On the subordination under Bernardi operator

By Janusz Sokół*) and Mamoru Nunokawa**)

(Communicated by Kenji Fukaya, M.J.A., Dec. 12, 2012)

Abstract: Let \mathcal{H} denote the class of analytic functions in the unit disc on the complex plane \mathbb{C} . Let \mathcal{E} be a subclass of \mathcal{H} . If the operator $I: \mathcal{E} \to \mathcal{H}$ satisfies

$$f(z) \prec g(z) \Rightarrow I[f](z) \prec I[g](z)$$

for all $f, g \in \mathcal{E}$, then it is called subordination-preserving operator on the class \mathcal{E} . In this work we consider the convexity of the Bernardi operator. We prove also that the Bernardi is the subordination-preserving operator on the class of starlike functions. The applications of main results are also presented.

Key words: Convex functions; Hadamard product; Bernardi operator; Libera operator; preserving operator; subordination.

1. Introduction. Let \mathcal{H} denote the class of analytic functions in the unit disc $\mathbf{U} = \{z : |z| < 1\}$ on the complex plane \mathbf{C} . For $a \in \mathbf{C}$ and $n \in \mathbf{N}$ we denote by

$$\mathcal{H}[a,n] = \{ f \in \mathcal{H} : f(z) = a + a_n z^n + \dots \}$$

and

$$A_n = \{ f \in \mathcal{H} : f(z) = z + a_{n+1} z^{n+1} + \cdots \},$$

so $A = A_1$. Let S be the subclass of A whose members are univalent in U.

The class \mathcal{S}_{α}^{*} of starlike functions of order $\alpha < 1$ may be defined as

$$\mathcal{S}_{\alpha}^{*} = \bigg\{ f \in \mathcal{A}: \ \Re \mathfrak{e} \frac{zf'(z)}{f(z)} > \alpha, \ z \in \mathbf{U} \bigg\}.$$

The class \mathcal{S}_{α}^* and the class \mathcal{K}_{α} of convex functions of order $\alpha < 1$

$$\mathcal{K}_{\alpha} := \left\{ f \in \mathcal{A} : \ \mathfrak{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha, \ z \in \mathbf{U} \right\}$$
$$= \left\{ f \in \mathcal{A} : \ zf' \in \mathcal{S}_{\alpha}^* \right\}$$

were introduced by Robertson in [7]. If $\alpha \in [0,1)$, then a function in either of these sets is univalent, if $\alpha < 0$ it may fail to be univalent. In particular we denote $\mathcal{S}_0^* = \mathcal{S}^*, \mathcal{K}_0 = \mathcal{K}$, the classes of starlike and

convex functions, respectively. Recall that $f \in \mathcal{A}$ is said to be in the class \mathcal{C}_{α} , [3], of close-to-convex functions of order α , $\alpha < 1$, if and only if there exist $g \in \mathcal{S}_{\alpha}^*$, $\varphi \in \mathbf{R}$, such that

$$\Re e \, e^{i arphi} \, rac{z f'(z)}{g(z)} > 0, \quad z \in \mathbf{U}.$$

For $f(z) = a_0 + a_1z + a_2z^2 + \cdots$ and $g(z) = b_0 + b_1z + b_2z^2 + \cdots$ the Hadamard product (or convolution) is defined by $(f * g)(z) = a_0b_0 + a_1b_1z + a_2b_2z^2 + \cdots$. If $X, Y \subset \mathcal{H}$ we also use the notation

$$X*Y:=\{f*g:f\in X,\ g\in Y\}.$$

The convolution has the algebraic properties of ordinary multiplication. The class \mathcal{A} of analytic functions is closed under convolution, that is $\mathcal{A}*\mathcal{A}=\mathcal{A}$. In 1973, Rusheweyh and Sheil-Small [10] proved the Pòlya-Schoenberg conjecture that the class of convex functions is preserved under convolution: $\mathcal{K}*\mathcal{K}=\mathcal{K}$. Many other convolution problems were studied by St. Rusheweyh in [9] and have found many applications in various fields.

