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Abstract: This paper shows the necessary and sufficient condition for bicentrical polygons

which are circumscribed and inscribed by two ellipses using Jacobian elliptic functions. Moreover

the formulae for a bicentrical triangle, quadrilateral and pentagon are presented and the fact that

these formulae are the necessary and sufficient conditions for bicentrical polygons is presented.
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1. Introduction. The closure theorem of

Poncelet is one of the most beautiful one in the

mathematical science. The closure theorem had

been proven by Jacobi [5] and Griffiths [4] as well as

Poncelet himself [8]. Without saying Poncelet only

considered conics in the real plane and proven it

using projective geometry, but Jacobi and Griffiths

did by different methods: using elliptic functions for

pairs of circles in the real plane and using elliptic

curves for smooth conics in complex projective

space, respectively.

On the other hand, the relation between the

radii and the line segment joining the centers of

the circles of circumscription and inscription of a

bicentrical polygon has been studied from of old.

The relataion for a bicentrical triangle was given by

Euler (sometimes called Chappele’s formula [1]) as

follows:

r2 � d2 ¼ 2r�;

where r and � are radii and d is the distance between

the centers of the circles of circumscription and

inscription. The corresponding formula for a quad-

rilateral is

2�2ðr2 þ d2Þ ¼ ðr2 � d2Þ2;

which was given by Fuss [2]. Also Steiner [9] gave

the formula for a pentagon as

�ðr� dÞ ¼ ðrþ dÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr� �þ dÞðr� �� dÞ

p
þ ðrþ dÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr� �� dÞ2r

p
:

Some other fromulae were obtained for bicentrical

higher polygons such as a hexagon, heptagon, etc.

This paper treats with bicentrical polygons

for two ellipses [6]. We show the necessary and

sufficient condition for bicentrical polygons which

are circumscribed and inscribed by two ellipses.

Moreover the formulae for a bicentrical triangle,

quadrilateral and pentagon are presented and the

fact that these formulae are the necessary and

sufficient conditions for bicentrical polygons is

shown.

This paper is constructed as follows: first we

define some terminologies such as Poncelet’s tra-

verse and Poncelet’s porism in the second section.

In the third section we show the relations of the

tangent on an inner ellipse and its intersections on

an outer ellipse. The fourth section is for the

theorem. In the final section the formulae for some

bicentrical polygons are presented [7].

2. Poncelet’s traverse and porism. We

define a Poncelet’s traverse and a Poncelet’s porism

in the following definitions:

Definition 2.1 (Poncelet’s traverse). Let Eo

and Ei be two ellipses in a plane. Suppose that the

ellipse Ei is surrounded by the ellipse Eo. If from any

point Q1 on Eo we draw a tangent to Ei and extend

the tangent so that it intersects Eo. Let Q2 be the

intersecting point on Eo. Again we draw a new

tangent to Ei from Q2 and extend this tangent

similarly to intersect Eo. Let the intersecting point

taken by this procedure be Q3, which is different

fromQ1. We continue in this way and obtain a series

of points Q1Q2Q3 . . .QiQiþ1 . . .. We call this a series

of points Q1Q2Q3 . . .QiQiþ1 . . . a Poncelet’s tra-

verse. We obtain two different Poncelet’s traverses

depending on how to draw a tangent: clockwise or

counter-clockwise. We don’t change the direction of

rotation of a series of points created on Eo.
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We can classify a Poncelet’s traverse into the

following two cases:

(1) Qi 6¼ Qj; 8i; j 2 N.

(2) 9n 2 N, Q‘ ¼ Q‘þn, for 8‘ 2 N and Qi 6¼ Qj,

1 � i; j < n.

Definition 2.2 (Poncelet’s porism). The

case n � 3 of the above classified type (2) is called

the Poncelet’s porism and the created polygon

Q1Q2 . . .Qn is called the poristic n-gon.

The Poncelet’s closure theorem says that in

a poristic n-gon from any Q01 on Eo a series of

points Q01Q
0
2 . . .Q0nQ

0
nþ1Q

0
nþ2 . . . becomes Q01Q

0
2 . . .

Q0nQ
0
1Q
0
2 . . ., that is, a series of points creates the

Poncelet’s porism.

