A note on the relative class number of the cyclotomic Z_{p}-extension of $Q(\sqrt{-p})$

By Humio Ichimura*) and Shoichi Nakajima**)
(Communicated by Shigefumi Mori, M.J.A., Dec. 12, 2011)

Abstract

Let p be a prime number with $p \equiv 3 \bmod 4$ and $q=(p-1) / 2$. Let $k=\boldsymbol{Q}(\sqrt{-p})$ and k_{∞} / k be the cyclotomic \boldsymbol{Z}_{p}-extension. Denote by h_{n}^{-}the relative class number of the n-th layer k_{n}. Let ℓ be a prime number with $\ell \neq p$. We show that, for any $n \geq 1, \ell$ does not divide h_{n}^{-} / h_{n-1}^{-}(resp. h_{1}^{-} / h_{0}^{-}) if ℓ is a primitive root modulo p^{2} (resp. p) and $\ell \geq q-2$ (resp. $\ell \geq q-6$). Further, we show with the help of computer that when $p<10000$ and $n \leq 100$, ℓ does not divide h_{n}^{-} / h_{n-1}^{-}(resp. h_{1}^{-} / h_{0}^{-}) for any prime ℓ which is a primitive root modulo p^{2} (resp. p).

Key words: Class number; quadratic field; cyclotomic \boldsymbol{Z}_{p}-extension; non- p part.

1. Introduction. Let p be a prime number with $p \equiv 3 \bmod 4$. Let $k=\boldsymbol{Q}(\sqrt{-p})$, and k_{∞} / k be the cyclotomic \boldsymbol{Z}_{p}-extension. Let k_{n} be the n-th layer of k_{∞} / k with $k_{0}=k$. Denote by h_{n}^{-}the relative class number of k_{n}. Let ℓ be a prime number with $\ell \neq p$. By a well known theorem of Washington $[7], \ell$ does not divide the ratio h_{n}^{-} / h_{n-1}^{-}for sufficiently large n. By Horie [4, Theorem 2], $\ell \nmid h_{n}^{-} / h_{n-1}^{-}$for all $n \geq 1$ if ℓ is a primitive root modulo p^{2} and ℓ is larger than an explicit but complicated constant depending on p. In this note, we show the following assertion. We put $q=(p-1) / 2$.

Proposition 1. The setting is the same as above.
(I) If $\ell \geq q-2$ and ℓ is a primitive root modulo p^{2}, then $\ell \nmid h_{n}^{-} / h_{n-1}^{-}$for all $n \geq 1$.
(II) If $\ell \geq q-6$ and ℓ is a primitive root modulo p, then $\ell \nmid h_{1}^{-} / h_{0}^{-}$.
Proposition 1(I) generalizes [6, Proposition 2] which treats the case $\ell \geq q-1$. Our method for proof of Proposition 1 is a modification of the argument in [6] and effective use of the classical class number formula for $k=\boldsymbol{Q}(\sqrt{-p})$. When $p=3$, the assertion of Proposition 1(I) is contained in Horie [3, Proposition 3].

When p and ℓ are small and ℓ is a primitive root modulo p^{2} (or p when $n=1$), we can effectively decide, by using Lemma 4 in $\S 3$, whether h_{n}^{-} / h_{n-1}^{-}is

[^0]divisible by ℓ. With the help of computer, we show the following result.

Proposition 2. Let $p<10000$ be a prime number with $p \equiv 3 \bmod 4$ and ℓ a prime number. Then ℓ does not divide h_{n}^{-} / h_{n-1}^{-}for any $n \leq 100$ if ℓ is a primitive root modulo p^{2}. Further, ℓ does not divide h_{1}^{-} / h_{0}^{-}if ℓ is a primitive root modulo p.
2. Preliminaries. In this section we define integers $x_{n, b, \alpha}, y_{n, b, \alpha}$ and give some properties of them. They will be used in the following sections for proving Propositions 1 and 2.

