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Abstract: In this paper we derive some elements of the rings of integers in the cubic fields

of the form Qð
ffiffiffi
d3
p
Þ, where d is even, which cannot be written as a difference of two squares in the

considered ring. We show that corresponding Diophantine quadruples do not exist for such

elements, what supports the hypothesis mainly proved for the ring of integers and for certain

quadratic fields.
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1. Introduction. A problem of proving the

existence of Diophantine quadruples can be placed

among the most interesting ancient problems in the

number theory. It was first considered by the Greek

mathematician Diophantus of Alexandria in the

third century, who has discovered beautiful proper-

ties of the set f1; 33; 68; 105g. Originally, a problem

of finding the Diophantine quadruple with a prop-

erty DðwÞ, or the DðwÞ–quadruple for short, con-

sisted of deriving a set fw1; w2; w3; w4g of four non-

zero integers with the property that wi � wj þ w
is a perfect square, for i; j 2 f1; 2; 3; 4g, i 6¼ j, and

Diophantus observed that the mentioned set is a

Dð256Þ–quadruple.

Many authors have studied this problem since

then and it has been shown by Dujella in [3] that if

w 6� 2 (mod 4Þ and w =2 f�4;�3;�1; 3; 5; 8; 12; 20g
then there exists a DðwÞ–quadruple. He has

also derived many useful polynomial formulas for

Diophantine quadruples, which can be found in [4].

The fact that there are no Dð4kþ 2Þ–quadruples,

where k 2 Z, is a consequence of work of some other

authors ([1,9,10]).

Analogous problem can also be studied in other

rings, especially in rings of integers of number fields.

In particular, in a series of papers [6], [7] and [8],

Franušić mainly solved this problem for non-

imaginary quadratic number fields of the form

Qð
ffiffiffi
d
p
Þ. She showed that for an integer w in such

quadratic field there exists a Diophantine quadruple

with the property DðwÞ if and only if w can be

represented as a difference of squares of two

integers, up to finitely many exceptions. One may

ask whether this is still true if the ring of integers in

Qð
ffiffiffi
d
p
Þ is replaced by the ring of integers in other

number fields and this question is at present far

from being solved. The purpose of this paper is to

provide some results in that direction for cubic

number fields.

The results in [6–8] are based on the descrip-

tion of differences of two squares in non–imaginary

quadratic number fields, given in [5]. Description

given there relies on the solvability of Pellian

equations which arise as determinants of systems

of certain linear equations. This also presents a

main advantage of the quadratic number field case.

Namely, analogous systems of linear equations that

appear in the case of higher dimensional number

fields lead to equations that are more complicated

than Pellian’s. We will restrict our attention to

finding elements in the rings of integers of pure

cubic number fields Qð
ffiffiffi
d3
p
Þ, where d is even, that

cannot be written as a difference of two squares.

Depending on the structure of the ring of integers

in Qð
ffiffiffi
d3
p
Þ there are two possibilities, which are

considered separately. In each case we determine

certain classes of elements that cannot be written as

a difference of squares and show the non–existence

of related Diophantine quadruples.

Non–existence of such Diophantine quadruples

follows from the fact that systems of congruences

which we obtain do not have a solution and is

proved using case–by–case consideration.
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As a consequence, we prove that there exist no

Dð4kþ 2Þ-quadruples, k 2 Z, in the ring of integers

in Qð
ffiffiffi
d3
p
Þ for even d, that is different from the case

QðiÞ or Qð
ffiffiffi
2
p
Þ.

We now describe the content of the paper in

more detail. In the following section we recall basic

facts related to the structure of rings of integers

in pure cubic fields, while in the third section we

derive some elements of such rings that cannot be

written as a difference of squares and consider

related Diophantine quadruples.

2. Preliminaries. First we describe the

rings of integers in the numbers fields which we

consider. We will study the rings of integers in

the cubic number fields of the form Qð
ffiffiffi
d3
p
Þ, where

d 2 Z. Such cubic number fields are usually called

pure cubic number fields. Clearly, we may suppose

that d is cube-free integer greater than 1. We

now recall the description of the rings of integers

in pure cubic number fields, which goes back as far

as [2].

It is easy to see that there exist unique

relatively prime positive integers a and b such that

d ¼ ab2 and ab is square-free. Next, we define � ¼ffiffiffi
d3
p

and � ¼
ffiffiffiffiffiffiffi
a2b

3
p

(note that �2 ¼ b�).

