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Abstract: Let X be a complex manifold. The classical Riemann-Hilbert correspondence

associates to a regular holonomic system M the C-constructible complex of its holomorphic

solutions. Let t be the affine coordinate in the complex projective line. If M is not necessarily

regular, we associate to it the ind-R-constructible complex G of tempered holomorphic solutions

to M�Det. We conjecture that this provides a Riemann-Hilbert correspondence for holonomic

systems. We discuss the functoriality of this correspondence, we prove that M can be

reconstructed from G if dimX ¼ 1, and we show how the Stokes data are encoded in G.
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phenomenon.

Introduction. Let X be a complex manifold.

The Riemann-Hilbert correspondence of [2] estab-

lishes an anti-equivalence

Db
r-holðDXÞ �

�0

�0

Db
C-cðCXÞ

between regular holonomic D-modules and

C-constructible complexes. Here, �0ðLÞ ¼
RHomDXðL;OXÞ is the complex of holomorphic

solutions to L, and �0ðLÞ ¼ T HomðL;OXÞ ¼
RHomðL;Ot

XÞ is the complex of holomorphic func-

tions tempered along L. Since L ’ �0ð�0ðLÞÞ, this

shows in particular that L can be reconstructed

from �0ðLÞ.
We are interested here in holonomic D-modules

which are not necessarily regular.

The theory of ind-sheaves from [6] allows one to

consider the complex �tðMÞ ¼ RHomDXðM;Ot
XÞ

of tempered holomorphic solutions to a holonomic

module M. The basic example �tðDCe
1=xÞ was

computed in [7], and the functor �t has been studied

in [10,11]. However, since �tðDCe
1=xÞ ’ �tðDCe

2=xÞ,
one cannot reconstruct M from �tðMÞ.

Set �ðMÞ ¼ �tðM�DPe
tÞ, for t the affine

variable in the complex projective line P. This

is an ind-R-constructible complex in X �P. The

arguments in [1] suggested us how M could be

reconstructed from �ðMÞ via a functor �, described

below (§3).

We conjecture that the contravariant functors

DbðDXÞ �
�

�
DbðICX�PÞ;

between the derived categories of DX-modules

and of ind-sheaves on X �P, provide a Riemann-

Hilbert correspondence for holonomic systems.

To corroborate this statement, we discuss the

functoriality of � and � with respect to proper

direct images and to tensor products with regular

objects (§4). This allows us to reduce the problem to

the case of holonomic modules with a good formal

structure.

When X is a curve and M is holonomic, we

prove that the natural morphismM! �ð�ðMÞÞ is

an isomorphism (§6). ThusM can be reconstructed

from �ðMÞ.
Recall that irregular holonomic modules are

subjected to the Stokes phenomenon. We describe

with an example how the Stokes data of M are

encoded topologically in the ind-R-constructible

sheaf �ðMÞ (§7).

In this Note, the proofs are only sketched.

Details will appear in a forthcoming paper. There,

we will also describe some of the properties of the

essential image of holonomic systems by the functor

�. Such a category is related to a construction

of [13].

1. Notations. We refer to [3–6].

Let X be a real analytic manifold.

Denote by DbðCXÞ the bounded derived

category of sheaves of C-vector spaces, and by
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Db
R-cðCXÞ the full subcategory of objects with R-

constructible cohomologies. Denote by �, RHom,

f�1, Rf�, Rf!, f
! the six Grothendieck operations for

sheaves. (Here f :X ! Y is a morphism of real

analytic manifolds.)

For S � X a locally closed subset, we denote by

CS the zero extension to X of the constant sheaf

on S.

Recall that an ind-sheaf is an ind-object in the

category of sheaves with compact support. Denote

by DbðICXÞ the bounded derived category of ind-

sheaves, and by Db
IR-cðICXÞ the full subcategory of

objects with ind-R-constructible cohomologies.

Denote by �, RIHom, f�1, Rf�, Rf!!, f
! the six

Grothendieck operations for ind-sheaves.

Denote by � the left adjoint of the embedding

of sheaves into ind-sheaves. One has �(‘‘lim�! ’’ Fi) =

lim�! Fi. Denote by � the left adjoint of �.