We say that the $f \in \mathcal{H}$ is subordinate to $g \in \mathcal{H}$ in the unit disc \mathbf{U} , written $f \prec g$ if and only if there exits an analytic function $w \in \mathcal{H}$ such that w(0) = 0, |w(z)| < 1 and f(z) = g[w(z)] for $z \in \mathbf{U}$. Therefore, $f \prec g$ in \mathbf{U} implies $f(\mathbf{U}) \subset g(\mathbf{U})$. In particular if g is univalent in \mathbf{U} , then

$$(1.1) f \prec g \Leftrightarrow [f(0) = g(0) \text{ and } f(\mathbf{U}) \subset g(\mathbf{U})].$$

2. Main result. The Alexander integral operator is defined by

²⁰¹⁰ Mathematics Subject Classification. Primary 30C45; Secondary 30C80.

^{*)} Department of Mathematics, Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland.

Poland.
**) University of Gunma, Hoshikuki-cho 798-8, Chuou-Ward, Chiba 260-0808, Japan.

$$\mathrm{A}:\mathcal{A}_n o\mathcal{A}_n,\quad \mathrm{A}[f](z)=\int_0^zrac{f(t)}{t}\;\mathrm{d}t,$$

while

$$L: \mathcal{H} \to \mathcal{H}, \quad L[f](z) = \frac{2}{z} \int_0^z f(t) dt$$

is the Libera operator [5]. The above operators A and L are the special cases of the Bernardi operator [1] which is defined for k = 0 and for $k \in \mathbb{C}$, $\Re \{k\} > 0$, by

$$L_k: \mathcal{H} \to \mathcal{H}, \quad L_k[f](z) = \frac{1+k}{z^k} \int_0^z f(t) t^{k-1} dt.$$

It is easy to see that

$$L_k: \mathcal{A}_n \to \mathcal{A}_n, \quad L_k: \mathcal{H}[a,n] \to \mathcal{H}[a(1+k)/k,n].$$

Using the convolution we can write for $f \in \mathcal{H}[a, n]$

(2.1)
$$L_k[f](z) = f(z) * \sum_{n=0}^{\infty} \frac{k+1}{k+n} z^n.$$

The classes \mathcal{S}^* and \mathcal{K} are preserved under each of these operators whenever $\mathfrak{Re}\{k\} > 0$, Ruscheweyh [8] (earlier Bernardi [1] if k is a positive integer), i.e.: $L_k[\mathcal{K}] \subset \mathcal{K}$, $L_k[\mathcal{S}^*] \subset \mathcal{S}^*$.

We shall need the following lemma.

Lemma 2.1 ([6, p. 35]). Suppose that the function $\Psi : \mathbb{C}^2 \times \mathbb{U} \to \mathbb{C}$ satisfies the condition $\Re \{\Psi(i\varrho,\sigma)\} \leq \delta$ for real $\varrho,\sigma \leq -n(1+\varrho^2)/2$ and all $z \in \mathbb{U}$. If $q(z) = 1 + a_n z^n + \dots$ is analytic in \mathbb{U} and

$$\Re\{\Psi(q(z),zq'(z))\} > \delta$$

for $z \in \mathcal{U}y$, then $\mathfrak{Re}\{q(z)\} > 0$ in **U**.

We note that Lemma 2.1 is a corollary of the fundamental result in theory of differential subordinations deeply developed by Miller and Mocanu [6]. The function Ψ is called admissible function.

Theorem 2.2. Let f be in the class A_n and k be a non-negative real number. If

(2.2)
$$\Re \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > \delta_0(k)$$

$$= \begin{cases} -nk/2 & \text{for } 0 \le k \le 1, \\ -n/(2k) & \text{for } k > 1, \end{cases}$$

for $z \in U$, then $L_k[f]$ is convex univalent function. Proof. After some calculation we obtain

