically closed in \overline{K} . But this does not mean that L is complete relative to the φ -spectral norm, i.e., it is not closed in \overline{K} , the completion of \overline{K} relative to the same φ -spectral norm. In other words, its closure in \overline{K} does not contain algebraic elements besides those of L itself. To see that L is not complete in general, let us take $K = \mathbf{Q}_p$ and $L = \overline{K} = \overline{\mathbf{Q}}_p$. Then $\widetilde{L} = \mathbf{C}_p$ and we know (see [4] for instance) that $L \neq L$ in this case. Moreover, it is not difficult to prove that for any infinite extension L of $\mathbf{Q}_{p}, L \neq L$, where L is the topological closure of L in \mathbf{C}_p , the complex *p*-adic number field.

In particular we also get a generalization of the classical Krasner's lemma ([7], [4] or [5]).

Theorem 2 (Krasner's Lemma for \overline{K}). Let $K, \overline{K}, \varphi, \overline{\varphi}$ be as above and let α be an element of $\overline{K} \setminus K$. Let $y \in \overline{K}$ be such that $\|\alpha - y\|_{\varphi} < c_*\omega(\alpha)$, where $\omega(\alpha) = \min_{\sigma \in G} \{\|\alpha - \sigma(\alpha)\|_{\varphi} : \alpha \neq \sigma(\alpha)\}$. Then $K(\alpha) \subset K(y)$.

Proof. It is sufficient to prove that $\alpha \in K(y)$. In view of Theorem 1, it is also sufficient to prove that $distspec_{\varphi}(K(y), \alpha) < c_*\omega(\alpha)$. Since

$$distspec_{\varphi}(K(y), \alpha) \le \|\alpha - y\|_{\varphi} < c_*\omega(\alpha),$$

the desired condition is satisfied and the proof of the theorem is completed. $\hfill \Box$

Let \overline{K} be the completion of \overline{K} with respect to the φ -spectral norm $\|.\|_{\varphi}$. It is easy to see that \overline{K} is in general a ring and that it is a field if and only if $\|.\|_{\varphi}$ is a multiplicative absolute value, i.e., if and only if $\overline{\varphi}$ is the unique extension of φ to \overline{K} , i.e., if and only if (K, φ) is henselian (see also [1]). Since \widetilde{K} , the topological closure of K in \overline{K} , is a completion of (K, φ) , we have enough (infinite) transcendental elements in $\widetilde{\overline{K}}$ over K. $\widetilde{\overline{K}}$ becomes a normed ring as follows. Let $x = \{\widehat{x_n}\}$ be the class of a Cauchy sequence $\{x_n\}$ with respect to the φ -spectral norm on $\overline{K}, x_n \in \overline{K}$ for any $n \in \mathbb{N}$. Since

$$|||x_{n+p}||_{\varphi} - ||x_n||_{\varphi}| \le ||x_{n+p} - x_n||_{\varphi},$$

the sequence $\{\|x_n\|_{\varphi}\}$ is a Cauchy sequence and one can easily define

$$\|x\|_{\varphi}^{\tilde{ef}} \stackrel{def}{=} \lim_{n \to \infty} \|x_n\|_{\varphi}.$$

This definition does not depend on the choice of the Cauchy sequence $\{x_n\}$ in the class of x. Now, if $x \in \overline{K}$, we can embed x in \overline{K} by the following ring morphism $x \rightsquigarrow (x, x, \dots, x, \dots)$. It is easy to see that $\|x\|_{\varphi} = \|x\|_{\varphi}$ for any $x \in \overline{K}$.

Assume in the following that $\overline{K} \neq \overline{K}$, i.e., that there exists at least one element y in \overline{K} which is transcendental over K. Moreover, if $\alpha \in \overline{K}$, $y \in \overline{K}$, transcendental over K, and if $\varepsilon > 0$, the "spectral open ball"

$$B(\alpha,\varepsilon) = \{ z \in \widetilde{\overline{K}} : \| z - \alpha \|_{\varphi}^{\tilde{\varepsilon}} < \varepsilon \}$$

contains an infinite number of transcendental elements of the form: $\alpha + ty$, $t \in K$, with $\varphi(t) < \frac{\varepsilon}{\|y\|_{\varphi}}$. Since φ is not the trivial absolute value, the set

$$\left\{t\in K:\varphi(t)<\frac{\varepsilon}{\|y\|_{\varphi}}\right\}$$

is infinite.