If a2 6� b2 (mod 9Þ, then the ring of integers

in Qð
ffiffiffi
d3
p
Þ equals Z½1; �; ��. Otherwise, the ring of

integers in Qð
ffiffiffi
d3
p
Þ is given by Z½�; �; ��, where

� ¼ 1þa�þb�
3 . We take a moment to verify the form of

perfect squares in mentioned rings of integers.

First we consider the case a2 6� b2 (mod 9Þ.
Obviously, �2 ¼ a� and � � � ¼ a � b. For x; y; z 2 Z,

it can be directly verified that the following holds

ðxþ y�þ z�Þ2 ¼ x2þ 2yzabþð2xyþ z2aÞ�þ ð2xzþ y2bÞ�:

Thus, each element of Z½1; �; �� which can be

written as a difference of two squares is of the form

x2
1 � x2

2 þ 2abðy1z1 � y2z2Þþ
ð2ðx1y1 � x2y2Þ þ aðz2

1 � z2
2ÞÞ�þð1Þ

ð2ðx1z1 � x2z2Þ þ bðy2
1 � y2

2ÞÞ�
for some x1; y1; z1; x2; y2; z2 2 Z.

Now we consider more complicated case a2 �
b2 (mod 9Þ. Observe that in this case 1 ¼ 3� �
a�� b�. It is not hard to see that � � � ¼ 3ab� �
a2b�� ab2�. The proof of the following relations

is straightforward:

�� ¼ ab2� �
a2b2 � 1

3
�� ab b

2 � 1

3
�

�� ¼ a2b� � ab
a2 � 1

3
��

a2b2 � 1

3
�

�2 ¼
1þ 2a2b2

3
� þ

aðb2 þ 1� 2a2b2Þ
9

�

þ
bða2 þ 1� 2a2b2Þ

9
�:

Note that since a and b are relatively prime and a2 �
b2 (mod 9Þ it follows that 3 does not divide d. Thus,

a2 � 1 (mod 3Þ and b2 � 1 (mod 3Þ, and we obtain

that 3 divides all of a2b2 � 1; a2 � 1; b2 � 1; 1þ 2a2b2.

Furthermore, ða2; b2Þ mod 9 2 fð1; 1Þ; ð4; 4Þ; ð7; 7Þg.
Now a direct verification shows that 9 divides both

a2 þ 1� 2a2b2 and b2 þ 1� 2a2b2.

Using previous formulas we obtain that for

x; y; z 2 Z the following holds:

ðx�þ y� þ z�Þ2 ¼
�
ay2 � 2a2bxy� 2xz

a2b2 � 1

3

� 2yzab
a2 � 1

3
þ z2 aðb2 þ 1� 2a2b2Þ

9

�
�

þ
�
bx2 � 2ab2xy� 2xzab

b2 � 1

3

� 2yz
a2b2 � 1

3
þ z2 bða2 þ 1� 2a2b2Þ

9

�
�

þ 6abxyþ 2ab2xzþ 2a2byzþ
1þ 2a2b2

3
z2

� �
�:

Similarly as in the first case, each element of

Z½�; �; �� that can be written as a difference of two

squares is of the form�
a

�
y2

1 � y2
2 � 2abðx1y1 � x2y2Þ

� 2b
a2 � 1

3
ðy1z1 � y2z2Þ þ

b2 þ 1� 2a2b2

9
ðz2

1 � z2
2Þ
�

� 2
a2b2 � 1

3
ðx1z1 � x2z2Þ

�
�

þ
�
b

�
x2

1 � x2
2 � 2abðx1y1 � x2y2Þð2Þ

� 2a
b2 � 1

3
ðx1z1 � x2z2Þ þ

a2 þ 1� 2a2b2

9
ðz2

1 � z2
2Þ
�

� 2
a2b2 � 1

3
ðy1z1 � y2z2Þ

�
�

þ
�

2abð3ðx1y1 � x2y2Þ þ bðx1z1 � x2z2Þ

þ aðy1z1 � y2z2ÞÞ þ
1þ 2a2b2

3
ðz2

1 � z2
2Þ
�
�;

where x1; y1; z1; x2; y2; z2 2 Z.
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3. Non-existence of some Diophantine

quadruples. In this section we will derive the

non-existence of some Diophantine quadruples

under the assumption that d is even. As before,

we write d ¼ ab2 where ab is square-free and

ða; bÞ ¼ 1. Note that the assumption that d is even

implies that exactly one of the positive integers a

and b is even.

