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Abstract: For a wide class of Young functions � : ½0;1Þ ! ½0;1Þ, we determine the best

constant C� such that the following holds. If ðhkÞk�0 is the Haar system on ½0; 1�, then for any

vectors ak from a separable Hilbert space H and "k 2 f�1; 1g, k ¼ 0; 1; 2; . . ., we have

x 2 ½0; 1� :
Xn
k¼0

"kakhkðxÞ
�����

����� � 1

( )�����
����� � C�

Z 1

0

�
Xn
k¼0

akhkðxÞ
�����

�����
 !

dx; n ¼ 0; 1; 2; . . . :

This is generalized to the sharp weak-� inequality

Pðsup
t�0
jYtj � 1Þ � C� sup

t�0
E�ðjXtjÞ;

where X, Y stand for H-valued martingales such that Y is differentially subordinate to X. These

statements complement and generalize the results of Burkholder, Suh, the author and others.
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1. Introduction. Our motivation comes

from a very basic question about ðhkÞk�0, the Haar

system on ½0; 1�. A classical result of Marcinkiewicz

[8] (see also Paley [13]) states that if 1 < p <1,

then there is a universal finite constant cp such that

c�1
p

Xn
k¼0

akhk

�����
�����
p

�
Xn
k¼0

"kakhk

�����
�����
p

� cp
Xn
k¼0

akhk

�����
�����
p

ð1:1Þ

for any n and any ak 2 R, "k 2 f�1; 1g, k ¼ 0; 1;
2; . . ., n. In other words, this means that the Haar

system is an unconditional basis of Lpð½0; 1�Þ, 1 <

p < 1. This result was extended by Burkholder [4]

to the martingale setting. Let ð�;F ;PÞ be a

probability space, filtered by ðF kÞk�0, a nondecreas-

ing family of sub-�-fields of F . Assume that f ¼
ðfkÞk�0 is a real-valued martingale with the differ-

ence sequence ðdfkÞk�0 given by df0 ¼ f0 and dfk ¼
fk � fk�1 for k � 1. Let g be a transform of f by a

real predictable sequence v ¼ ðvkÞk�0 bounded in

absolute value by 1: that is, dgk ¼ vkdfk for all k � 0

and by predictability we mean that each term vk is

measurable with respect to F ðk�1Þ_0. Then for 1 <

p <1 there is an absolute constant c0p for which

sup
n�0
kgnkp � c0p sup

n�0
kfnkp:ð1:2Þ

Let cp(1.1), c0p(1.2) denote the optimal constants in

(1.1) and (1.2), respectively. The Haar system is a

martingale difference sequence with respect to its

natural filtration (on the probability space being

the Lebesgue’s unit interval) and hence so is

ðakhkÞk�0, for given fixed real numbers a0, a1,

a2; . . . . Therefore, cp(1.1) � c0p(1.2) for all 1 <

p <1. In fact, by the results of Burkholder [4]

and Maurey [9], these constants coincide: cp(1.1) =

c0p(1.2) for all 1 < p <1. The precise value of

cp(1.1) was identified by Burkholder in [4]:

cp(1.1) = p� � 1 (where p� ¼ maxfp; p=ðp� 1Þg) for

1 < p <1. Furthermore, the constant does not

change if we allow the martingales and the coef-

ficients ak to take values in a separable Hilbert

space H. In fact, (1.2) can be studied under the less

restrictive assumption of differential subordination

in the continuous-time setting. Suppose that

ð�;F ;PÞ is complete and equip it with a right-

continuous filtration ðF tÞt�0 such that F 0 contains

all the events of probability 0. Let X, Y be two

adapted cadlag martingales taking values in H
which, as we may and do assume from now on, is

equal to ‘2. Following Wang [16], we say that Y is

differentially subordinate to X, if the process

ð½X;X�t � ½Y ; Y �tÞt�0 is nondecreasing and nonneg-

ative as a function of t. Here ½X; Y � ¼
P1

j¼0½Xj; Y j�,
where Xj, Y j stand for the j-th coordinates of
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X and Y , respectively, and ½Xj; Y j� is the quad-

ratic covariance process of Xj and Y j (see e.g.