Let p, q, k_{n} and h_{n}^{-}be as in $\S 1$. Let μ_{q} be the group of q-th roots of unity in the ring \boldsymbol{Z}_{p} of p-adic integers. For each integer b with $0 \leq b \leq p-1$ and each p-adic integer $\alpha \in \boldsymbol{Z}_{p}$ with $\alpha \equiv 1 \bmod p$, we put

$$
x_{n, b, \alpha}=\sum_{\epsilon \in \mu_{q}} s_{n}\left(\epsilon \alpha\left(1+b p^{n}\right)\right),
$$

where $s_{n}(x)$ is the unique integer satisfying $s_{n}(x) \equiv$ $x \bmod p^{n+1}$ and $0 \leq s_{n}(x)<p^{n+1}$. When $p=3$, we easily have

$$
\begin{equation*}
x_{n, b, 1}=1+b 3^{n} \tag{1}
\end{equation*}
$$

for any $n \geq 1$ and b. When $p \geq 7$, we have $q>1$ and hence $\sum_{\epsilon \in \mu_{q}} \epsilon=0$ holds. Therefore, we easily see that $x_{n, b, \alpha}$ is a multiple of p^{n+1} when $p \geq 7$. So, when $p \geq 7$, we put

$$
\begin{equation*}
y_{n, b, \alpha}=\frac{1}{p^{n+1}} x_{n, b, \alpha} . \tag{2}
\end{equation*}
$$

When $\alpha=1$, we simply write

$$
x_{n, b}=x_{n, b, 1} \quad \text { and } \quad y_{n, b}=y_{n, b, 1} .
$$

$$
\text { Since } 0<s_{n}\left(\epsilon \alpha\left(1+b p^{n}\right)\right)<p^{n+1}, \text { inequalities }
$$

$$
\begin{equation*}
1 \leq y_{n, b, \alpha} \leq q-1 \tag{3}
\end{equation*}
$$

hold for any n, b, α.
The following two results are important for our purpose.

Lemma 1. Assume $p \geq 7$. For any α and $n \geq 1$, we have

$$
\sum_{b=0}^{p-1} y_{n, b, \alpha}=y_{n-1,0, \alpha}+q^{2} .
$$

Proof. For $\epsilon \in \mu_{q}$, let

$$
\epsilon \alpha=a_{0}+a_{1} p+\cdots+a_{n} p^{n}+\cdots
$$

be the p-adic expansion of $\epsilon \alpha$ where a_{i} is an integer with $0 \leq a_{i} \leq p-1$. We see that

$$
s_{n}\left(\epsilon \alpha\left(1+b p^{n}\right)\right)=s_{n-1}(\epsilon \alpha)+s_{0}\left(a_{n}+a_{0} b\right) p^{n}
$$

Further, since $p \nmid a_{0}$, we have

$$
\left\{s_{0}\left(a_{n}+a_{0} b\right) \mid 0 \leq b \leq p-1\right\}=\{0,1, \cdots, p-1\}
$$

Therefore, it follows that

$$
\sum_{b=0}^{p-1} s_{n}\left(\epsilon \alpha\left(1+b p^{n}\right)\right)=p s_{n-1}(\epsilon \alpha)+q p^{n+1}
$$

Hence, we see that

$$
\begin{aligned}
\sum_{b=0}^{p-1} x_{n, b, \alpha} & =\sum_{\epsilon \in \mu_{q}}\left(\sum_{b=0}^{p-1} s_{n}\left(\epsilon \alpha\left(1+b p^{n}\right)\right)\right) \\
& =p \sum_{\epsilon \in \mu_{q}} s_{n-1}(\epsilon \alpha)+q^{2} p^{n+1} \\
& =p x_{n-1,0, \alpha}+q^{2} p^{n+1}
\end{aligned}
$$

from which the assertion follows immediately.
Lemma 2. Assume $p \geq 7$. For any $n \geq 1$ and α, we have $y_{n, b, \alpha} \neq y_{n, 0, \alpha}$ for some b.