Denote by Dbt
X the ind-R-constructible sheaf of

tempered distributions.

Let X be a complex manifold. We set for short

dX ¼ dimX.

Denote by OX and DX the rings of holomorphic

functions and of differential operators. Denote by

�X the invertible sheaf of differential forms of top

degree.

Denote by DbðDXÞ the bounded derived cat-

egory of left DX-modules, and by Db
holðDXÞ and

Db
r-holðDXÞ the full subcategories of objects with

holonomic and regular holonomic cohomologies,

respectively. Denote by �D, Df�1, Df� the oper-

ations for D-modules. (Here f :X ! Y is a mor-

phism of complex manifolds.)

Denote by DM the dual ofM (with shift such

that DOX ’ OX).

For Z � X a closed analytic subset, we denote

by R� ½Z�M and Mð�ZÞ the relative algebraic

cohomologies of a DX-module M.

Denote by ssðMÞ � X the singular support of

M, that is the set of points where the characteristic

variety is not reduced to the zero-section.

Denote by Ot
X 2 Db

IR-cðICXÞ the complex of

tempered holomorphic functions. Recall that Ot
X is

the Dolbeault complex of Dbt
X and that it has a

structure of �DX-module. We will write for short

RHomDXðM;Ot
XÞ instead of RIHom�DX ð�M;Ot

XÞ.
2. Exponential D-modules. Let X be a

complex analytic manifold. Let D � X be a hyper-

surface, and set U ¼ X nD. For ’ 2 OXð�DÞ, we

set

DXe’ ¼ DX=fP :Pe’ ¼ 0 on Ug;
E’DjX ¼ ðDX e

’Þð�DÞ:

As an OXð�DÞ-module, E’DjX is generated by e’.

Note that ssðE’DjXÞ ¼ D, and E’DjX is holonomic.

It is regular if ’ 2 OX, since then E’DjX ’
OXð�DÞ.

One easily checks that ðDE’DjXÞð�DÞ ’ E
�’
DjX.

Proposition 2.1. If dimX ¼ 1, and ’ has an

effective pole at every point of D, then DE’DjX ’
E�’DjX.

Let P be the complex projective line and

denote by t the coordinate on C ¼ P n f1g.
For c 2 R, we set for short

fRe’ < cg ¼ fx 2 U : Re’ðxÞ < cg;
fReðtþ ’Þ < cg ¼ fðx; tÞ:x 2 U; t 2 C;

Reðtþ ’ðxÞÞ < cg:
Consider the ind-R-constructible sheaves on X and

on X �P, respectively,

CfRe’<?g ¼ ‘‘lim�!
c!þ1

’’ CfRe’<cg;

CfReðtþ’Þ<?g ¼ ‘‘lim�!
c!þ1

’’ CfReðtþ’Þ<cg:

The following result is analogous to

[1, Proposition 7.1]. Its proof is simpler than loc.

cit., since ’ is differentiable.

Proposition 2.2. One has an isomorphism

in DbðDXÞ
E’DjX !

�
Rq�RHomp�1DP

ðp�1Et1jP;
RHomðCfReðtþ’Þ<?g;Ot

X�PÞÞ;
for q and p the projections from X �P.

The following result is analogous to

[7, Proposition 7.3].

Lemma 2.3. Denote by ðu; vÞ the coordi-

nates in C2. There is an isomorphism in DbðICC2Þ
RHomDC2 ðEu=vfv¼0gjC2 ;Ot

C2Þ ’

RIHomðCfv 6¼0g;CfReu=v<?gÞ:
Proposition 2.4. There is an isomorphism

in DbðICXÞ
RHomDXðDE

�’
DjX;O

t
XÞ ’ RIHomðCU;CfRe’<?gÞ:

Proof. As DEu=vfv¼0gjC2 ’ E�u=vfv¼0gjC2 , Lemma 2.3

gives

�t
C2 �LDC2

E�u=vfv¼0gjC2 ½�2� ’