Dellacherie and Meyer [6]). If we treat the

discrete-time martingales f ¼ ðfkÞ1k¼0, g ¼ ðgkÞ1k¼0

as continuous-time processes (via Xt ¼ fbtc and

Yt ¼ gbtc for t � 0), then the above condition reads

jdgkj � jdfkj for k � 0;

which is the original definition of the differential

subordination due to Burkholder [4]. This domina-

tion is satisfied in the setting of martingale trans-

forms studied above; thus the following result,

proved by Wang [16] (see also the earlier paper [5]

by Burkholder), extends (1.1) and (1.2): for 1 <
p <1,

sup
t�0
kY tkp � ðp� � 1Þ sup

t�0
kXtkp;ð1:3Þ

and the constant p� � 1 is the best possible. This

result has found many applications, in particular to

the study of the Lp-boundedness of wide classes of

Fourier multipliers (cf. [1], [2] and [7]). See also [10]

and [11] for related extensions of (1.3).

For p ¼ 1 the inequalities (1.1), (1.2) and (1.3)

do not hold with any finite constant, but one can

show an appropriate weak-type ð1; 1Þ bound. In fact

a much more general weak �-estimate is valid.

Suppose that � : ½0;1Þ ! ½0;1Þ is an increasing

convex function such that � is twice differentiable

on ð0;1Þ, �0 is concave and �ð0Þ ¼ �0ð0þÞ ¼ 0.

Then, as shown by Burkholder [4] and Wang [16], if

Y is differentially subordinate to X, then

Pðsup
t�0
jYtj � 1Þ � 2

Z 1
0

�ðtÞe�tdt
� ��1

sup
t�0

E�ðjXtjÞ

and the inequality is sharp. In particular, if we take

�ðtÞ ¼ tp, 1 � p � 2, then we obtain a weak-type

ðp; pÞ estimate with the best constant 2=�ðpþ 1Þ.
A natural problem arises: what happens for other

functions �, say, for which �0 is convex? This

question turns out to be much more difficult.

Suh [15] studied this problem in the particular case

�ðtÞ ¼ tp, p > 2, and showed that the best constant

C� in

Pðsup
t�0
jYtj � 1Þ � C� sup

t�0
E�ðjXtjÞð1:4Þ

for real-valued X, Y is equal to pp�1=2. The purpose

of this note is to extend this inequality to a much

wider class of functions. Denote by C the class of all

strictly convex functions � : ½0;1Þ ! ½0;1Þ which

are C2 and satisfy

(a) �ð0Þ ¼ limx#0 �0ðxÞ=x ¼ 0,

(b) j
R 1

0 log �0ðsÞdsj <1,

(c) �00ðxÞx � �0ðxÞ for x > 0

(for example, �ðtÞ ¼ tp, p > 2; or �ðtÞ ¼ etp � 1,

p > 2; see Section 4). Our result can be formulated

as follows:

Theorem 1.1. Let � 2 C. Assume that X, Y

are Hilbert-space-valued martingales such that Y is

differentially subordinate to X. Then

Pðsup
t�0
jYtj � 1Þ � ð2b�0ðbÞÞ�1 sup

t�0
E�ðjXtjÞ;ð1:5Þ

where b is the unique solution to the equationZ b

0

�00ðsÞs
�0ðsÞ ds ¼ 1� b:

The inequality is sharp even in the setting of the

Haar system. Precisely, for any C < ð2b�0ðbÞÞ�1

there is an integer n and the numbers a0, a1, . . . ,

an 2 R, "1, "2, . . . , "n 2 f�1; 1g for which

x 2 ½0; 1� :
Xn
k¼0

"kakhkðxÞ � 1

( )�����
�����

> C

Z 1

0

�
Xn
k¼0

akhkðxÞ
�����

�����
 !

dx:

ð1:6Þ

Let us stress here that on the left-hand side of

(1.6), we have the one-sided estimate, i.e., the sumPn
k¼0 "kakhk is not in absolute values.

Suh’s proof is based on the existence of a quite

complicated special function, which is constructed

with the use of some solutions of certain differential

equations. Our approach is slightly less technical,

works in the vector case and yields much more

general statement. It also rests on the properties of

an appropriate special function, but exploits the

so-called integration method (see e.g. [12]).

The remainder of this note is split into three

parts. In the next section we present the proof of

(1.5), and in Section 3 we deal with the sharpness

of this estimate for the Haar system. The final part

contains some examples. Throughout Sections 2

and 3, we assume that � is a fixed element of C.
2. Proof of (1.5). We start with the follow-

ing straightforward fact.

