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On the subordination under Bernardi operator

By Janusz SOKOL” and Mamoru NUNOKAWA ™)

(Communicated by Kenji FUKAYA, M.J.A., Dec. 12, 2012)

Abstract:

Let ‘H denote the class of analytic functions in the unit disc on the complex

plane C. Let £ be a subclass of H. If the operator I : £ — H satisfies
f(2) < 9(2) = I[f](2) < I[g](2)

for all f,g € &, then it is called subordination-preserving operator on the class £. In this work we
consider the convexity of the Bernardi operator. We prove also that the Bernardi is the
subordination-preserving operator on the class of starlike functions. The applications of main

results are also presented.
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1. Introduction. Let H denote the class of
analytic functions in the unit disc U = {z: |z| < 1}
on the complex plane C. For a € C and n € N we
denote by

Hla,n)={f eH: f(2) =a+a,2"+---}
and
Ay ={feH: f(2) =24 an 2" +--},

so A= A;. Let S be the subclass of A whose
members are univalent in U.

The class S, of starlike functions of order o < 1
may be defined as

zf'(2)

f(z)
The class S}, and the class K, of convex functions of
order o < 1

ICa::{fEA: %e(l—l—zji/;(zj)) > q, zEU}

S;:{fE.A:ERe >a,z€U}.

—{feA: 2f €5}

were introduced by Robertson in [7]. If a € [0,1),
then a function in either of these sets is univalent, if
a < 0 it may fail to be univalent. In particular we
denote S; = S*,Ky = K, the classes of starlike and
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convex functions, respectively. Recall that f € A is
said to be in the class C,, [3], of close-to-convex
functions of order o, o < 1, if and only if there exist
g€ S, v € R, such that

z2f'(2)

Re el L S,
9(2)

For f(2) = ap + a1z + azz* + - - - and g(2) = by +
b1z + byz? + - - - the Hadamard product (or convolu-
tion) is defined by (f*g)(z) = apby + a1b1z+
asbe2? + - If X, Y C H we also use the notation

XxY:={f*g:f€X, geY}.

ze U.

The convolution has the algebraic properties of
ordinary multiplication. The class A of analytic
functions is closed under convolution, that is
Ax A=A In 1973, Rusheweyh and Sheil-Small
[10] proved the Polya-Schoenberg conjecture that
the class of convex functions is preserved under
convolution: I =K. Many other convolution
problems were studied by St. Rusheweyh in [9] and
have found many applications in various fields.

We say that the f € H is subordinate to g € H
in the unit disc U, written f < g if and only if there
exits an analytic function w € H such that w(0) =
0,|w(z)] <1 and f(z) = glw(z)] for z € U. There-
fore, f < g in U implies f(U) C ¢g(U). In particular
if g is univalent in U, then

(11)  f=g < [f(0) =g(0) and f(U) C g(U)].

2. Main result.
erator is defined by

The Alexander integral op-
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At A, — A, A[f](z):/o @dt,
while

2 z
L:H—H, L[flz)= f/ ft)de
ZJo
is the Libera operator [5]. The above operators A
and L are the special cases of the Bernardi
operator [1] which is defined for k=0 and for
k€ C, Re{k} > 0, by

LosH =M, LG = [ e

It is easy to see that
Ly: A, — Ay, Li: Hla,n] — Hla(l + k) /k,n].
Using the convolution we can write for f € Hla,n]
X k+1
Lilfl(2) = £(2) + 3

n=0

2"

(2.1)

The classes S and K are preserved under
each of these operators whenever Re{k} >0,
Ruscheweyh [8] (earlier Bernardi [1] if k is a
positive integer), i.e.: L;[K] C K, L;[S*] C §".

We shall need the following lemma.

Lemma 2.1 ([6, p. 35]). Suppose that the
function W :C*>x U — C satisfies the condition
Re{V(ig,0)} <& for real 9,0 < —n(1+ 0?)/2 and
all z€ U. If q(2) =1+ a,2" + ... is analytic in U
and

Re{W(q(2), 24 (2))} > 6

for z € Uy, then Re{q(z)} > 0 in U.