Proof. Assume that the values $y_{n, b, \alpha}$ are the same for all $b=0, \cdots, p-1$. Then, Lemma 1 shows $y_{n-1,0, \alpha} \equiv-q^{2} \bmod p$. This implies $y_{n-1,0, \alpha} \equiv$ $(3 q+1) / 2 \bmod p, \quad$ since $\quad-q^{2}=-p(q+1) / 2+$ $(3 q+1) / 2$ (note that q is an odd integer). But this contradicts (3) because $q-1<(3 q+1) / 2<p=$ $2 q+1$.
3. Proof of Proposition 1. We are going to prove Proposition 1, making use of the analytic class number formula. Throughout the section, δ denotes the odd character of conductor p and order 2, and for $n \geq 0, \psi_{n}$ denotes a character of conductor p^{n+1} and order p^{n}. Note that, when $n=0$, ψ_{0} is the trivial character.

For these characters δ and ψ_{n}, let

$$
B_{1, \delta \psi_{n}}=\frac{1}{p^{n+1}} \sum_{a=1}^{p^{n+1}-1} a \cdot \delta \psi_{n}(a)
$$

be the generalized Bernoulli number. Then, $B_{1, \delta \psi_{n}}$ belongs to the field $F_{n}=\boldsymbol{Q}\left(\zeta_{p^{n}}\right)$. When $\alpha \in \boldsymbol{Z}_{p}$ with $\alpha \equiv 1 \bmod p$ is given, we define

$$
\begin{equation*}
X=\operatorname{Tr}_{n, 1}\left(\frac{1}{2} \psi\left(\alpha^{-1}\right) B_{1, \delta \psi_{n}}\right) \tag{4}
\end{equation*}
$$

where $\mathrm{Tr}_{n, 1}$ denotes the trace map from F_{n} to F_{1} $(n \geq 1)$. We can express X in terms of $x_{n, b, \alpha}$ defined in $\S 2$.

Lemma 3. Put $\zeta_{p}=\psi_{n}\left(1+p^{n}\right)$, which is a primitive p-th root of unity. Then, for $n \geq 1$, we have

$$
\begin{equation*}
X=\frac{1}{p^{2}} \sum_{b=0}^{p-1} x_{n, b, \alpha} \zeta_{p}^{b} \tag{5}
\end{equation*}
$$

Proof. Let μ_{p-1} be the group of $(p-1)$-st roots of unity in \boldsymbol{Z}_{p}. Replacing $\alpha^{-1} a$ with a, we have

$$
\begin{aligned}
& \psi\left(\alpha^{-1}\right) B_{1, \delta \psi_{n}}=\frac{1}{p^{n+1}} \sum_{a=1}^{p^{n+1}-1} s_{n}(a \alpha) \cdot \delta \psi_{n}(a) \\
& \quad=\frac{1}{p^{n+1}} \sum_{\epsilon \in \mu_{p-1}} \sum_{b=0}^{p^{n}-1} s_{n}(\epsilon \alpha(1+b p)) \delta(\epsilon) \psi_{n}(1+b p)
\end{aligned}
$$

Since $p \equiv 3 \bmod 4$, we have $\mu_{p-1}=\mu_{q} \cup\left(-\mu_{q}\right)$. Further, $\delta(\epsilon)=1, \delta(-\epsilon)=-1$ and $s_{n}(-\epsilon)=p^{n+1}-$ $s_{n}(\epsilon)$ hold for any $\epsilon \in \mu_{q}$. Hence we obtain

$$
\begin{aligned}
& \frac{1}{2} \psi\left(\alpha^{-1}\right) B_{1, \delta \psi} \\
& \quad=\frac{1}{p^{n+1}} \sum_{\epsilon \in \mu_{q}} \sum_{b=0}^{p^{n}-1} s_{n}(\epsilon \alpha(1+b p)) \psi_{n}(1+b p)
\end{aligned}
$$