Lemma 2.1. There exist �; � > 0 such that

�ðxÞ � �x2 � � for x > 0:ð2:1Þ

Proof. We may restrict ourselves to x > 1,

replacing � with maxf�; �g, if necessary. By (c), the

function x 7! �0ðxÞ=x is nondecreasing on ð0;1Þ, so
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�0ðxÞ � �0ð1Þx for x � 1 and thus

�ðxÞ ¼ �ð1Þ þ
Z x

1

�0ðsÞds � �ð1Þ þ
�0ð1Þðx2 � 1Þ

2
:

This yields (2.1). �

Introduce the function � : ½0;1Þ ! ½0;1Þ by

�ðxÞ ¼
Z x

0

�00ðsÞs� �0ðsÞ
�0ðsÞ ds:

The finiteness of � follows from (b) and the integra-

tion by parts; this also shows that limx!0 �ðxÞ ¼ 0.

Furthermore, by (c), � is nondecreasing and hence

there is a unique b 2 ð0; 1=2� satisfying �ðbÞ þ 2b ¼ 1.

Define a function a : ð0;1Þ ! R by the formula

að�ðxÞ þ xÞ ¼ ð�ðxÞ þ xÞ2 �
�00ðxÞx� �0ðxÞ

2x3�00ðxÞ
� �0ðxÞ:

Let us gather some properties of these objects.

Lemma 2.2. For any x > 0 we haveZ �ðxÞþx

0

aðrÞ
r2

dr ¼
�0ðxÞ

2x
;ð2:2Þ

Z �ðxÞþx

0

aðrÞ
r

dr ¼
�0ðxÞ�ðxÞ

2x
ð2:3Þ

and Z �ðxÞþx

0

aðrÞdr ¼
�0ðxÞð�ðxÞ2 þ x2Þ

2x
� �ðxÞ:ð2:4Þ

Proof. By the definition of �, we have

�0ðxÞ þ 1 ¼ �00ðxÞx=�0ðxÞ; x > 0:ð2:5Þ

To show (2.2), we make the substitution r ¼ �ðsÞ þ
s and use (2.5) to obtain the equivalent identityZ x

0

�00ðsÞs� �0ðsÞ
2s2

ds ¼
�0ðxÞ

2x
;

which holds true, because of the condition (a). To

check (2.3) and (2.4), note that the expressions on

the left and on the right tend to 0 as x! 0. Thus it

suffices to verify whether the corresponding deriv-

atives are equal. A direct differentiation of both

sides of (2.3) leads to the equality

að�ðxÞ þ xÞð�0ðxÞ þ 1Þ
�ðxÞ þ x ¼

ð�00ðxÞx� �0ðxÞÞ�ðxÞ
2x2

þ
�0ðxÞ�0ðxÞ

2x
:

Plugging the formula for the function a and using

(2.5) we obtain, after some straightforward calcu-

lations, that both sides above are equal to

ð�ðxÞ þ xÞð�00ðxÞx� �0ðxÞÞ=ð2x2Þ:

For the equation (2.4) the verification is similar;

we leave the details to the reader. �

The next step is to define an auxiliary special

function u : H�H! R. It is given by

uðx; yÞ ¼ ðjyj � 1Þ2 � jxj2 if jxj þ jyj � 1,

0 if jxj þ jyj < 1.

(

The key property of this object is stated in

Lemma 2.3 below. Note that if X is square-

integrable and Y is differentially subordinate to

X, then, by (1.3), Y also belongs to L2. Conse-

quently, the pointwise limits X1 ¼ limt!1Xt,

Y1 ¼ limt!1 Yt exist almost surely.

Lemma 2.3. Assume that X, Y are martin-

gales such that Y is differentially subordinate to X

and X 2 L2. Then EuðX1; Y1Þ � 0.

For the proof, see Lemma 2.2 in [12].

We move to the central object of this note.

Introduce the special function U : H�H! R by

Uðx; yÞ ¼
Z 1�b

0

aðrÞuðx=r; y=rÞdr:

It is easy to check that

Uðx; yÞ ¼ ðjyj2 � jxj2Þ
Z ð1�bÞ^ðjxjþjyjÞ

0

aðrÞ
r2

dr

� 2jyj
Z ð1�bÞ^ðjxjþjyjÞ

0

aðrÞ
r

dr

þ
Z ð1�bÞ^ðjxjþjyjÞ

0

aðrÞdr:

Using (2.2)–(2.4), we easily verify that

Uðx; �ðxÞÞ ¼ ��ðxÞ for 0 � x � b:ð2:6Þ

Let us show the crucial property of U.