Remark 2.1. The shape of a poristic n-gon

depends on the location of the initial point Q1 but

doesn’t depend on the clockwise or counter-clock-

wise rotation of a Poncelet’s traverse.

3. The relations of the tangent on an

inner ellipse and its intersections on an outer

ellipse. Let A;B; a; b > 0 and two ellipses Eo and

Ei be written as

Eo ¼ ðx; yÞ
���� x2

A2
þ
y2

B2
� 1 ¼ 0

� �
;ð3:1Þ

Ei ¼ ðx; yÞ
���� x2

a2
þ
y2

b2
� 1 ¼ 0

� �
:ð3:2Þ

Also we let

~EEo ¼ ðx; yÞ
���� x2

A2
þ
y2

B2
� 1 � 0

� �
;

~EEi ¼ ðx; yÞ
���� x2

a2
þ
y2

b2
� 1 � 0

� �
:

Now we prepare two lemmas without proofs.

Lemma 3.1. ~EEi � ~EEo if and only if a < A

and b < B.

Lemma 3.2. If ~EEi � ~EEo, then any tangent on

Ei has two intersecting points with Eo.

We let the two-dimensional plane except the

origin be shown by one of the following polar

coordinates:

(i) ð� cnðu; kÞ; � snðu; kÞÞ for a fixed k,

(ii) ð� snðu; kÞ; � cnðu; kÞÞ for a fixed k,

(iii) ð� cosu; � sin uÞ or ð� sin u; � cos uÞ.
�ÞHere the modulus k of Jacobian elliptic functions is

deternimed uniquely as k2 ¼ A2b2�B2a2

b2ðA2�a2Þ for the coor-

dinate (i) and k2 ¼ B2a2�A2b2

a2ðB2�b2Þ for the coordinate (ii).

The coordinate (i) and (ii) correspond to b
B � a

A and
a
A � b

B, respectively. Also The coordinate (iii) corre-

sponds to a
A ¼ b

B. To avoid unnecessary annoyance

we shall omit the modulus hereinafter if nothing

intervenes. Also KðkÞ is the complete elliptic

integral of the first kind.

Theorem 3.1. *ÞLet 0 < a < A and 0 < b <

B and two ellipses Eo and Ei be written as (3.1) and

(3.2). We suppose that �KðkÞ < v0 < KðkÞ. The

followings are equivalent.

(1) A tangent of Ei at ða cnu; b snuÞ; u 2 R inter-

sects at the following two points on Eo:

ðA cnðu� v0Þ; B snðu� v0ÞÞ;ð3:3Þ
ðA cnðuþ v0Þ; B snðuþ v0ÞÞ:

(2) a
A and b

B are independent of u and written as

follows:

a

A
¼ cn v0;

b

B
¼ cn v0

dn v0
:ð3:4Þ

Proof. (1) ) (2)

First a tangent of Ei at a point ða cnu; b sn uÞ is

presented by

cn u

a
xþ sn u

b
y ¼ 1:ð3:5Þ

On the other hand, the line connecting two inter-

secting points (3.3) is written by

y ¼ B

A

snðuþ v0Þ� snðu� v0Þ
cnðuþ v0Þ � cnðu� v0Þ

x

�B
snðuþ v0Þ cnðu� v0Þ� snðu� v0Þ cnðuþ v0Þ

cnðuþ v0Þ � cnðu� v0Þ
:

We shall write

s1 ¼ snu; s2 ¼ sn v0; c1 ¼ cn u;

c2 ¼ cn v0; d1 ¼ dnu; d2 ¼ dn v0

for short to avoid troublesome symbols hereafter.

Using following addition theorems [10]:

snðuþ v0Þ cnðu� v0Þ ¼
s1c1d2 þ s2c2d1

1� k2s2
1s

2
2

;

snðu� v0Þ cnðuþ v0Þ ¼
s1c1d2 � s2c2d1

1� k2s2
1s

2
2

;

snðuþ v0Þ � snðu� v0Þ ¼
2s2c1d1

1� k2s2
1s

2
2

;

cnðuþ v0Þ � cnðu� v0Þ ¼ �
2s1s2d1d2

1� k2s2
1s

2
2

;

we have

�Þ
We find a similar problem of this theorem in the reference

(Example 7, p141, [3]) but the problem wasn’t solved

completely.
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y ¼ �
B

A

c1

s1d2
xþB

c2

s1d2
;ð3:6Þ

that is,

cnu

A cn v0
xþ

snu
B cn v0

dn v0

y ¼ 1:ð3:7Þ

We obtain (3.4) from (3.5) and (3.7).