Therefore, one can find in $\overline{\overline{K}}$ subfields $L \subsetneq \overline{K}$ such that

$$distspec[(L,\alpha) = \inf_{z \in L} \{ \|z - \alpha\|_{\varphi}^{\tilde{}} \}$$

is as small as we want. Take for instance $t \in K$ with $\varphi(t) < \frac{\varepsilon}{\|y\|_{\epsilon}}$ and put $L = K(\alpha + ty)$. Then

$$\operatorname{distspec}(L,\alpha) \leq \|\alpha + ty - \alpha\|_{\varphi}^{\tilde{}} = \varphi(t)\|y\|_{\varphi}^{\tilde{}} < \varepsilon.$$

Let us denote by the same letter G the group of all continuous (with respect to $\|.\|_{\varphi}$) automorphisms of \overline{K} over K. Each such automorphism σ is completely determined by its restriction to \overline{K} . Since $\|\sigma(x)\|_{\varphi} = \|x\|_{\varphi}$ for any ring automorphism σ of \overline{K} over K and for any $x \in \overline{K}$, we see that the restriction to \overline{K} of any such ring automorphism of \overline{K} is continuous on \overline{K} , even it is not continuous on \overline{K} . But, given $\mu \in Gal(\overline{K}/K)$, there is a unique extension of μ to a ring continuous automorphism $\widetilde{\mu}$ of \overline{K} over K. In what follows we consider only such continuous extensions. This is why $G = Gal(\overline{K}/K)$.

No. 10]

Theorem 3. For any $\sigma \in G$ and $x \in \overline{K}$ one has that

$$\|\sigma(x)\|_{\varphi}^{\tilde{}} = \|x\|_{\varphi}^{\tilde{}},$$

i.e., $\|.\|_{\omega}^{\tilde{}}$ is an equivariant norm with respect to G.

Proof. Let $x_n \to x$, $x_n \in \overline{K}$, relative to $\|.\|_{\varphi}$. Since σ is continuous, one has that

$$\|\sigma(x_n)\|_{\varphi} \to \|\sigma(x)\|_{\varphi}.$$

But $\|.\|_{\varphi}$ is equivariant with respect to $G = Gal(\overline{K}/K)$ (see Remark 1), so $\|\sigma(x_n)\|_{\varphi} = \|x_n\|_{\varphi}$. Since $x_n \to x$ relative to $\|.\|_{\varphi}$, one has that

$$\|x_n\|_{\varphi} = \|x_n\|_{\varphi} \to \|x\|_{\varphi}.$$

The uniqueness of the limit of a sequence in a metric space implies that

$$\|\sigma(x)\|_{\omega}^{\tilde{}} = \|x\|_{\omega}^{\tilde{}},$$

i.e., the statement of the theorem. $\hfill \Box$

Definition 1. A perfect valued field (K, φ) of rank 1 with a nontrivial absolute value φ is said to be an appropriate field if for any closed subring $L \subset \overline{K}$ one has that

$$L \cap \overline{K} = L.$$

Here \widetilde{M} means the topological closure of M in \overline{K} with respect to the norm $\|.\|_{\omega}$ on $\overline{\widetilde{K}}$.

For instance, if (K, φ) is a perfect complete field, then in [6] it is proved that (K, φ) is an appropriate field.

Remark 3. If (K, φ) is a henselian field then it is an appropriate field.

Example 1. Let $K = \mathbf{Q}$ be the rational number field and let $\varphi = |.|_p$ be the *p*-adic absolute value on \mathbf{Q} for a fixed prime number *p*. Let $\|.\|_p$ be the $|.|_p$ -spectral norm on $\overline{\mathbf{Q}}$, the field of algebraic numbers. Let $(\widetilde{\mathbf{Q}}_p, \|.\|_p)$ be the completion of $\overline{\mathbf{Q}}$ with respect to $\|.\|_p$. Then, Theorem 6.3 of [10] says that $(\mathbf{Q}, |.|_p)$ is an appropriate field which is not henselian.