(2.3)
$$q(z) + \frac{zq'(z)}{k + q(z)} = 1 + \frac{zf''(z)}{f'(z)},$$

where

(2.4)
$$q(z) = 1 + \frac{z(L_k[f](z))''}{(L_k[f](z))'}.$$

It is known that $L_k: \mathcal{A}_n \to \mathcal{A}_n$, thus $L_k[f]$ is of the form $L_k[f](z) = z + a_{n+1}z^{n+1} + \cdots$. If q is of the form $q(z) = 1 + c_1z + c_2z^2 + \cdots$, then differentiating

$$z(L_k[f](z))'' = (q(z) - 1)(L_k[f](z))'$$

and comparing the coefficients of both sides we obtain one after the other

$$c_1 = c_2 = \ldots = c_{n-1} = 0, \quad c_n = n(n+1)a_{n+1}, \ldots$$

Therefore, $q(z) = 1 + n(n+1)a_{n+1}z^n + \cdots$ To make use of Lemma 2.1 we consider the function

$$\Psi(r,s) = r + \frac{s}{k+r}$$

and $\delta = \delta_0(k)$. Then by (2.2), (2.3) we have $\Re \{\Psi(q(z), zq'(z))\} > \delta$, furthermore

$$\Re \mathfrak{e}\{\Psi(i\varrho,\sigma)\} = \Re \mathfrak{e}\left(i\varrho + \frac{\sigma}{k+i\varrho}\right) = \frac{k\sigma}{k^2 + \varrho^2}.$$

If $\sigma \leq -n(1+\varrho^2)/2$, then

$$\frac{k\sigma}{k^2 + \varrho^2} \le -\frac{nk(1 + \varrho^2)}{2(k^2 + \varrho^2)} \le \delta_0(k).$$

Applying Lemma 2.1 with we obtain that $\Re \{q(z)\} > 0$ for $z \in \mathbf{U}$, hence trough (2.4) we see that $\mathbf{L}_k[f]$ is the convex univalent function whenever f satisfies (2.2).

The above theorem is a generalization of the following one which is obtained from Theorem 2.2 with k = n = 1.

Corollary 2.3 ([6, p. 66]). Let f be in the class A. If

$$\Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > -\frac{1}{2}$$

for $z \in \mathbf{U}$, then the function

$$L[f](z) = \frac{2}{z} \int_0^z f(t) dt$$

is in the class K of convex univalent functions.

The above property of the Libera operator L extends an earlier result in [5] that $L[\mathcal{K}] \subset \mathcal{K}$. Note that the operator L is well defined in the whole class \mathcal{H} .

Corollary 2.4. Let f be in the class A_n and let k be a non-negative real number. Assume also

that f satisfies condition (2.2). Then we have

- (i) If $g \in \mathcal{C}_{\alpha}$ then $L_k[g * f] \in \mathcal{C}_{\alpha}$,
- (ii) If $g \in \mathcal{S}_{\alpha}^*$ then $L_k[g * f] \in \mathcal{S}_{\alpha}^*$,
- (iii) If $g \in \mathcal{K}_{\alpha}$ then $L_k[g * f] \in \mathcal{K}_{\alpha}$.

Proof. It is known [10], that the classes C_{α} , S_{α}^{*} and \mathcal{K}_{α} are closed under convolution with convex univalent and normalized functions. Because $L_{k}[g*f] = g*L_{k}[f]$ and by Theorem 2.2 $L_{k}[f] \in \mathcal{K}$ the results (i)–(iii) becomes obvious.

Corollary 2.5. Let f be in the class S and let k be a non-negative real number. If r > 0 satisfies

$$\frac{r^2 - 4r + 1}{1 - r^2} \ge \delta_0(k),$$

with $\delta_0(k)$ given in (2.2), then $L_k[f]$ is convex univalent in the disc |z| < r.

Proof. It is known that $f \in \mathcal{S}$, then for $z = re^{it}$

$$\Re \mathfrak{e} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > \frac{r^2 - 4r + 1}{1 - r^2}.$$

Therefore, by Theorem 2.2 the function $L_k[f]$ is convex univalent in the disc |z| < r.

We have $r^2 - 4r + 1 > 0$ for $0 \le r < 2 - \sqrt{3} \approx 0.2679$, while $\delta_0(k) \le 0$. Therefore, if $f \in \mathcal{S}$, k is a non-negative real number, and $0 \le r < 2 - \sqrt{3}$, then $L_k[f]$ is convex univalent in the disc |z| < r. The above corollary for the Koebe function $f(z) = z/(1-z)^2$ and k=1 becomes the following one.