(2) ) (1)

The fact that a tangent on Ei has two intersecting

points on Eo is guaranteed by Lemma 3.2 since a < A

and b < B. The equation of a tangent is presented by

cnu

A cn v0
xþ

sn u
B cn v0

dn v0

y ¼ 1

since we suppose (3.4). Therefore we obtain the inter-

secting points from the above equation and (3.1).

Eliminating y yields the following quadratic equation:

ðs2
1d

2
2 þ c2

1Þx2 � 2c1c2Axþ ðc2
2 � s2

1d
2
2ÞA2 ¼ 0:

From this we obtain x-coordinates of the intersect-

ing points as follows:

x ¼ c1c2A� A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1d
2
2ðc2

1 � c2
2 þ s2

1d
2
2Þ

p
s2

1d
2
2 þ c2

1

ð3:8Þ

¼ c1c2A� A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1d
2
2s

2
2d

2
1

p
1� k2s2

1s
2
2

¼ A cnðu� v0Þ

since c2
1 � c2

2 þ s2
1d

2
2 ¼ 1� s2

1 � 1þ s2
2 þ s2

1ð1� k2s2
2Þ ¼

s2
2d

2
1 and s2

1d
2
2 þ c2

1 ¼ 1� k2s2
1s

2
2. On the other hand,

y-coordinates of the intersecting points are easily

obtained by the fact that (3.8) lie on Eo. �

We show the following corollaries when we take

the polar coordinates (ii) or (iii). The proofs are

similar so that we omit them.

Corollary 3.1. Let 0 < a < A and 0 < b < B

and two ellipses Eo and Ei be written as (3.1) and

(3.2). We suppose that �KðkÞ < v0 < KðkÞ. The

followings are equivalent.

(1) A tangent of Ei at ða snu; b cnuÞ; u 2 R inter-

sects at the following two points on Eo:

ðA snðu� v0Þ; B cnðu� v0ÞÞ;
ðA snðuþ v0Þ; B cnðuþ v0ÞÞ:

(2) a
A and b

B are independent of u and written as

follows:

a

A
¼ cn v0

dn v0
;
b

B
¼ cn v0:

Corollary 3.2. Let 0 < a < A and 0 < b < B

and two ellipses Eo and Ei be written as (3.1) and

(3.2). We suppose that � �
2 < v0 <

�
2. The followings

are equivalent.

(1) A tangent of Ei at

�
a

cos
sin

� �
u; b

sin
cos

� �
u

�
;

u 2 R intersects at the following two points on Eo:

A
cos

sin

� �
ðu� v0Þ; B

sin

cos

� �
ðu� v0Þ

� �
;

A
cos

sin

� �
ðuþ v0Þ; B

sin

cos

� �
ðuþ v0Þ

� �
:

(2) a
A and b

B are independent of u and written as

follows:

a

A
¼ b

B
¼ cos v0:

4. The necessary and sufficient condition

for a poristic n-gon in two ellipses. Now we

write two ellipses Eo and Ei as follows:

Eo ¼ ðx; yÞ
���� x2

A2
þ
y2

B2
� 1 ¼ 0

� �
;ð4:1Þ

Ei ¼
�
ðx; yÞ

���� x2

a2
þ
y2

b2
� 1 ¼ 0;ð4:2Þ

a ¼ A cn v0; b ¼
B cn v0

dn v0

�
:

Here �K < v0 < K. In this situation, the intersect-

ing points of Eo and a tangent of Ei at a point

ða cn u; b snuÞ are presented by

ðA cnðu� v0Þ; B snðu� v0ÞÞ;ð4:3Þ
ðA cnðuþ v0Þ; B snðuþ v0ÞÞ

for 8u 2 R.

Theorem 4.1. The following two statements

are equivalent for two ellipses Eo (4.1) and Ei (4.2).

(1) A Poncelet’s traverse creates a poristic n-gon in

the sense of Definition 2.2.

(2) v0 ¼ 2m
n K;m 2 Z n f0g; j2mj < n; n ¼ 3; 4; . . .