For a p^{n}-th root ζ of unity, we have $\operatorname{Tr}_{n, 1}(\zeta)=$ $p^{n-1} \zeta$ or 0 according as $\zeta^{p}=1$ or not. This fact and $\psi_{n}\left(1+b p^{n}\right)=\zeta_{p}^{b}$ give

$$
\begin{aligned}
X & =\frac{1}{p^{2}} \sum_{\epsilon \in \mu_{q}} \sum_{b=0}^{p-1} s_{n}\left(\epsilon \alpha\left(1+b p^{n}\right)\right) \zeta_{p}^{b} \\
& =\frac{1}{p^{2}} \sum_{b=0}^{p-1} x_{n, b, \alpha} \zeta_{p}^{b}
\end{aligned}
$$

which proves (5).
Here we apply the analytic class number formula (cf. Washington [8, Theorem 4.17]) to the field k_{n}. First, for $n \geq 1$, the class number formula implies

$$
\begin{equation*}
h_{n}^{-} / h_{n-1}^{-}=p \prod_{\psi_{n}}\left(-\frac{1}{2} B_{1, \delta \psi_{n}}\right), \tag{6}
\end{equation*}
$$

where ψ_{n} runs over the Dirichlet characters of conductor p^{n+1} and order p^{n}. (Note that the unit index of k_{n} equals 1 ; see e.g. Conner and Hurrelbrink [1, Lemma 13.5].) Next, for $n=0$ and $p \geq 7$, we obtain

$$
h_{0}^{-}=2 \times\left(-\frac{1}{2} B_{1, \delta}\right)=-B_{1, \delta}
$$

and an easy calculation using $\delta(\pm \epsilon)= \pm 1$ gives

$$
\begin{equation*}
h_{0}^{-}=-2 y_{0,0}+q \tag{7}
\end{equation*}
$$

The following is our key lemma.
Lemma 4. Assume that ℓ divides h_{n}^{-} / h_{n-1}^{-} and that ℓ is a primitive root modulo p^{2} (resp. modulo p) when $n \geq 2$ (resp. $n=1$). Further, assume that an element $\alpha \in \boldsymbol{Z}_{p}$ with $\alpha \equiv 1 \bmod p$ is given. Then we have

$$
\begin{equation*}
x_{n, b, \alpha} \equiv x_{n, 0, \alpha} \bmod \ell \tag{8}
\end{equation*}
$$

for all $b=0,1, \cdots, p-1$, and when $p \geq 7$ we have

$$
\begin{equation*}
y_{n, b, \alpha} \equiv y_{n, 0, \alpha} \bmod \ell \tag{9}
\end{equation*}
$$

for all $b=0,1, \cdots, p-1$.
Proof. Put $F_{n}=\boldsymbol{Q}\left(\zeta_{p^{n}}\right)$ as before. Then, the assumption of Lemma 4 means that the prime ℓ does not decompose in F_{n}. Namely, there is a unique prime ideal \mathcal{L} of F_{n} lying over ℓ. If ℓ divides h_{n}^{-} / h_{n-1}^{-}, then, by (6), there exists a character ψ_{n} satisfying

$$
\begin{equation*}
\frac{1}{2} B_{1, \delta \psi_{n}} \equiv 0 \bmod \mathcal{L} \tag{10}
\end{equation*}
$$

Multiplying $\psi\left(\alpha^{-1}\right)$ to (10) and taking trace from F_{n} to F_{1}, we obtain

$$
X \equiv 0 \bmod \mathcal{L}_{1}
$$

where X is defined by (4) and $\mathcal{L}_{1}=\mathcal{L} \cap F_{1}$ which is the unique prime ideal of F_{1} over ℓ. (In this argument, we rely on the fact that \mathcal{L} is the only prime ideal over ℓ.) Therefore, we have from (5)

$$
\begin{equation*}
\sum_{b=0}^{p-1} x_{n, b, \alpha} \zeta_{p}^{b} \equiv 0 \bmod \mathcal{L}_{1} \tag{11}
\end{equation*}
$$

noting that p is prime to ℓ. Since ℓ is a primitive root modulo p, the only linear relation among ζ_{p}^{b} 's over \boldsymbol{F}_{ℓ} is $\sum_{b=0}^{p-1} \zeta_{p}^{b}=0$, where \boldsymbol{F}_{ℓ} is the finite field with ℓ elements. Therefore, from (11) we see that (8)
must hold for all b. Finally, (9) is derived directly from (8) when $p \geq 7$ (cf. (2)).