Corollary 2.6. The function

$$L_1[z/(1-z)^2] = 2\left\{\frac{1}{1-z} + \frac{1}{z}\log(1-z)\right\}$$
$$= \sum_{n=1}^{\infty} \frac{2n}{n+1} z^n$$

is convex univalent in the disc $|z| < 4 - \sqrt{13} \approx 0.39$.

Corollary 2.7. Let h be in the class A_n and k be a non-negative real number. Assume that

$$\begin{split} (2.5) \ \Re \mathfrak{e} \bigg\{ 1 + \frac{zh''(z)}{h'(z)} \bigg\} &> \delta_0(k) \\ &= \left\{ \begin{array}{ll} -nk/2 & for \ 0 \leq k \leq 1, \\ -n/(2k) & for \ k > 1, \end{array} \right. \end{split}$$

for $z \in \mathbf{U}$. Assume also that $g(z) = a + b_n z^n + b_{n+1} z^{n+1} + \cdots$ is analytic in \mathbf{U} . If

(2.6)
$$g(z) + \frac{zg'(z)}{c} \prec L_k[h] \quad (z \in \mathbf{U})$$

for $\Re \mathfrak{e}[c] \ge 0, \ c \ne 0, \ then$

(2.7)
$$g(z) \prec q_n(z) \prec L_k[h] \quad (z \in \mathbf{U}),$$

where $q_n(z) = \frac{c}{nz^{c/n}} \int_0^z t^{c/n-1} L_k[h](t) dt$. Moreover, the function $q_n(z)$ is convex univalent and is the best dominant of (2.6) in the sense that $g \prec q_n$ for all g satisfying (2.6), and if there exists q such that $g \prec q$ for all g satisfying (2.6), then $q_n \prec q$.

Proof. It is known [2] that the subordination (2.6) with convex univalent right-hand side is sufficient for (2.7) with the best dominant $q_n(z)$. By Theorem 2.2 the function $L_k[h]$ is convex univalent in the unit disc and we get the result.

Notice that the function $q_n(z)$ is the Bernardi integral operator on the function $L_k[h]$:

$$q_n(z) = rac{1}{1+n} \operatorname{L}_{c/n}[\operatorname{L}_k[h] - a](z) + a.$$

Theorem 2.8. Assume that k is a complex number with $\Re \mathfrak{e}\{k\} > 0$, or k = 0. If $g \in \mathcal{H}$ and f is in the class \mathcal{S}^* of starlike functions, then

$$(2.8) g \prec f \Rightarrow L_k[g] \prec L_k[f].$$

Proof. The class S^* is preserved under the operator L_k whenever k=0 or $\mathfrak{Re}\{k\}>0$, Ruscheweyh [8], i.e.: $L_k[S^*]\subset S^*$. This fact was proved in [4] too. Note that if $f\in S$ only, then $L_k[f]$ may be infinite-valent in the unit disc. Because $L_k[f]$ is univalent, then there exists a function w, w(0)=0, such that in a disc $|z|< r_0 \le 1$

(2.9)
$$L_k[g](z) = L_k[f](w(z)).$$

If $L_k[g] \not\prec L_k[f]$, then there exists a $z_0 \in \mathcal{U}$, such that $|w(z_0)| = 1$.

From (2.9) we have

$$z^k \mathcal{L}_k[g](z) = z^k \mathcal{L}_k[f](w(z)),$$

hence by (2.1)

(2.10)
$$z^{k}g(z) * \sum_{n=1}^{\infty} \frac{k+1}{k+n} z^{k+n}$$
$$= z^{k}f(w(z)) * \sum_{n=1}^{\infty} \frac{k+1}{k+n} z^{k+n}.$$

The property z(p(z) * q(z))' = p(z) * zq'(z) used in (2.10) yields

(2.11)
$$z^{k}g(z) * \sum_{n=1}^{\infty} (k+1)z^{k+n}$$
$$= z^{k}f(w(z)) * \sum_{n=1}^{\infty} (k+1)z^{k+n},$$

or, equivalently

$$(2.12) g(z) = f(w(z))$$

Because f is starlike univalent and there exists a $z_0 \in \mathbf{U}$, such that $|w(z_0)| = 1$, we obtain a contradiction with $g \prec f$.