Remark 4.1. We easily find that the theo-

rem holds even when Ei is presented by

Ei ¼
�
ðx; yÞ

���� x2

a2
þ
y2

b2
� 1 ¼ 0;ð4:4Þ

a ¼
B cn v0

dn v0
; b ¼ A cn v0

�

or

Ei ¼
�
ðx; yÞ

���� x2

a2
þ
y2

b2
� 1 ¼ 0;ð4:5Þ

a ¼ A cos v0; b ¼ B cos v0

�
:
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Remark 4.2. m presents the number of

revolution of a series of points of Poncelet’s

traverse, that is, a series of points rotates m-

revolutions on an outer ellipse. Also sgnðv0Þ shows

the direction of revolution.

Proof of Theorem 4.1. (2) ) (1).

The two intersecting points of Eo (4.1) and a

tangent of Ei (4.2) at a point ða cnu; b snuÞ are

presented by

ðA cnðu� v0Þ; B snðu� v0ÞÞ;
ðA cnðuþ v0Þ; B snðuþ v0ÞÞ:

By taking a point ða cnðuþ 2v0Þ; b snðuþ 2v0ÞÞ on

Ei, the intersecting points become

ðA cnðuþ v0Þ; B snðuþ v0ÞÞ;
ðA cnðuþ 3v0Þ; B snðuþ 3v0ÞÞ:

Moreover by taking a point ða cnðuþ 4v0Þ;
b snðuþ 4v0ÞÞ, the intersecting points become

ðA cnðuþ 3v0Þ; B snðuþ 3v0ÞÞ;
ðA cnðuþ 5v0Þ; B snðuþ 5v0ÞÞ:

In this way we obtain a series of points on Eo as

follows:

ð4:6Þ
ðA cnðu� v0Þ; B snðu� v0ÞÞ;
ðA cnðuþ v0Þ; B snðuþ v0ÞÞ; . . . ;

ðA cnðuþ ð2n� 1Þv0Þ; B snðuþ ð2n� 1Þv0ÞÞ; . . .

Since v0 ¼ 2m
n K,

ð4:7Þ
cn

sn

� �
ðu� v0Þ�

cn

sn

� �
ðuþ ð2n� 1Þv0Þ

¼
cn

sn

� �
u�

2m

n
K

� �
�

cn

sn

� �
uþ ð2n� 1Þ

2m

n
K

� �

¼ cn

sn

� �
u� 2m

n
K

� �
� cn

sn

� �
uþ 4mK � 2m

n
K

� �
¼ 0:

Furthermore,

cn

sn

� �
uþ ð2i� 1Þ 2m

n
K

� �
ð4:8Þ

�
cn

sn

� �
uþ ð2j� 1Þ

2m

n
K

� �
6¼ 0;

i 6¼ j; 1 � i; j < n

because letting the l.h.s. = 0 in (4.8) yields the

difference of arguments must be 4qK; q 2 Z since

the period of functions of cn and sn are 4K but the

difference does not equal 4qK. Therefore (4.7) and

(4.8) show that the initial and n-th point of a series

of points (4.6) overlap and simultaneously points

less than the n-th point doesn’t overlap each other.

So a series of points (4.6) creates a poristic n-gon

under the condition of (2).

(1) ) (2)

If a series of points (4.6) creates a poristic n-gon,

then it follows

cn

sn

� �
ðu� v0Þ ¼

cn

sn

� �
ðuþ ð2n� 1Þv0Þ:ð4:9Þ

From this we obtain v0 ¼ 2q
n K; q 2 Z. Since �K <

v0 < K, the theorem follows. �

5. The poristic relations between the

quantities: semi-major and semi-minor axes

of two ellipses [7]. The fact that the necessary

and sufficient condition to create a poristic n-gon in

Eo (4.1) and Ei (4.2) (or (4.4) or (4.5)) is v0 ¼
2m
n K;m 2 Z n f0g; j2mj < n; n ¼ 3; 4; . . . is stated at

the previous section. In this section the relations

between semi-major and semi-minor axes of two

ellipses when a poristic n-gon is created are shown

for n ¼ 3; 4; 5, that is, triangle, quadrilateral and

pentagon.