Remark 4. If (K, φ) is an appropriate field and if for any subring $L, K \subset L \subset \widetilde{\overline{K}}$, one defines:

$$distspec_{\varphi}(L,z) = \inf_{y \in L} \Big\{ \|y - z\|_{\varphi}^{\tilde{}} \Big\},$$

for any $z \in \overline{K}$, the extended spectral distance with respect to φ , then we easily get:

$$\begin{array}{ll} (1.4) & distspec_{\varphi}(L,z) = distspec_{\varphi}(L,z) \\ & = distspec_{\varphi}(\widetilde{L} \cap \overline{K},z) = distspec_{\varphi}(\widetilde{L} \cap \overline{K},z). \end{array}$$

We now extend Theorem 1 to closed subrings $L \subset \overline{K}$ which are not necessarily algebraic over K.

Theorem 4. Let (K, φ) be an appropriate field and L be a closed subring of \overline{K} , $K \subset L$. Let $\alpha \in \overline{K} \setminus K$ such that $distspec_{\varphi}(L, \alpha) < c_*\omega(\alpha)$. Then $\alpha \in L$.

Proof. Assume by contradiction that $\alpha \notin L$. Then $\alpha \notin L \cap \overline{K}$ which is an algebraic extension of K. Being a ring and an algebraic extension of K, it is a field. Then, the classical Galois theory says that there exists $\sigma_0 \in G = Gal(\overline{K}/K)$ such that $\sigma_0(\alpha) \neq \alpha$ and $\sigma_0(x) = x$ for all $x \in L \cap \overline{K}$.

Now the proof follows in the same manner like the proof of Theorem 1 by simply substituting Lwith $L \cap \overline{K}$. Finally we obtain that $\alpha \in L \cap \overline{K}$, i.e., $\alpha \in L$ and the proof of the theorem is completed.

Corollary 1 (Krasner's Lemma for \overline{K}). Let (K, φ) be an appropriate field and let y be an element of \overline{K} . Let α be in $\overline{K} \setminus K$ such that $\|\alpha - y\|_{\varphi} < c_*\omega(\alpha)$, where $\omega(\alpha) = \min_{\sigma \in G} \{\|\alpha - \sigma(\alpha)\|_{\varphi} : \alpha \neq \sigma(\alpha)\}$. Then $K(\alpha) \subset \widetilde{K(y)}$.

The proof of this corollary is similar to the proof of Theorem 2 and we omit it.

Corollary 2 (a primitive element theorem for \overline{K}). Let (K, φ) be an appropriate field and let $\alpha \in \overline{K}, y \in \overline{K}$. Then there exists an infinite number of elements $t \in K$ such that $K(\alpha, y) = K(\alpha + ty)$.

Proof. Since $\alpha + ty \in K(\alpha, y)$ for any $t \in K$, it remains to prove that for some restrictions on $t \in K$ one has that $\alpha \in K(\alpha + ty)$. In Theorem 4 we take $L = K(\alpha + ty)$. If y = 0 we have nothing to prove. The same is true if $\alpha \in K$. Assume that $y \neq 0$ and $\alpha \notin K$. There exists an infinite number of elements $t \neq 0$ in K such that $\varphi(t) < \frac{c_*\omega(\alpha)}{\|y\|_{\varphi}}$ (φ is a nontrivial multiplicative absolute value!). For such a t one has:

$$\begin{split} distspec_{\varphi}(L,\alpha) &\leq \|\alpha + ty - \alpha\|_{\varphi} \\ &= \varphi(t) \|y\|_{\varphi} < c_* \omega(\alpha). \end{split}$$

Let us apply now Theorem 4 and find that $\alpha \in L$ and the theorem is completely proved.

Remark 5. Let $K = \mathbf{Q}_p$, the *p*-adic number field and let $\varphi = |.|_p$ be the usual *p*-adic absolute value on \mathbf{Q}_p . Let $\overline{\mathbf{Q}}_p$ be a fixed algebraic closure of \mathbf{Q}_p and let denote by the same letter φ the unique extension of φ to $\overline{\mathbf{Q}}_p$. Since \mathbf{Q}_p is complete, the corresponding spectral norm on $\overline{\mathbf{Q}}_p$ is exactly φ . Hence, $\overline{\mathbf{Q}}_p$, the completion of $\overline{\mathbf{Q}}_p$ with respect to this last spectral norm is exactly \mathbf{C}_p , the complex *p*-adic number field. Now, if one takes an arbitrary $y \in \mathbf{C}_p$ and an element $\alpha \in \overline{\mathbf{Q}}_p$, then Corollary 2 says that for any *t* small enough $(\varphi(t) < \frac{\omega(\alpha)}{\|y\|_{\varphi}})$, if $y \neq 0$ and $\alpha \notin \mathbf{Q}_p$ one has that $\mathbf{Q}_p(\alpha, y) = \mathbf{Q}_p(\alpha + ty)$. This is a proof of a particular case of an intricate conjecture proposed by Prof. Alexandru Zaharescu (Illinois University) in 2009.