We note that Lemma 2.1 is a corollary of the
fundamental result in theory of differential subor-
dinations deeply developed by Miller and Mocanu
[6]. The function ¥ is called admissible function.

Theorem 2.2. Let f be in the class A, and k
be a non-negative real number. If

zf”(Z)} > 80(k)

)
—nk/2  for 0 < k<1,
- { —n/(2k) for k> 1,
for z € U, then Li[f] is convex univalent function.
Proof. After some calculation we obtain
4210 ')
e R TP

(2.2) 9%{1 +

(2.3)

[Vol. 89(A),

where

2(Le[f1(2))”
(Lel A1)

It is known that Ly : A, — A, thus L[f] is of the
form L [f](2) = 2+ apy 12" + - -. If ¢ is of the form
q(2) =1+ c12+ 222 + - -+, then differentiating

ALilf1(2))" = (a(2) — 1) (La[f1(2))’

and comparing the coefficients of both sides we
obtain one after the other

(2.4) a(z) =1+

cg=c=...=¢-1=0, c,=nn+Day,....

Therefore, q(z) =1+n(n+1)ay 12" +---. To
make use of Lemma 2.1 we consider the function
s

k+r

U(r,s)=r+

and 6 =6p(k). Then by (2.2), (2.3) we have
Re{W(q(2),2¢'(2))} > 6, furthermore

. . o ko
Re{V(ip,0)} = Re(io+ [y T 7
If 0 < —n(1+ ¢%)/2, then
k, k(1 + o?
o S_n( +Q)S5o(/€)-
B~ 2kt o)
Applying Lemma 2.1 with we obtain that

MRe{q(2)} > 0 for z € U, hence trough (2.4) we see
that Lg[f] is the convex univalent function when-
ever [ satisfies (2.2). O

The above theorem is a generalization of the
following one which is obtained from Theorem 2.2
with k=n=1.

Corollary 2.3 ([6, p. 66]).
class A. If

Let f be in the

1075

2
for z € U, then the function

L =2 [ s
z.Jo
is in the class IC of convexr univalent functions.

The above property of the Libera operator L
extends an earlier result in [5] that L[K] C K. Note
that the operator L is well defined in the whole
class H.

Corollary 2.4. Let f be in the class A, and
let k be a non-negative real number. Assume also



No. 1]

that f satisfies condition (2.2). Then we have
(i) If g € Cq then Lilg * f] € Ca,
(ii) Ifge S, then Lylg* fl € S},
(i) If g € Ky then Lifg* f] € K.

Proof. It is known [10], that the classes C,, S,
and I, are closed under convolution with convex
univalent and normalized functions. Because
Li[g* f] = g* Li[f] and by Theorem 2.2 Ly[f] € K
the results (i)—(iii) becomes obvious. O

Corollary 2.5. Let f be in the class S and let
k be a non-negative real number. If r > 0 satisfies

r?—dr+4+1
1—172
with 8(k) given in (2.2),
univalent in the disc |z| < r.
Proof. Tt is known that f € S, then for z = re’

1
wef1+ LN
f'(2)

Therefore, by Theorem 2.2 the function Lg[f] is
convex univalent in the disc |z| < r. O
We have 2 —4r+1>0for 0<r<2—+3 =~
0.2679, while 8y(k) < 0. Therefore, if f€ S, kis a
non-negative real number, and 0<7r <2 — \/3,
then Li[f] is convex univalent in the disc |z| < 7.
The above corollary for the Koebe function f(z) =

z/(1 — 2)* and k = 1 becomes the following one.
Corollary 2.6. The function

Li[z/(1 - 2)%] = 2{11 + élog(l - z)}
n ZnJr 1 7

is convex univalent in the disc |z] < 4 — /13 = 0.39.
Corollary 2.7. Leth bein the class A, and k
be a non-negative real number. Assume that