Proof of Proposition 1. When $p=3$, (1) shows $x_{n, 1,1}-x_{n, 0,1}=3^{n}$, which implies that (8) does not hold for any $\ell \neq 3$. Hence, by Lemma 4 , Proposition 1 holds for $p=3$. Hereafter we assume $p \geq 7$.

First, we consider the case $\ell \geq q-1$. If ℓ divides h_{n}^{-} / h_{n-1}^{-}, then, by Lemma 4, (9) holds for all b. (Here we fix an arbitrary α, e.g. $\alpha=1$.) Then, we obtain $y_{n, b, \alpha}=y_{n, 0, \alpha}$ from (9), thanks to (3). This contradicts Lemma 2, which proves Proposition 1 in this case. (This argument is the same as in [6, Proposition 2].)

In dealing with the case $\ell \leq q-2$, we need the result of Gut [2] which asserts

$$
\begin{equation*}
h_{0}^{-} \leq \frac{p-3}{4} \tag{12}
\end{equation*}
$$

in our situation. Now assume $\ell=q-2$. Then it follows from (3)

$$
\begin{equation*}
1 \leq y_{n, b, \alpha} \leq \ell+1 \tag{13}
\end{equation*}
$$

If ℓ divides h_{n}^{-} / h_{n-1}^{-}, then we see from Lemma 2 that, for any $b, y_{n, b, \alpha}$ must be equal to 1 or $\ell+1$, because both (9) and (13) hold. Hence,

$$
\begin{equation*}
y_{n, b, \alpha} \equiv 1 \bmod \ell \tag{14}
\end{equation*}
$$

for all α and b. Then, from Lemma 1 we obtain

$$
y_{n-1,0, \alpha} \equiv p-q^{2} \equiv 2 \ell+5-(\ell+2)^{2} \equiv 1 \bmod \ell
$$

for any α. This congruence and an easily verified equation

$$
y_{n-1,0, \alpha\left(1+b p^{n-1}\right)}=y_{n-1, b, \alpha}
$$

show that

$$
\begin{equation*}
y_{n-1, b, \alpha} \equiv 1 \bmod \ell \tag{15}
\end{equation*}
$$

holds for any α and b. Thus we derived (15) from (14). Repeating this process, we finally reach the congruence $y_{0,0} \equiv 1 \bmod \ell$, which gives

$$
\begin{equation*}
h_{0}^{-} \equiv-2+\ell+2 \equiv 0 \bmod \ell \tag{16}
\end{equation*}
$$

by virtue of (7). But (16) contradicts (12) because we have $(p-3) / 4=(\ell+1) / 2<\ell$. This completes the proof of Proposition 1 (I) and the case $\ell \geq q-2$ of Proposition 1 (II).

In the rest of this section, we deal with the case $n=1, q-6 \leq \ell \leq q-3$. Since q is odd, $\ell=q-3$, $q-5$ occurs only when $\ell=2$. In the case $2=q-3$,
we have $p=11$, and an easy computation shows $y_{1,1}-y_{1,0}=1$. Hence, in this case, h_{1}^{-} / h_{0}^{-}is not divisible by $\ell=2$ by Lemma 4 . The case $2=q-5$ does not occur because $p=2 q+1=15$ is not prime.