Conjecture 1 (Zaharescu's conjecture). Let x, y be two arbitrary elements in \mathbf{C}_p , the complex p-adic number field. Then there exists $t \in \mathbf{Q}_p$, the p-adic number field, such that $\mathbf{Q}_p(x, y) = \mathbf{Q}_p(x + ty)$. Here, tilde means the topological closure of the corresponding subfield of \mathbf{C}_p with respect to the p-adic topology.

From [6] we know that there exists an element $z \in \mathbf{C}_p$ with $\mathbf{Q}_p(x, y) = \mathbf{Q}_p(z)$, but we do not know if there exists such a z (called a topological generator!) of the particular form z = x + ty, $t \in \mathbf{Q}_p$ like in the primitive element theorem case. Remark 5 says that Zaharescu's conjecture is true if one of the two elements x or y is algebraic over \mathbf{Q}_p . In general we have no answer for this interesting conjecture.

2. The case of a general norm. Let (K, φ) be a perfect valued field with a nontrivial multiplicative valuation φ . Let \overline{K} be a fixed algebraic closure of K and let $\|.\|$ be an equivariant norm on \overline{K} with respect to $G = Gal(\overline{K}/K)$, which extends φ . Let $\overline{\widetilde{K}}_{\|.\|}$ be a completion of \overline{K} relative to $\|.\|$ and let $\|.\|$ be the canonical extension of $\|.\|$ to $\overline{\widetilde{K}}_{\|.\|}$.

Definition 2. We say that the triplet $(K, \varphi, \|.\|)$ has the absorbent property if for any closed subring L of $\widetilde{K}_{\|.\|}, K \subset L$, and for any $\alpha \in \overline{K} \setminus K$ with

$$dist_{\parallel \parallel}(L,\alpha) < c_*\omega(\alpha)$$

one has that $\alpha \in L$. Here

$$dist_{\|.\|}(L,\alpha) = \inf_{y \in L} \Big\{ \|y - \alpha\| \Big\}$$

and $c_* = 1$ or $c_* = \frac{1}{2}$ whenever φ is non-Archimedean or Archimedean respectively.

For instance, if (K, φ) is complete then, relative to the unique extension $\overline{\varphi}$ of φ to \overline{K} the triplet $(K, \varphi, \overline{\varphi})$ has the absorbent property (see [6] and Theorem 4).

Definition 3. Let us preserve the above notation and hypotheses. We say that the triplet

 $(K, \varphi, \|.\|)$ verifies Krasner's Lemma if for any $\alpha \in \overline{K} \setminus K$ and $y \in \overline{K}_{\|.\|}$ with $\|y - \alpha\| < c_* \omega(\alpha)$ one has that $\alpha \in \widetilde{K(y)}$.

Theorem 5. The triplet $(K, \varphi, \|.\|)$ has the absorbent property if and only if it verifies Krasner's Lemma.

Proof. a) Assume that $(K, \varphi, \|.\|)$ has the absorbent property. Let $\alpha \in \overline{K} \setminus K$ and $y \in \overline{K}_{\|.\|}$ with $\|y - \alpha\|^{\tilde{}} < c_* \omega(\alpha)$. Since

$$dist_{\|.\|}(\widetilde{K(y)},\alpha) \leq \|y-\alpha\|^{\widetilde{}} < c_*\omega(\alpha)$$

and since $(K, \varphi, \|.\|)$ has the absorbent property, one obtain that $\alpha \in \widetilde{K(y)}$.

b) Conversely, we suppose that $(K, \varphi, \|.\|)$ verifies Krasner's Lemma. Let $L, K \subset L \subset \widetilde{K}_{\|.\|}$ be a closed subring in $\widetilde{\overline{K}}_{\|.\|}$, which contains K. Let $\alpha \in \overline{K} \setminus K$ be such that $dist_{\|.\|} \cdot (L, \alpha) < c_* \omega(\alpha)$. Then there exists at least one $\beta \in L$ with

$$\|\beta - \alpha\| < c_* \omega(\alpha).$$

Since $(K, \varphi, \|.\|)$ verifies Krasner's Lemma we get that $\alpha \in \widetilde{K(\beta)} \subset L$, because *L* is closed, i.e., $\alpha \in L$, so $(K, \varphi, \|.\|)$ has the absorbent property and the proof is completed.