RIHomðCfv 6¼0g;CfReu=v<?gÞ:
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Write ’ ¼ a=b for a; b 2 OX such that b�1ð0Þ � D,

and consider the map

f ¼ ða; bÞ:X ! C2:

As Df�1E�u=vfv¼0gjC2 ’ E�’DjX, [6, Theorem 7.4.1] implies

�t
X �LDX E

�’
DjX½�dX� ’ RIHomðCU;CfRe’<?gÞ:

Finally, one has

�t
X �LDX E

�’
DjX½�dX� ’ RHomDXðDE

�’
DjX;O

t
XÞ:

�

3. A correspondence. Let X be a complex

analytic manifold. Recall that P denotes the com-

plex projective line. Consider the contravariant

functors

DbðDXÞ�
�

�
DbðICX�PÞ

defined by

�ðMÞ ¼ RHomDX�P
ðM�D Et1jP;Ot

X�PÞ;
�ðF Þ ¼ Rq�RHomp�1DP

ðp�1Et1jP;
RHomðF;Ot

X�PÞÞ;
for q and p the projections from X �P.

We conjecture that this provides a Riemann-

Hilbert correspondence for holonomic systems:

Conjecture 3.1.

(i) The natural morphism of endofunctors of

DbðDXÞ

id! � 	 �ð3:1Þ

is an isomorphism on Db
holðDXÞ.

(ii) The restriction of �

�jDb
holðDXÞ

: Db
holðDXÞ ! DbðICX�PÞ

is fully faithful.

Let us prove some results in this direction.

4. Functorial properties. The next two

Propositions are easily deduced from the results

in [6].

Proposition 4.1. Let f:X ! Y be a proper

map, and set fP ¼ f � idP. Let M 2 Db
holðDXÞ and

F 2 Db
IR-cðICX�PÞ. Then

�ðDf�MÞ ’ RfP!!
�ðMÞ½dX � dY �;

�ðRfP!!
F Þ ’ Df��ðF Þ½dX � dY �:

For L 2 Db
r-holðDXÞ, set

�0ðLÞ ¼ RHomDXðL;OXÞ:

Recall that �0ðLÞ is a C-constructible complex of

sheaves on X.

Proposition 4.2. Let L 2 Db
r-holðDXÞ, M 2

Db
holðDXÞ and F 2 Db

IR-cðICX�PÞ. Then

�ðDðL�D DMÞÞ ’ RIHomðq�1�0ðLÞ;�ðMÞÞ;
�ðF � q�1�0ðLÞÞ ’ �ðF Þ �D L:

Noticing that

�ðOXÞ ’ CX � RIHomðCft 6¼1g;CfRe t<?gÞ;

one checks easily that �ð�ðOXÞÞ ’ OX. Hence,

Proposition 4.2 shows:

Theorem 4.3.

(i) For L 2 Db
r-holðDXÞ, we have

�ðLÞ ’ q�1�0ðLÞ � �ðOXÞ
’ �0ðLÞ�RIHomðCft 6¼1g;CfRe t<?gÞ:

(ii) The morphism (3.1) is an isomorphism on

Db
r-holðDXÞ.

(iii) For any L;L0 2 Db
r-holðDXÞ, the natural mor-

phism

HomDX ðL;L0Þ ! Homð�ðL0Þ;�ðLÞÞ

is an isomorphism.

Therefore, Conjecture 3.1 holds true for regular

holonomic D-modules.

5. Review on good formal structures.

Let D � X be a hypersurface. A flat meromorphic

connection with poles at D is a holonomic

DX-module M such that ssðMÞ ¼ D and M ’
Mð�DÞ.

We recall here the classical results on the

formal structure of flat meromorphic connections

on curves. (Analogous results in higher dimension

have been obtained in [8,9,12].)

Let X be an open disc in C centered at 0.

For F an OX-module, we set

F bjj0 ¼ bOOX;0 �OX;0 F 0;

where bOOX;0 is the completion of OX;0.
One says that a flat meromorphic connec-

tion M with poles at 0 has a good formal structure

if

Mbjj0 ’M
i2I
Li �D E’i0jX

� �bjj0ð5:1Þ

as ðbOOX;0 �OX;0 DX;0Þ-modules, where I is a finite

set, Li are regular holonomic DX-modules, and

’i 2 OXð�0Þ.
A ramification at 0 is a map X ! X of the form

x 7! xm for some m 2 N.