Next, assume $\ell=q-4$, namely $q=\ell+4$, $p=2 \ell+9$. All possible values of $\ell<41$ and p for which ℓ is a primitive root modulo p are listed in Table I. In each case of Table I, we can find a b for which $y_{1, b}-y_{1,0}$ is prime to ℓ, which shows that $\ell \nmid h_{1}^{-} / h_{0}^{-}$by Lemma 4 . Our choice of b is shown in Table I. So we assume $\ell \geq 41$ in the following argument. If ℓ divides h_{1}^{-} / h_{0}^{-}, then Lemma 4 , Lemma 2 and (3) show that, for some $i=1,2,3$,

$$
\begin{equation*}
y_{1, b} \equiv i \bmod \ell \quad(b=0,1, \cdots, p-1) \tag{17}
\end{equation*}
$$

holds (note that $q-1=\ell+3$ in this case). Then Lemma 1 gives

$$
y_{0,0} \equiv i p-q^{2} \equiv 9 i-16 \bmod \ell
$$

which implies

$$
\begin{align*}
h_{0}^{-} & \equiv-2(9 i-16)+4 \equiv 36-18 i \tag{18}\\
& \equiv 18, \ell, \ell-18 \bmod \ell
\end{align*}
$$

by (7). The estimate (12) is $h_{0}^{-} \leq(\ell+3) / 2$ in this case, and $(\ell+3) / 2<\ell-18$ for $\ell \geq 41$. Hence the second and third congruences in (18) are impossible. The first congruence in (18) implies $h_{0}^{-}=18$ for $\ell \geq 41$. But this is also impossible, because, as is well known, h_{0}^{-}is odd (this fact is also derived from (7)). Thus all possibilities have been excluded, showing $\ell \nmid h_{1}^{-} / h_{0}^{-}$in this case.

Finally, we assume $\ell=q-6$, for which $q=$ $\ell+6, p=2 \ell+13$. Our argument proceeds in a way similar to the case $\ell=q-4$. First, we settle the cases when $\ell<113$ and ℓ is a primitive root modulo p, which are listed in Table II. In all these cases, we found that $y_{1,1}-y_{1,0}$ is prime to ℓ, as shown in Table II. Hence $\ell \nmid h_{1}^{-} / h_{0}^{-}$holds by Lemma 4 . Next we assume $\ell \geq 113$. If ℓ divides h_{1}^{-} / h_{0}^{-}, then the same argument as above shows that, for some i with $1 \leq i \leq 5, y_{1, b} \equiv i \bmod \ell$ for all b. Then $y_{0,0} \equiv$ $13 i-36$ by Lemma 1 , and hence

$$
\begin{equation*}
h_{0}^{-} \equiv 52,26, \ell, \ell-26, \ell-52 \bmod \ell \tag{19}
\end{equation*}
$$

by (7). The estimate (12) is $h_{0}^{-} \leq(\ell+5) / 2$ in this case, and hence the last three congruences in (19) are impossible, because $\ell-52>(\ell+5) / 2$ for $\ell \geq 113$. The other cases $h_{0}^{-}=26,52$ are also impossible because h_{0}^{-}is odd. Thus we have $\ell \nmid$ h_{1}^{-} / h_{0}^{-}in this case, too.

Table I. $\quad \ell=q-4<41$

ℓ	7	11	19	31
p	23	31	47	71
b	1	1	1	2
$y_{1, b}-y_{1,0}$	-3	-1	2	-2

Table II. $\quad \ell=q-6<113$

ℓ	3	5	23	89	107
p	19	23	59	191	227
$y_{1,1}-y_{1,0}$	2	-3	-1	1	1

This completes the proof of Proposition 1.
Remark. In the process of our proof dealing with the case $\ell=q-2$, it is essential that, if ℓ divides h_{n}^{-} / h_{n-1}^{-}, the values $y_{n, b, \alpha}$ modulo ℓ would be independent of b and α (cf. (14)). This independence is no longer true for $\ell \leq q-4$. For example, if $\ell=q-4$ and ℓ divides h_{n}^{-} / h_{n-1}^{-}, then, for a given α, $y_{n, b, \alpha}$ can be i or $i+\ell$ for all b with $i=1,2$ or 3 . Because of these three possibilities, the argument for the case $\ell=q-2$ does not work for $\ell=q-4$.