(2.5) me{l + Zh”<z)} > 8o(k)

W (z)
—nk/2 for 0 <k<1,
- { —n/(2k) for k> 1,
for zeU. Assume also that ¢(z) =a+b,2" +

Z 50(k)7

then Lyi[f] is convex

2 —dr+1
1—1r2

b1 2"t + -+ s analytic in U. If

(2.6) 9(2) + ic(z) < Lg[h] (2€U)
for Relc] >0, ¢ #£0, then

(2.7) 9(2) < qu(2) < Ly[h] (2 € U),
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= ftc/” Lk [n)(t)dt. Moreover, the
function q,(z) is conver univalent and is the best
dominant of (2.6) in the sense that g < g, for all g
satisfying (2.6), and if there exists q such that g < q
for all g satisfying (2.6), then ¢, < q.

Proof. Tt is known [2] that the subordination
(2.6) with convex univalent right-hand side is
sufficient for (2.7) with the best dominant g¢,(z).
By Theorem 2.2 the function Lg[h] is convex uni-
valent in the unit disc and we get the result. ([

Notice that the function g,(z) is the Bernardi
integral operator on the function Ly[h]:

where q,(z)

1
0(2) = - LenlLalh] = al(2) + .
Theorem 2.8. Assume that k is a complex

number with Re{k} >0, or k=0. Ifg€ H and [ is
in the class 8" of starlike functions, then

(2.8) 9= 1= Lalg] < Lalf].

Proof. The class 8" is preserved under the
operator Ly k=0 or Re{k} >0,
Ruscheweyh [8], i.e.: Li[S*] C 8*. This fact was
proved in [4] too. Note that if f € S only, then Ly[f]
may be infinite-valent in the unit disc. Because
L;[f] is univalent, then there exists a function w,
w(0) = 0, such that in a disc |2| <ry <1

whenever

(2.9) Li[g)(2) = Le[f](w(z)).
If Li[g] A Li[f], then there exists a zg € U, such that
lw(z)| = 1.

From (2.9) we have
2Lilg)(2) = Z"Li[f](w(2)),
hence by (2.1)

~k+1
Zkg(Z)*Z + Stn

(2.10)

The property z(p(z) *
(2.10) yields

(2.11)  Zg(2) « i(k + 1)k

or, equivalently

(2.12)
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Because f is starlike univalent and there exists a
zp € U, such that |w(z)| =1, we obtain a contra-
diction with g < f. (]

Finally, we give the two applications of
Theorem 2.2. If we consider for a € [1,2] the func-
tion

1 1
2.13 W(2)=-4— 1
213w - {1
B a+1 ,
_ Z (a)n P U,
“—~ nla
then p, € A; and it satisfies
/! 1 _ 1
9{2 1+Zpa(z> — +az _a ZGU,
P,(2) 1-=z 2

thus p, satisfies condition (2.2) with k=a—1
such that 0 <k < 1. Therefore, in this case, by
Theorem 2.2 and by (2.1) the function

= a

Lu—l[ u}(z) = pa(z) * Z—Zn

~a—1+n

I S
“~(a—1+n)n!
is convex univalent function.
Secondly, considering for [ € [1,2] the function

z = (1/1), ;.
) = 1+ Z<Z( ’r/L!),L g ) e b

n=0
it is easy to check that r; € A; and
zr](2) 112 -1
; = 7> zeU.
)(2) 1+2 2
Therefore, r; satisfies condition (2.2) with k =1—1
such that 0 < k£ < 1. By Theorem 2.2 the function

- l

Llfl['rl](z) = 7”[(2’) * Z m g
n=0

S‘ie(l +

[Vol. 89(A),

1(1/0),
(l—1+In+1)n!

(1/0),,

In+1

|
M 2D

In+1
g (1+n)n!
is convex univalent function.
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