The Levelt-Turrittin theorem asserts:
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Theorem 5.1. Let M be a meromorphic

connection with poles at 0. Then there is a

ramification f :X ! X such that Df�1M has a good

formal structure at 0.

Assume thatM satisfies (5.1). IfM is regular,

then ’i 2 OX for all i 2 I, and (5.1) is induced by an

isomorphism

M0 ’
M
i2I
Li �D E’i0jX

� �
0
:

However, such an isomorphism does not hold in

general.

Consider the real oriented blow-up

�:B ¼ R� S1 ! X; ð�; �Þ 7! �ei�:ð5:2Þ

Set V ¼ f� > 0g and let Y ¼ f� 
 0g be its closure.

If W is an open neighborhood of ð0; �Þ 2 @Y , then

�ðW \ V Þ contains a germ of open sector around

the direction � centered at 0.

Consider the commutative ring

AY ¼ RHom��1D
X
ð��1OX;RHomðCV ;Dbt

BÞÞ;

where X is the complex conjugate of X.

To a DX-module M, one associates the AY -

module

��M ¼ AY ���1OX �
�1M:

The Hukuara-Turrittin theorem states that

(5.1) can be extended to germs of open sectors:

Theorem 5.2. LetM be a flat meromorphic

connection with poles at 0. Assume that M admits

the good formal structure (5.1). Then for any

ð0; �Þ 2 @Y one has

ð��MÞð0;�Þ ’
M
i2I

��ðE’i0jXÞ
mi

 !
ð0;�Þ

;ð5:3Þ

where mi is the rank of Li.
(Note that only the ranks of the Li’s appear

here, since x�ðlogxÞm belongs to AY for any � 2 C

and m 2 Z
0.)

One should be careful that the above isomor-

phism depends on �, giving rise to the Stokes

phenomenon.

We will need the following result:

Lemma 5.3. If M is a flat meromorphic

connection with poles at 0, then

R��ð��MÞ ’M:

6. Reconstruction theorem on curves.

Let X be a complex curve. Then Conjecture 3.1 (i)

holds true:

Theorem 6.1. For M 2 Db
holðDXÞ there is a

functorial isomorphism

M!� �ð�ðMÞÞ:ð6:1Þ

Sketch of proof. Since the statement is local,

we can assume that X is an open disc in C centered

at 0, and that ssðMÞ ¼ f0g.
By devissage, we can assume from the begin-

ning that M is a flat meromorphic connection with

poles at 0.

Let f :X ! X be a ramification as in

Theorem 5.1, so that Df�1M admits a good formal

structure at 0.

Note that Df�Df
�1M ’M�N for some

N . If (6.1) holds for Df�1M, then it holds for

M�N by Proposition 4.1, and hence it also holds

for M.

We can thus assume that M admits a good

formal structure at 0.

Consider the real oriented blow-up (5.2).

By Lemma 5.3, one has M ’ R����M. Hence

Proposition 4.1 (or better, its analogue for �)

implies that we can replace M with ��M.

By Theorem 5.2, we finally reduce to prove

E’0jX !
�

�ð�ðE’0jXÞÞ:

SetD0 ¼ fx ¼ 0g [ ft ¼ 1g andU 0 ¼ ðX �PÞ n
D0. By Proposition 2.1,

DEtþ’D0 jX�P ’ DðE’0jX �
D Et1jPÞ ’ E

�t�’
D0 jX�P:

By Proposition 2.4, we thus have

�ðE’0jXÞ ’ RIHomðCU 0 ;CfReðtþ’Þ<?gÞ:

Noticing that �ðE’0jXÞ �CD0 2 Db
C-cðCX�PÞ,

one checks that �ð�ðE’0jXÞ �CD0 Þ ’ 0.