Exceptionally, we can cope with this difficulty when $n=1$, as shown in the proof of Proposition 1(II) for $\ell=q-4$ and $\ell=q-6$. It would be possible to obtain an assertion similar to Proposition 1(II) for smaller ℓ with a similar method.
4. Proof of Proposition 2. In this section we explain how we verified Proposition 2 with a computer. We adopt the notation of previous sections and assume $p \geq 7$ because the case $p=3$ is already settled in Proposition 1. Lemma 4 is the basic tool for proving Proposition 2. Namely, for a given p, n and ℓ, if we can find some b and α which do not satisfy the congruence (9), then we can conclude that ℓ does not divide h_{n}^{-} / h_{n-1}^{-}. As a result of our search for appropriate b and α, it turned out that the value $\alpha=1$ is sufficient for our purpose. So, we always take $\alpha=1$ in this section. To sum up, our task is finding a b for which $y_{n, b}-y_{n, 0}$ is prime to ℓ.

What we actually did is as follows. When a prime number p with $p \equiv 3 \bmod 4$ and $n \geq 1$ are given, we put

$$
d(B)=\operatorname{gcd}\left\{y_{n, b}-y_{n, 0} \mid 1 \leq b \leq B\right\}
$$

for a natural number $B \leq p-1$. We run a program which computes $d(B)$ for $B=1,2, \cdots$ until $d(B)=1$
is attained. Our computation was carried out by using Maple 15 (cf. [5]) on Apple's Mac Pro computer with two 2.4 GHz quad-core Intel Xeon processor and 16GB memory. As a result, we could find a B with $d(B)=1$ for all p and n treated in Proposition 2. If $d(B)=1$ holds for some B, then, for any prime ℓ, the congruence (9) in Lemma 4 can not be satisfied for all b. Therefore, our computation certainly verifies Proposition 2.

We observe that the first value of B with $d(B)=1$, say B_{0}, is not so large. The largest B_{0} in the range of our computation is 17 attained when $p=6043, n=19$. For reference, we prepared Table III which shows a state of distribution of B_{0}. In Table III, N is the number of pairs (p, n) in the range of Proposition 2 for which the first value of B with $d(B)=1$ is $B=B_{0}$, and "ratio" is $(N / 61800) \times$ 100 , where 61800 is the total number of pairs (p, n) we treated.

Table III. Distribution of B_{0}

B_{0}	1	2	3	4	≥ 5
N	3671	34298	13627	5539	4665
ratio (\%)	5.9	55.5	22.0	9.0	7.6

References

[1] P. E. Conner and J. Hurrelbrink, Class number parity, Series in Pure Mathematics, 8, World Sci. Publishing, Singapore, 1988.
[2] M. Gut, Abschätzungen für die Klassenzahlen der quadratischen Körper, Acta Arith. 8 (1962/ 1963), 113-122.
[3] K. Horie, Ideal class groups of Iwasawa-theoretical abelian extensions over the rational field, J. London Math. Soc. (2) 66 (2002), no. 2, 257275.
[4] K. Horie, The ideal class group of the basic $\boldsymbol{Z}_{p^{-}}$ extension over an imaginary quadratic field, Tohoku Math. J. (2) 57 (2005), no. 3, 375-394.
[5] Maplesoft. http://www.maplesoft.com/products/maple/ index.aspx.
[6] H. Ichimura and S. Nakajima, On the 2-part of the ideal class group of the cyclotomic \boldsymbol{Z}_{p}-extension over the rationals, Abh. Math. Semin. Univ. Hambg. 80 (2010), no. 2, 175-182.
[7] L. C. Washington, The non-p-part of the class number in a cyclotomic \boldsymbol{Z}_{p}-extension, Invent. Math. 49 (1978), no. 1, 87-97.
[8] L. C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, 83, Springer, New York, 1997.

[^0]: 2000 Mathematics Subject Classification. Primary 11R18.
 *) Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan.
 ${ }^{* *)}$ Department of Mathematics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.