Finally, we give the two applications of Theorem 2.2. If we consider for $a \in [1,2]$ the function

(2.13)
$$p_{a}(z) = \frac{1}{a} \left\{ \frac{1}{(1-z)^{a}} - 1 \right\}$$
$$= z + \frac{a+1}{2!} z^{2} + \cdots$$
$$= \sum_{n=1}^{\infty} \frac{(a)_{n}}{n! a} z^{n} \quad z \in \mathbf{U},$$

then $p_a \in \mathcal{A}_1$ and it satisfies

$$\mathfrak{Re}\bigg(1+\frac{zp_a''(z)}{p_a'(z)}\bigg)=\mathfrak{Re}\,\frac{1+az}{1-z}>-\frac{a-1}{2}\quad z\in\mathbf{U},$$

thus p_a satisfies condition (2.2) with k = a - 1 such that $0 \le k \le 1$. Therefore, in this case, by Theorem 2.2 and by (2.1) the function

$$L_{a-1}[p_a](z) = p_a(z) * \sum_{n=0}^{\infty} \frac{a}{a-1+n} z^n$$
$$= \sum_{n=1}^{\infty} \frac{(a)_n}{(a-1+n)n!} z^n$$

is convex univalent function.

Secondly, considering for $l \in [1, 2]$ the function

$$r_l(z) = \frac{z}{(1+z^l)^{1/l}} = z \left(\sum_{n=0}^{\infty} \frac{(1/l)_n}{n!} z^{ln} \right) \quad z \in \mathbf{U},$$

it is easy to check that $r_l \in \mathcal{A}_1$ and

$$\mathfrak{Re}\bigg(1+\frac{zr_l''(z)}{r_l'(z)}\bigg)=\frac{1-lz^l}{1+z^l}>-\frac{l-1}{2} \quad z\in \mathbf{U}.$$

Therefore, r_l satisfies condition (2.2) with k = l - 1 such that $0 \le k \le 1$. By Theorem 2.2 the function

$$L_{l-1}[r_l](z) = r_l(z) * \sum_{n=0}^{\infty} \frac{l}{l-1+n} z^n$$

$$\begin{split} &= \sum_{n=0}^{\infty} \frac{l(1/l)_n}{(l-1+ln+1)n!} z^{ln+1} \\ &= \sum_{n=0}^{\infty} \frac{(1/l)_n}{(1+n)n!} z^{ln+1} \end{split}$$

is convex univalent function.

Acknowledgment. The authors would like to express their sincerest thanks to the referees for a careful reading and various suggestions made for the improvement of the paper.

References

- S. D. Bernardi, Convex and starlike univalent functions, Trans. Am. Math. Soc. 135 (1969), 429–446.
- D. J. Hallenbeck and St. Ruscheweyh, Subordination by convex functions, Proc. Am. Math. Soc. 52 (1975), 191–195.
- 3] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), issue 2, 169–185.
- [4] Z. Lewandowski, S. Miller and E. Złotkiewicz, Generating functions for some classes of univalent functions, Proc. Am. Math. Soc. 56 (1976), 111–117.
- [5] R. J. Libera, Some classes of regular univalent functions, Proc. Am. Math. Soc. 16 (1965), 755-758.
- [6] S. S. Miller and P. T. Mocanu, Differential subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Dekker, New York, 2000.
- [7] M. I. S. Robertson, On the theory of univalent functions, Ann. of Math. (2) 37 (1936), no. 2, 374–408.
- [8] St. Ruscheweyh, New criteria for univalent functions, Proc. Am. Math. Soc. 49 (1975), 109– 115.
- [9] St. Ruscheweyh, Convolutions in geometric function theory, Séminaire de Mathématiques Supérieures, 83, Presses Univ. Montréal, Montreal, QC, 1982.
- [10] St. Ruscheweyh and T. Sheil-Small, Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119–135.