Hence, Proposition 2.2 implies

�ð�ðE’0jXÞÞ ’ �ðCfReðtþ’Þ<?gÞ ’ E’0jX:

�

Example 6.2. Let X ¼ C, ’ðxÞ ¼ 1=x and

M ¼ E’0jX. Then we have

Hk�ðMÞ ¼

CfReðtþ’Þ<?g; for k ¼ 0,

Cfx¼0; t 6¼1g�
Cfx6¼0; t¼1g; for k ¼ 1,

0; otherwise.

8>>><>>>:
7. Stokes phenomenon. We discuss here

an example which shows how, in our setting, the

Stokes phenomenon arises in a purely topological

fashion.
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Let X be an open disc in C centered at 0.

(We will shrink X if necessary.) Set U ¼
X n f0g.

Let M be a flat meromorphic connection with

poles at 0 such that

Mbjj0 ’ ðE’0jX � E 0jXÞbjj0; ’;  2 OXð�0Þ:
Assume that  � ’ has an effective pole at 0.

The Stokes curves of E’0jX � E
 
0jX are the real

analytic arcs ‘i, i 2 I, defined by

fReð � 	Þ ¼ 0g ¼
G

i2I ‘i:

(Here we possibly shrink X to avoid crossings of

the ‘i’s and to ensure that they admit the polar

coordinate � > 0 as parameter.)

Since E’0jX ’ E
’þ’0

0jX for ’0 2 OX, the Stokes

curves are not invariant by isomorphism.

The Stokes lines Li, defined as the limit

tangent half-lines to ‘i at 0, are invariant by

isomorphism.

The Stokes matrices of M describe how the

isomorphism (5.3) changes when � crosses a Stokes

line.

Let us show how these data are topologically

encoded in �ðMÞ.
SetD0 ¼ fx ¼ 0g [ ft ¼ 1g andU 0 ¼ ðX �PÞ n

D0. Set

Fc¼ CfReðtþ’Þ<cg; Gc¼ CfReðtþ Þ<cg;

F ¼ CfReðtþ’Þ<?g; G¼ CfReðtþ Þ<?g:

By Proposition 2.4 and Theorem 5.2,

�ðMÞ ’ RIHomðCU 0 ; HÞ;

where H is an ind-sheaf such that

H �Cq�1S ’ ðF �GÞ �Cq�1S

for any sufficiently small open sector S.

Let b� be the vector space of upper/lower

triangular matrices in M2ðCÞ, and let t ¼ bþ \ b� be

the vector space of diagonal matrices.

Lemma 7.1. Let S be an open sector, and

v a vector space, which satisfy one of the following

conditions:

(i) v ¼ b� and S � f�Reð � ’Þ > 0g,
(ii) v ¼ t, S  Li for some i 2 I and S \ Lj ¼ ;

for i 6¼ j.
Then, for c0 � c, one has

HomððFc �GcÞjq�1S; ðFc0 �Gc0 Þjq�1SÞ ’ v:

In particular,

EndððF �GÞ �Cq�1SÞ ’ v:

This proves that the Stokes lines are encoded in

H. Let us show how to recover the Stokes matrices

of M as glueing data for H.

Let Si be an open sector which contains Li
and is disjoint from Lj for i 6¼ j. We choose Si so

that
S
i2I Si ¼ U.

Then for each i 2 I, there is an isomorphism

�i:H �Cq�1Si ’ ðF �GÞ �Cq�1Si :

Take a cyclic ordering of I such that the Stokes

lines get ordered counterclockwise.

Since fSigi2I is an open cover of U, the ind-

sheaf H is reconstructed from F �G via the glueing

data given by the Stokes matrices

Ai ¼ ��1
iþ1�ijq�1ðSi\Siþ1Þ 2 b

�:
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en dimension 2, Astérisque 263 (2000),
viii+190 pp.

[ 13 ] D. Tamarkin, Microlocal condition for non-
displaceablility, arXiv:0809.1584.

No. 10] On a reconstruction theorem for holonomic systems 183


	c_rf1
	c_rf3
	c_rf4
	c_rf5
	c_rf6
	c_rf7
	c_rf8
	c_rf9
	c_rf10
	c_rf11
	c_rf12
	c_rf13
	c_rf14