Again, we will discuss case a2 6� b2 (mod 9Þ
first. Since 2ab � 0 (mod 4Þ, it follows from (1)

that each element xþ y�þ z� 2 Z½1; �; �� which

can be written as a difference of squares satisfies

x � x2
1 � x2

2 (mod 4Þ, for some x1; x2 2 Z. It is well

known that x2
1 � x2

2 6� 2 (mod 4Þ, so an element

of the form 4xþ 2þ y�þ z�, x; y; z 2 Z cannot be

written as a difference of two squares in the ring

Z½1; �; ��.
The first result on the non-existence of some

Diophantine quadruples in the pure cubic fields is

given by the following lemma:

Lemma 3.1. Let w ¼ xþ y�þ z� 2 Z½1; �; ��
denote an element of the ring of integers in a pure

cubic field Qð
ffiffiffi
d3
p
Þ.

(i) If a is even and y is odd, then there is no DðwÞ–
quadruple in Z½1; �; ��.
(ii) If b is even and z is odd, then there is no DðwÞ–
quadruple in Z½1; �; ��.

Proof. We comment only the part ðiÞ because

ðiiÞ can be proved in a completely analogous way.

Suppose, on the contrary, that the set fxi þ
yi�þ zi� : i ¼ 1; 2; 3; 4g is a DðwÞ–quadruple in

Z½1; �; ��.
Using the formulas obtained in the previous

section, we deduce that for all i; j 2 f1; 2; 3; 4g,
i 6¼ j, there exist integers cij; dij; eij such that

xiyj þ xjyi þ azizj þ y ¼ 2cijdij þ ae2
ij:

Since a is even and y is odd, it follows that xiyj þ
xjyi is an odd integer for all i; j 2 f1; 2; 3; 4g, i 6¼ j.
Now one can get a contradiction in the same way as

in the proof of Proposition 1 in [11]. �

Observe that if a is even then (1) implies that

xþ ð2yþ 1Þ�þ z�, where x; y; z 2 Z, is not a differ-

ence of two squares in Z½1; �; ��. Also, if b is even

then xþ y�þ ð2zþ 1Þ�, where x; y; z 2 Z, is not a

difference of two squares in Z½1; �; ��.
The following theorem provides a non–exis-

tence of DðwÞ–quadruples for a class of elements w

that are not representable as a difference of squares

in Z½1; �; ��.

Theorem 3.2. Let w ¼ 4xþ 2þ y�þ z�,

x; y; z 2 Z, denote an element of the ring of integers

Z½1; �; �� in a pure cubic field Qð
ffiffiffi
d3
p
Þ, where d

is even. Then there exist no DðwÞ–quadruples in

Z½1; �; ��.
Proof. Suppose that the set fxi þ yi�þ zi� :

i ¼ 1; 2; 3; 4g has the property Dð4xþ 2þ y�þ z�Þ.
Then for all i; j 2 f1; 2; 3; 4g, i 6¼ j, there exist

cij; dij; eij 2 Z such that the following equalities

hold:
xixj þ abðyizj þ yjziÞ þ 4xþ 2 ¼ c2

ij þ 2abdijeij

xiyj þ xjyi þ azizj þ y ¼ 2cijdij þ ae2
ij

xizj þ xjzi þ byiyj þ z ¼ 2cijeij þ bd2
ij:

Exactly one of the numbers a and b is even, and let

us first assume that a is even. The previous lemma

implies that y is even and consequently xiyj þ xjyi
is even for all i; j 2 f1; 2; 3; 4g, i 6¼ j.

On the other hand, since ab is even and square-

free, from the first equality we deduce that for

all i; j 2 f1; 2; 3; 4g, i 6¼ j, one of the following

holds:

xixj þ 2ðyizj þ yjziÞ � 2 (mod 4Þ;
xixj þ 2ðyizj þ yjziÞ � 3 (mod 4Þ:

ð3Þ

We will show that there do not exist integers

xi; yi; zi, i ¼ 1; 2; 3; 4, such that the above conditions

are fulfilled.

There are several cases to discuss:

. Suppose that xi is even for i ¼ 1; 2; 3; 4.

It follows that 2ðyizj þ yjziÞ � 2 (mod 4Þ for all

i; j 2 f1; 2; 3; 4g, i 6¼ j, and consequently yizj þ yjzi
is odd for i; j 2 f1; 2; 3; 4g, i 6¼ j. It can be seen that

this is impossible in the same way as in the proof of

the previous lemma.