Theorem 5.1 (poristic triangle). A series of

points of Poncelet’s traverse creates a poristic

triangle in Eo (4.1) and Ei (4.2) (or (4.4) or (4.5))

if and only if

a

A
þ
b

B
¼ 1:ð5:1Þ

Proof. We have only a case: ðn;mÞ ¼ ð3; 1Þ for

a poristic triangle from Theorem 4.1. Then we only

need to prove

v0 ¼ �
2K

3
()

a

A
þ
b

B
¼ 1:

(¼)) The necessary part is easy as follows:

a

A
þ b

B
¼ cn � 2K

3

� �
þ

cnð� 2K
3 Þ

dnð� 2K
3 Þ

¼ cn
2K

3

1þ dn 2K
3

dn 2K
3

 !
¼ 1

since cn 2K
3 ¼

dn2K
3

1þdn2K
3

.

((¼) The sufficient part is performed by leading

v0 ¼ � 2K
3 from
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cn v0 þ
cn v0

dn v0
� 1 ¼ 0:ð5:2Þ

Let the left-hand side of (5.2) be

f3ðv0Þ ¼ cn v0 þ
cn v0

dn v0
� 1:ð5:3Þ

We check the shape of the function f3 in

�K < v0 < K. Since f3 is an even function so

that it is enough to check it in 0 � v0 < K. First

we have

df3

dv0
¼ � sn v0 dn v0 � sn v0 þ

k2 sn v0 cn2 v0

dn2 v0

ð5:4Þ

¼ ðk2 � 1þ dn v0ðk2 sn2 v0 � 1ÞÞ
sn v0

dn2 v0

� 0; for 0 � v0 < K:

In the above inequality an equal sign holds only

when v0 ¼ 0, so that the function f3 is a monotone

decreasing function in 0 � v0 < K. Moreover there

exists a unique point in 0 � v0 < K where v0

satisfies f3ðv0Þ ¼ 0 since f3ð0Þ ¼ 1 > 0 and f3ðKÞ ¼
�1 < 0. Therefore we obtain v0 ¼ 2K

3 from the proof

of the necessary part. f3 is a monotone increasing

function in �K < v0 � 0 since f3 is an even

function, so that in a similar way we also obtain

v0 ¼ � 2K
3 . Thus the theorem follows. �

We obtain the following corollary:

Corollary 5.1 (poristic triangle). In Theorem

5.1 when an outer ellipse changes into a circle,

i.e., A ¼ B ¼ R (R is a radius of an outer circle), we

have the following relation:

aþ b ¼ R:ð5:5Þ

Also when an inner ellipse changes into a circle, i.e.,

a ¼ b ¼ r (r is a radius of an inner circle), we have

the following relation:

1

A
þ

1

B
¼

1

r
:ð5:6Þ

Remark 5.1. When both ellipses change

into circles, i.e., A ¼ B ¼ R; a ¼ b ¼ r, the well

known relation: r
R ¼ 1

2 ð¼ cos �3Þ is obtained.

Theorem 5.2 (poristic quadrilateral). A

series of points of Poncelet’s traverse creates a

poristic quadrilateral in Eo (4.1) and Ei (4.2) (or

(4.4) or (4.5)) if and only if

a2

A2
þ
b2

B2
¼ 1:ð5:7Þ

Proof. We have only a case: ðn;mÞ ¼ ð4; 1Þ for

a poristic quadrilateral from Theorem 4.1. Then

from Theorem 4.1 we only need to prove

v0 ¼ �
K

2
() a2

A2
þ
b2

B2
¼ 1:

(¼)) Using the half-period formulae [10]: cn2 K
2 ¼

dnK
1þdnK and dn2 K

2 ¼ dnK, we obtain

a2

A2
þ
b2

B2
¼ cn2 �

K

2

� �
þ

cn2ð� K
2 Þ

dn2ð� K
2 Þ

¼ cn2 K

2

1þ dn2 K
2

dn2 K
2

 !
¼ 1:

((¼) The equation: a2

A2 þ b2

B2 � 1 ¼ 0 is equivalent to

cn2 v0ð1þ dn2 v0Þ � dn2 v0 ¼ 0:ð5:8Þ

From this we only need to have v0 ¼ � K
2 . In the

same manner of the proof of a poristic triangle, let

the left-hand side of (5.8) be

f4ðv0Þ ¼ cn2 v0ð1þ dn2 v0Þ � dn2 v0:ð5:9Þ

Since f4 is an even function so that it is enough to

check it in 0 � v0 < K. First we have

df4

dv0
¼ �2 cn v0 sn v0 dn v0ð1þ dn2 v0Þð5:10Þ

� 2k2 sn v0 cn3 v0 dn v0

þ 2k2 sn v0 cn v0 dn v0

¼ 4 sn v0 cn v0 dn v0ðk2 sn2 v0 � 1Þ
� 0; for 0 � v0 < K:

In the above inequality an equal sign holds only

when v0 ¼ 0, so that the function f4 is a monotone

decreasing function in 0 � v0 < K. Moreover there

exists a unique point in 0 � v0 < K where v0

satisfies f4ðv0Þ ¼ 0 since f4ð0Þ ¼ 1 > 0 and f4ðKÞ ¼
�k02 < 0. Therefore we obtain v0 ¼ K

2 from the proof

of the necessary part. f4 is a monotone increasing

function in �K < v0 � 0 since f4 is an even

function, so that in a similar way we also obtain

v0 ¼ � K
2 . Thus the theorem follows. �

We obtain the following corollary:

Corollary 5.2 (poristic quadrilateral). In

Theorem 5.2 when an outer ellipse changes into a

circle, we have the following relation:

a2 þ b2 ¼ R2:ð5:11Þ

Also when an inner ellipse changes into a circle, we

have the following relation:
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1

A2
þ

1

B2
¼

1

r2
:ð5:12Þ

Remark 5.2. When both ellipses change

into circles, the well known relation: r
R ¼

1ffiffi
2
p ð¼ cos �4Þ is obtained.

There exist two cases: ðn;mÞ ¼ ð5; 1Þ and

ð5; 2Þ when a series of points of Poncelet’s traverse

creates a poristic pentagon in Eo and Ei from

Theorem 4.1. We call the former an ordinary

porism and the latter a two-laps porism since

m ¼ 1 and m ¼ 2 mean that a series of points of

Poncelet’s traverse rotates one-revolution and two-

revolutions on an outer ellipse, respectively. The

proof can be performed in the same manner so

the necessary and sufficient conditons(relations) for

ordinary and two-laps, poristic pentagons are only

shown.

The relations for a poristic pentagon.

(a1) An ordinary, poristic pentagon which is cir-

cumscribed and inscribed by two ellipses

a3

A3
þ
b3

B3
þ

a

A
þ b

B

� �2

¼ 1þ
a

A
þ b

B

� �
1þ ab

AB

� �
:

(a2) An ordinary, poristic pentagon which is cir-

cumscribed by a circle and inscribed by an ellipse

a3 þ b3 þ Rðaþ bÞ2 ¼ R3 þ ðaþ bÞðR2 þ abÞ:

(a3) An ordinary, poristic pentagon which is cir-

cumscribed by an ellipse and inscribed by a circle

1

A3
þ

1

B3
þ

1

r

1

A
þ

1

B

� �2

¼
1

r3
þ

1

A
þ

1

B

� �
1

r2
þ

1

AB

� �
:

(a4) An ordinary, poristic pentagon which is cir-

cumscribed and inscribed by two circles

The well known relation: r
R ¼ 1

�1þ
ffiffi
5
p ð¼ cos �5Þ is

obtained.

(b1) A two-laps, poristic pentagon which is circum-

scribed and inscribed by two ellipses

a3

A3
þ
b3

B3
þ 1 ¼

a

A
þ
b

B

� �
1þ

a

A
þ
b

B
þ

ab

AB

� �
:

(b2) A two-laps, poristic pentagon which is circum-

scribed by a circle and inscribed by an ellipse

a3 þ b3 þ R3 ¼ ðaþ bÞðR2 þ ðaþ bÞRþ abÞ:

(b3) A two-laps, poristic pentagon which is circum-

scribed by an ellipse and inscribed by a circle

1

A3
þ

1

B3
þ

1

r3

¼
1

A
þ 1

B

� �
1

r2
þ

1

A
þ 1

B

� �
1

r
þ 1

AB

� �

(b4) A two-laps, poristic pentagon which is circum-

scribed and inscribed by two circles

r

R
¼ 1

1þ
ffiffiffi
5
p ¼ cos

2

5
�

� �

We can also obtain the relations for n-

gon(n � 6) in the same manner.
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