Lemma 2.4. For any x; y 2 H we have

Uðx; yÞ � 2�0ðbÞb 1fjyj�1g � �ðjxjÞ:ð2:7Þ

Proof. Since U depends on x and y through

their norms, it suffices to show the majorization for

H ¼ R and x; y � 0. We will first deal with the case

xþ y � 1� b. Fix u 2 ð0; b� and let

F ðsÞ ¼ Uðu� s; �ðuÞ þ sÞ; GðsÞ ¼ ��ðu� sÞ

for s 2 ½��ðuÞ; u�. Clearly, F is linear and G is

concave. Furthermore, F 0ð0Þ is given by

2ð�ðuÞ þ uÞ
Z �ðuÞþu

0

aðrÞ
r2

dr� 2

Z �ðuÞþu

0

aðrÞ
r

dr;
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which, by (2.2) and (2.3), equals �0ðuÞ ¼ G0ð0Þ.
Moreover, (2.6) implies that F ð0Þ ¼ Gð0Þ. In con-

sequence, we have F ðsÞ � GðsÞ for all s and hence

the substitution x ¼ u� s, y ¼ �ðuÞ þ s gives (2.7)

on the set fðx; yÞ : xþ y � 1� bg.
Now, suppose that xþ y > 1� b. Then the

majorization takes the form

ðy2 � x2Þ
Z 1�b

0

aðrÞ
r2

dr� 2y

Z 1�b

0

aðrÞ
r

dr

þ
Z 1�b

0

aðrÞdr� 2�0ðbÞb 1fy�1g þ �ðxÞ � 0:

ð2:8Þ

In fact, this bound holds true for all x; y � 0. Indeed,

for a fixed x, the left-hand side is a convex function

of y, which attains its minimum at

y0 ¼
Z 1�b

0

aðrÞ
r

dr

Z 1�b

0

aðrÞ
r2

dr

� ��1

¼ �ðbÞ < 1

(to see the second equality, apply (2.2) and (2.3)

with x ¼ b). In consequence, it suffices to verify

(2.8) for y ¼ �ðbÞ and y ¼ 1 only. If the first

possibility occurs, then both sides are equal for x ¼
b (by virtue of (2.2), (2.3) and (2.4)). Moreover, if

we differentiate the left hand side of (2.8) over x,

we obtain the expression

2x �
Z 1�b

0

aðtÞ
t2

dtþ
�0ðxÞ

2x

� �
:ð2:9Þ

By (2.2), this is zero for x ¼ b, and since x 7!
�0ðxÞ=x is nondecreasing (see (c)), we deduce that

(2.9) is nonpositive for x � b and nonnegative for

x � b. This gives (2.8) for x � 0 and y ¼ �ðbÞ. When

y ¼ 1, we argue similarly: both sides of (2.8) are

equal for x ¼ b, and the partial derivative with

respect to x (which is again given by (2.9)) has the

appropriate behavior. This completes the proof. �

We are ready to establish our main inequality.

Proof of (1.5). We start with some reductions.

First, we may assume that supt�0 E�ðjXtjÞ < 1,

since otherwise there is nothing to prove. By (2.1),

this assumption gives that X is bounded in L2 and

hence, by Burkholder’s inequality (1.3), so is Y . The

second observation is that it suffices to show that

2b�0ðbÞPðjY1j � 1Þ � E�ðjX1jÞ:ð2:10Þ

To see this, let us introduce the stopping time � ¼
infft � 0 : jYtj � 1g and the stopped martingales

X� ¼ ðX�^tÞt�0, Y � ¼ ðY�^tÞt�0. Obviously, Y � is

differentially subordinate to X� , E�ðjX�
1jÞ �

E�ðjX1jÞ ¼ supt�0 E�ðjXtjÞ and

fsup
t�0
jYtj � 1g ¼ fY� � 1g ¼ fY �

1 � 1g:

Therefore, if we succeed in proving (2.10), we will

apply it to the pair X� , Y � and obtain the stronger

bound (1.5).