Definition 4. With the above notation and hypotheses, we say that the triplet $(K, \varphi, \|.\|)$ is an appropriate triplet if for any closed subring L, $K \subset L \subset \widetilde{\overline{K}}_{\|.\|}$ one has that $L \cap \overline{\overline{K}} = L$.

For instance, if (K, φ) is complete and if $||x|| = \overline{\varphi}(x)$ for any $x \in \overline{K}$, where $\overline{\varphi}$ is the unique extension of φ to \overline{K} , then the triplet $(K, \varphi, \overline{\varphi})$ is an appropriate triplet (see [6]).

It is not so difficult to prove the corresponding generalization of Theorem 4.

Theorem 6. Let $(K, \varphi, \|.\|)$ be an appropriate triple. Then $(K, \varphi, \|.\|)$ has the absorbent property.

Proof. Let $(K, \varphi, \|.\|)$ be an appropriate triple and let L a closed subring of $\overline{K}_{\|.\|}$. Let α be in $\overline{K} \searrow K$ such that $dist_{\|.\|} \cdot (L, \alpha) < c_* \omega(\alpha)$. Since $L = L \cap \overline{K}$ one has that

$$dist_{\|\cdot\|} (L, \alpha) = dist_{\|\cdot\|} (L \cap \overline{K}, \alpha) < c_* \omega(\alpha).$$

From Theorem 1 we get that $\alpha \in L \cap \overline{K} \subset L$, i.e., $(K, \varphi, \|.\|)$ has the absorbent property. \Box

Acknowledgement. The author express his gratitude to the referee(s) for some advises which led to the improvement of the statement of Remark 2 and the proof of Theorem 4.

No. 10]

The ideas of this paper are deeply connected with the activity of our Seminar of Algebra and Number Theory "Nicolae Popescu"-IMAR, Bucharest.

References

- V. Alexandru and A. Popescu, v-maximal extensions, Henselian fields and conservative fields, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 56(104) (2013), no. 1, 55–64.
- V. Alexandru, A. Popescu, E. L. Popescu and S. Sultana, v-adic maximal extensions, spectral norms and absolute Galois groups, Monatsh. Math. 158 (2009), no. 3, 223–233.
- $[\ 3\]$ V. Alexandru, N. Popescu and A. Zaharescu, On the closed subfields of ${\bf C}_p,$ J. Number Theory 68 (1998), no. 2, 131–150.
- [4] E. Artin, Algebraic numbers and algebraic functions, Gordon and Breach, New York, 1967.
- [5] G. Groza and A. Popescu, Extensions of valued fields (Romanian), Editura Academiei Romane, Bucharest, 2011.

- [6] A. Ioviță and A. Zaharescu, Completions of r.a.t.valued fields of rational functions, J. Number Theory 50 (1995), no. 2, 202–205.
- J. Neukirch, Algebraic number theory, translated from the 1992 German original and with a note by Norbert Schappacher, Grundlehren der Mathematischen Wissenschaften, 322, Springer, Berlin, 1999.
- [8] A. Ostrowski, Untersuchungen zur arithmetischen Theorie der Körper (Die Theorie der Teilbarkeit in algemeinen Körper), Math. Z. 39 (1934), 269–404.
- [9] V. Pasol, A. Popescu and N. Popescu, Spectral norms on valued fields, Math. Z. 238 (2001), no. 1, 101–114.
- [10] E. L. Popescu, N. Popescu and C. Vraciu, Completion of the spectral extension of *p*-adic valuation, Rev. Roumaine Math. Pures Appl. 46 (2001), no. 6, 805–817.
- [11] P. Roquette, On the history of valuation theory, Part 1, http://www.rzuser.uni-heidelberg. de/~ci3/.