. Suppose that there exist i 2 f1; 2; 3; 4g such

that xi is odd and j; k 2 f1; 2; 3; 4g, j 6¼ k, such

that xj and xk are even.

We may assume that x1 is odd and x2; x3 are even.

Then, x1yi þ xiy1 � 0 (mod 2Þ, i 2 f2; 3g, implies

that both y2 and y3 are even and hence, x2x3 þ
2ðy2z3 þ y3z2Þ � 0 (mod 4Þ, a contradiction.

. Suppose that there exists at most one i 2
f1; 2; 3; 4g such that xi is even.

We may assume that x1; x2; x3 are odd. Since xiyj þ
xjyi � 0 (mod 2Þ for i; j 2 f1; 2; 3; 4g, i 6¼ j, we

obtain either yi � 0 (mod 2Þ for i 2 f1; 2; 3g or yi �
1 (mod 2Þ for i 2 f1; 2; 3g.

Let us first assume yi � 0 (mod 2Þ for i 2
f1; 2; 3g. It follows directly from (3) that xixj �
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3 (mod 4Þ holds for i; j 2 f1; 2; 3g, i 6¼ j. On the

other hand, there exist i; j 2 f1; 2; 3g, i 6¼ j such

that xi � xj (mod 4Þ, leading to xixj � 1 (mod 4Þ,
which is impossible.

Now we assume yi � 1 (mod 2Þ for i 2 f1; 2; 3g.
If z1 � z2 � z3 (mod 2Þ, then we again obtain from

(3) that xixj � 3 (mod 4Þ holds for i; j 2 f1; 2; 3g,
i 6¼ j, a contradiction.

It remains to consider the case zi � zj 6�
zk (mod 2Þ, where fi; j; kg ¼ f1; 2; 3g. Using (3),

we get xixj � 3 (mod 4Þ and xixk � xjxk �
1 (mod 4Þ. The last congruences yield xi �
xj (mod 4Þ and, in consequence, xixj � 1 (mod 4Þ,
which is impossible.

Let us now assume that b is even. By the

previous lemma, z is even and it directly follows

that xizj þ xjzi is even for i; j 2 f1; 2; 3; 4g, i 6¼ j.
Also, in the same way as before we obtain

that for all i; j 2 f1; 2; 3; 4g, i 6¼ j, one of (3) holds.

Using the same procedure, it can be concluded

that there is no solution. This completes the

proof. �

In the rest of this section we study the

remaining case a2 � b2 (mod 9Þ. If a is even, it is

a direct consequence of the formula (2) that

an element of the form ð2xþ 1Þ�þ y� þ z� 2
Z½�; �; ��, where x 2 Z, is not representable as

a difference of two squares in the ring Z½�; �; ��.
On the other hand, if b is even then the same can

be concluded for an element of the form x�þ
ð2yþ 1Þ� þ z� 2 Z½�; �; ��, where y 2 Z.

The following lemma is an analogue of

Lemma 3.1 for the pure cubic fields of a different

type.

Lemma 3.3. Let w ¼ x�þ y� þ z� 2 Z½�; �; ��
denote an element of the ring of integers in a pure

cubic field Qð
ffiffiffi
d3
p
Þ, with even d ¼ ab2, where ab is

square-free and a2 � b2 (mod 9Þ.
(i) If a is even and x is odd, then there is no DðwÞ–
quadruple in Z½�; �; ��.
(ii) If b is even and y is odd, then there is no DðwÞ–
quadruple in Z½�; �; ��.

Proof. We will again comment only the part

ðiÞ. Suppose the assertion of the lemma is false. Then

there exists a set fxi�þ yi� þ zi� : i ¼ 1; 2; 3; 4g
which is a DðwÞ–quadruple in Z½�; �; ��. Using

formulas obtained in the previous section, it may

be concluded that there exist integers cij; dij; eij
such that equality

ayiyj � a2bxiyj � a2bxjyi �
a2b2 � 1

3
xizj

�
a2b2 � 1

3
xjzi � ab

a2 � 1

3
yizj

� ab
a2 � 1

3
yjzi þ

aðb2 þ 1� 2a2b2Þ
9

zizj þ x ¼

ad2
ij � 2a2bcijdij � 2

a2b2 � 1

3
cijeij � 2ab

a2 � 1

3
dijeij

þ
aðb2 þ 1� 2a2b2Þ

9
e2
ij

holds for i; j 2 f1; 2; 3; 4g, i 6¼ j.
Since a is even and x is odd, we conclude that