Thus, all we need is to establish (2.10). Note

that the auxiliary function u satisfies

uðx; yÞ � ðjyj � 1Þ2 þ jxj2 � jxj2 þ jyj2 þ 1

for all x; y 2 H, and hence

E

Z 1�b

0

aðrÞjuðX1=r; Y1=rÞjdr

� E

Z 1�b

0

aðrÞ
r2
ðjX1j2 þ jY1j2 þ r2Þdr <1:

Therefore, we are permitted to apply Fubini’s

theorem and obtain, by Lemma 2.3,

EUðX1; Y1Þ ¼
Z 1

0

aðrÞEuðX1=r; Y1=rÞdr � 0;

because for any r � 0, the martingale Y =r is differ-

entially subordinate to X=r. It remains to use (2.7)

to obtain (2.10). �

3. Sharpness. Let C� be the least number,

depending only on �, such that for all n, all real

numbers a0, a1, . . . , an and any sequence "0, "1, . . . ,

"n of signs we have

x :
Xn
k¼0

"kakhkðxÞ � 1

( )�����
����� �C�

Z 1

0

�
Xn
k¼0

akhk

�����
�����

 !
:

It follows from the results of Maurey [9] or

Burkholder (see Section 10 in [4]), that C� coincides

with the optimal constant C0� in the estimate

Pðsup
n�0

gn � 1Þ � C0� sup
n�0

E�ðjfnjÞ;

valid for all real martingales f and their transforms

g by predictable sequences bounded in absolute

value by 1. Passing to the continuous-time setting

and using some standard approximation, we see that

C0� is precisely the best constant in the inequality

Pðsup
t�0

Yt � 1Þ � C0� sup
t�0

E�ðjXtjÞ;

in which X is a real martingale and Y is the

stochastic integral, with respect to X, of a certain

predictable process H ¼ ðHtÞt�0 taking values in

½�1; 1�. For the precise justification of this step, see

Bichteler [3]. Summarizing, the optimality of C�

will follow if we construct a pair ðX; Y Þ as above, for

which the ratio Pðsupt�0 Yt � 1Þ= supt�0 E�ðjXtjÞ is

arbitrarily close to ð2b�0ðbÞÞ�1.
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Fix " 2 ð0; 1� bÞ. Let B ¼ ðBtÞt�0 be a stand-

ard, one-dimensional Brownian motion starting

from 0 and let � ¼ ð�tÞt�0 be given by

�t ¼ "�
Z t

0

sgnBs dBs; t � 0

(here sgn x ¼ 1 if x > 0 and sgn x ¼ �1 if x � 0). By

Itô-Tanaka’s formula (see e.g. Revuz and Yor [14]),

we have �t ¼ "þ Lt � jBtj, where L ¼ ðLtÞt�0 de-

notes the local time of B at 0. In consequence, we see

that the maximum process ðsups�t �sÞt�0 increases

on the set ft : Bt ¼ 0g. Next, introduce the stopping

time � ¼ infft : �t ¼ 1� b or �t ¼ �ðjBtjÞg. Further-

more, if �� ¼ �ðjB�jÞ, we put � ¼ �; if �� ¼ 1� b,
then, as we have already observed above, we have

B� ¼ 0 and in this case we let � ¼ infft � � : Bt 2
f�b� "; bgg. It is easy to see that � is exponentially

integrable, since � � infft : jBtj � bþ "g.
Define the martingales X, Y by Xt ¼ B�^t and

Yt ¼
R t

0 HsdXs, where H is a predictable process

given by

Hs ¼
� sgnBs if s � �,

�1 if s > �.

�

To gather some intuition about the behavior of the

pair ðX; "þ Y Þ, let us make the following observa-

tions. The pair starts from the point ð0; "Þ and takes

values in the set fðx; yÞ : y � �ðjxjÞg; when it is in

the first quadrant, it moves along a line segment of

slope �1 until it reaches the y-axis or the curve

fðx; yÞ : y ¼ �ðxÞg; if it belongs to the second quad-

rant, it moves along the line segment of slope 1 until

it reaches the y-axis or the curve y ¼ �ð�xÞ; when

it is on the y-axis and Y < 1� b, then it makes

‘‘an infinitely small martingale move’’ along the line

segment of slope 1. Finally, if the pair ever reaches

the point ð0; 1� bÞ, then it starts moving along the

line segment of slope �1, until it reaches the point

ðb; �ðbÞÞ or ð�b� "; 1þ "Þ.
To compute the lower bound for the ratio

Pðsupt�0 jYtj � 1Þ= supt�0 E�ðjXtjÞ, we will again

use the special functions u and U. Fix r 2 ð0; bÞ
and introduce the stopping time � ¼ infft � 0 : "þ
Yt � rg. Of course, we have

uðX�^�=r; ð"þ Y�^�Þ=rÞ ¼ uðX0=r; ð"þ Y0Þ=rÞ;

since both sides are 0 if " � r, and � 	 0 if " > r.