xizj þ xjzi has to be an odd integer for i; j 2
f1; 2; 3; 4g, i 6¼ j, and it can be seen in the same

way as in the proof of Lemma 3.1 that this is

impossible. �

It is not hard to see, using the Chinese

remainder theorem, that 1þ 2a2b2 � 9 (mod 24Þ
holds and consequently 1þ2a2b2

3 � 3 (mod 4Þ. Since

ab is even, formula (2) shows that element x�þ
y� þ ð4zþ 2Þ� 2 Z½�; �; ��, for x; y; z 2 Z, cannot

be represented as a difference of two squares

in Z½�; �; �� (note that 1þ2a2b2

3 ðz2
1 � z2

2Þ � 0, 1 or

3 (mod 4Þ).
The non–existence of DðwÞ–quadruples for

such w is established by the following theorem:

Theorem 3.4. Let w ¼ x�þ y� þ ð4zþ 2Þ�,

x; y; z 2 Z, denote an element of the ring of integers

Z½�; �; �� in a pure cubic field Qð
ffiffiffi
d3
p
Þ, where d

is even. Then there exist no DðwÞ–quadruples in

Z½�; �; ��.
Proof. Let us first consider the case when a is

even. Suppose that the set fxi�þ yi� þ zi� : i ¼
1; 2; 3; 4g has the property Dðx�þ y� þ ð4zþ 2Þ�Þ.

Lemma 3.3 shows that x is also even, and that

xizj þ xjzi is even for all i; j 2 f1; 2; 3; 4g, i 6¼ j.
Further, for all i; j 2 f1; 2; 3; 4g, i 6¼ j, there

exist cij; dij; eij 2 Z such that the following equality

holds:

3abðxiyj þ xjyiÞ þ ab2ðxizj þ xjziÞ þ a2bðyizj þ yjziÞ

þ
1þ 2a2b2

3
zizj þ 4zþ 2

¼ 6abcijdij þ 2ab2cijeij þ 2a2bdijeij þ
1þ 2a2b2

3
e2
ij:

Since both a and xizj þ xjzi are even, we obtain the

following congruence:

2ðxiyj þ xjyiÞ þ 3zizj þ 2 � 3e2
ij (mod 4Þ:
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Multiplying both sides of the previous congruence

by 3, we have

zizj þ 2ðxiyj þ xjyiÞ þ 2 � e2
ij (mod 4Þ;

which shows that one of the following holds:

zizj þ 2ðxiyj þ xjyiÞ � 2 (mod 4Þ;
zizj þ 2ðxiyj þ xjyiÞ � 3 (mod 4Þ

for i; j 2 f1; 2; 3; 4g, i 6¼ j.
These congruences are obtained just by replac-

ing xi; yi; zi in (3) with zi; xi; yi, respectively. Thus,

the proof of Theorem 3.2 immediately leads us to a

contradiction.

The assumption that b is even leads to

yizj þ yjzi � 0 (mod 2Þ, for i 6¼ j, and to the fact

that one of the following

zizj þ 2ðxiyj þ xjyiÞ � 2 (mod 4Þ;
zizj þ 2ðxiyj þ xjyiÞ � 3 (mod 4Þ

holds for i; j 2 f1; 2; 3; 4g, i 6¼ j. Clearly, the rest of

the proof follows in the same way as in the previous

case. �

We also note the following corollary, which can

be regarded as a generalization of the result due to

Brown et al.

Corollary 3.5. If n and d are even integers

with n � 2 (mod 4Þ and d cube-free, then there exist

no DðnÞ–quadruples in the ring of integers in the

field Qð
ffiffiffi
d3
p
Þ.

Proof. We again write d ¼ ab2 where ab is

square-free and ða; bÞ ¼ 1. Further, let n ¼ 4kþ 2,

for some k 2 Z. If a2 6� b2 (mod 9Þ, claim of the

corollary follows directly from Theorem 3.2.

Otherwise, we have 4kþ 2 ¼ x�þ y� þ z� for

some x; y; z 2 Z. It is not hard to see that z ¼

3ð4kþ 2Þ ¼ 4ð3kþ 1Þ þ 2 and Theorem 3.4 com-

pletes the proof. �
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