In addition, the above analysis of ðX; Y Þ shows that

for t 2 ð�; � �, the rescaled pair ðXt=r; ð"þ YtÞ=rÞ
belongs to the set fðx; yÞ : y � 0; jxj þ y � 1g.

However, u coincides on this set with the smooth

function ðx; yÞ 7! ðy� 1Þ2 � x2. Thus we are allowed

to apply Itô’s formula to uðXt=r; ð"þ YtÞ=rÞ and

obtain

uðX�=r; ð"þ Y� Þ=rÞ ¼ uð0; "=rÞ þ I1 þ I2;ð3:1Þ

where

I1 ¼ �
Z �

�^�

2Xs

r2
dXs þ

Z �

�^�
2
"þ Ys
r
� 1

� �
dYs

r
;

I2 ¼ �
1

r2

Z �

�

d½X;X�s þ
1

r2

Z �

�

d½Y ; Y �s ¼ 0:

Since X and Y are bounded and � is exponentially

integrable, we have EI1 ¼ 0, by the properties of

stochastic integrals. Therefore, taking expectation

of both sides of (3.1), we see that

EuðX�=r; ð"þ Y� Þ=rÞ ¼ uð0; "=rÞ � 0:

Consequently, by Fubini’s theorem (which is appli-

cable — repeat the reasoning from the previous

section),

0 � EUðX�; "þ Y� Þ
¼ Uð�b� "; 1þ "ÞPð"þ Y� ¼ 1þ "Þ
þ EUðX�; "þ Y� Þ1f"þY�<1þ"g:

However, on f"þ Y� < 1þ "g ¼ fY� < 1g we

have "þ Y� ¼ �ðjX� jÞ and hence UðX�; "þ Y� Þ ¼
��ðjX� jÞ. Thus, the preceding inequality implies

PðY� ¼ 1Þ � ðUð�b� "; 1þ "Þ þ �ðbþ "ÞÞ � E�ðjX� jÞ

and, in consequence,

Pðsupt�0 Yt � 1Þ
supt�0 E�ðjXtjÞ

�
1

Uð�b� "; 1þ "Þ þ �ðbþ "Þ
:

It remains to let "! 0: then the right-hand side

converges to ð2b�0ðbÞÞ�1. Thus, taking " sufficiently

small, we may make the ratio as close to ð2b�0ðbÞÞ�1

as we wish. This proves the desired sharpness.

4. Examples. Finally, we present three

families of functions � from C, for which the corre-

sponding weak-type constants C� have a nice form.

4.1. Suh’s estimate. We start with the

choice �ðtÞ ¼ tp, p > 2. It is straightforward to

check that � belongs to the class C. Furthermore,

all the parameters can be easily computed. Namely,

we have �ðxÞ ¼ ðp� 2Þx, b ¼ 1=p and hence the

weak ðp; pÞ constant equals

C� ¼ ð2b�0ðbÞÞ�1 ¼
pp�1

2
:
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4.2. An exponential bound. Now take

�ðtÞ ¼ etp � 1, p > 2. Then

�0ðtÞ ¼ ptp�1et
p

; �00ðtÞ ¼ ptp�2et
pðp� 1þ ptpÞ;

so it is evident that (a), (b) and (c) hold true. Next,

we derive that

�ðxÞ ¼ ðp� 2Þxþ
p

pþ 1
xpþ1; x � 0:

In consequence, the best weak-� constant equals

C� ¼ ð2pbpeb
pÞ�1;

where b is the unique solution to the equation

pbþ
p

pþ 1
bpþ1 ¼ 1:

4.3. Another exponential bound. Our final

example is the following. Pick p > 2 and let � be

given by

�ðtÞ ¼
Z t

0

sp�1esds; t � 0:

We have

�0ðtÞ ¼ tp�1et; �00ðtÞ ¼ tp�2etðp� 1þ tÞ;

so � belongs to the class C. We compute that

�ðxÞ ¼ ðp� 2Þxþ
x2

2
; x � 0;

and hence the parameter b is the solution to

b2

2
þ pb ¼ 1;

i.e., it is given by

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 2

p
� p:

Thus, the best weak-� constant equals

C� ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 2

p
þ p

2

 !p

expðp�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 2

p
Þ:
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