Relative algebraic correspondences and mixed motivic sheaves

By Masaki Hanamura
Department of Mathematics, Tohoku University, Aramaki 6-3, Aoba-ku, Sendai, Miyagi 980-8587, Japan

(Communicated by Masaki Kashiwara, M.J.A., Sept. 12, 2012)

Abstract

We introduce the notion of a quasi $D G$ category, and give a procedure to construct a triangulated category associated to it. Then we apply it to the construction of the triangulated category of mixed motivic sheaves over a base variety.

Key words: Chow group; motive; triangulated category.

Introduction. We will introduce the notion of a quasi $D G$ category, generalizing that of a DG category. To a quasi DG category satisfying certain additional conditions, we associate another quasi DG category, the quasi DG category of C-diagrams. We then show the homotopy category of the quasi DG category of C-diagrams has the structure of a triangulated category (see $\S 1$).

The main example of a quasi DG category comes from algebraic geometry, as explained in $\S 2$. We establish a theory of complexes of relative correspondences; it generalizes the theory of complexes of correspondences of smooth projective varieties, as developed in [4-6]. The class of smooth quasi-projective varieties equipped with projective maps to a fixed quasi-projective variety S, and the complexes of relative correspondences between them constitute a quasi DG category, denoted by $\operatorname{Symb}(S)$.

We apply the above procedure to $\operatorname{Symb}(S)$ to obtain $\mathcal{D}(S)$, the triangulated category of mixed motives over S. If the base variety is the Spec of the ground field, this coincides with the triangulated category of motives as in [4-6].

The full details of this article will appear elsewhere (see $[7]$ for $\S 2,[8]$ for $\S 1$).

Notation and conventions. (a) A double complex $A=\left(A^{i, j} ; d^{\prime}, d^{\prime \prime}\right)$ is a bi-graded abelian group with differentials d^{\prime} of degree $(1,0), d^{\prime \prime}$ of degree $(0,1)$, satisfying $d^{\prime} d^{\prime \prime}+d^{\prime \prime} d^{\prime}=0$. Its total complex $\operatorname{Tot}(A)$ is the complex with $\operatorname{Tot}(A)^{k}=$ $\bigoplus_{i+j=k} A^{i, j}$ and the differential $d=d^{\prime}+d^{\prime \prime}$.

Let $\left(A, d_{A}\right)$ and $\left(B, d_{B}\right)$ be complexes. Then the tensor product complex $A \otimes B$ is the graded abelian

[^0]group with $(A \otimes B)^{n}=\oplus_{i+j=n} A^{i} \otimes B^{j}$, and with differential d given by
$$
d(x \otimes y)=(-1)^{\operatorname{deg} y} d x \otimes y+x \otimes d y
$$

Note this differs from the usual sign convention. Alternatively one obtains the same complex by viewing $A \otimes B$ as a double complex with differentials $(-1)^{j} d \otimes 1$ and $1 \otimes d$ on $A^{i} \otimes B^{j}$ and taking its total complex.

More generally for $n \geq 2$ one has the notion of n-tuple complex. An n-tuple complex is a \mathbf{Z}^{n}-graded abelian group $A^{i_{1}, \cdots, i_{n}}$ with differentials $d_{1}, \cdots, d_{n}, d_{k}$ raising i_{k} by 1 , such that for $k \neq \ell, d_{k} d_{\ell}+d_{\ell} d_{k}=0$. A single complex $\operatorname{Tot}(A)$, called the total complex, is defined in a similar manner. For n complexes $A_{1}^{\bullet}, \cdots, A_{n}^{\bullet}$, the tensor product $A_{1}^{\bullet} \otimes \cdots \otimes A_{n}^{\bullet}$ is an n-tuple complex.
(b) Let I be a non-empty finite totally ordered set (we will simply say a finite ordered set), so $I=\left\{i_{1}, \cdots, i_{n}\right\}, i_{1}<\cdots<i_{n}$, where $n=|I|$. Set $\operatorname{in}(I)=i_{1}, \operatorname{tm}(I)=i_{n}$, and $I=I-\{\operatorname{in}(I), \operatorname{tm}(I)\}$. For example, for a positive integer $n, I=[1, n]=$ $\{1, \cdots, n\}$ is finite ordered set. In this case, if $n \geq 2$, $\stackrel{\circ}{I}=(1, n):=\{2, \cdots, n-1\}$. If $I=\left\{i_{1}, \cdots, i_{n}\right\}, \quad$ a subset I^{\prime} of the form $\left[i_{a}, i_{b}\right]=\left\{i_{a}, \cdots, i_{b}\right\} \quad(1 \leq a \leq$ $b \leq n$) is called a sub-interval.

For a subset $\Sigma=\left\{j_{1}, \cdots, j_{a-1}\right\}$ of $\stackrel{\circ}{I}$, where $a \geq$ 1 and $j_{1}<j_{2}<\cdots<j_{a-1}$, one has a decomposition of I into the sub-intervals I_{1}, \cdots, I_{a}, where $I_{k}=$ [$\left.j_{k-1}, j_{k}\right]$, with $j_{0}=i_{1}, j_{a}=i_{n}$. Thus the sub-intervals satisfy $I_{k} \cap I_{k+1}=\left\{j_{k}\right\}$ for $k=1, \cdots, a-1$. The sequence I_{1}, \cdots, I_{a} is called the segmentation of I corresponding to Σ.
§1. Quasi DG categories and triangulated categories. The notion of a quasi DG category is a generalization of that of a DG category. Recall that a DG category is an additive category \mathcal{C}, such
that for a pair of objects X, Y the group of homomorphisms $F(X, Y)$ has the structure of a complex, and the composition $F(X, Y) \otimes F(Y, Z) \rightarrow F(X, Z)$ is a map of complexes.
(1.1) Definition. A quasi $D G$ category \mathcal{C} consists of data (i)-(iii), satisfying the conditions (1)(5). When necessary we will also impose additional structure (iv), (v), satisfying (6)-(11).
(i) The class of objects $\operatorname{Ob}(\mathcal{C})$. There is a distinguished object O, called the zero object. For a pair of objects X, Y, there is the "direct sum" object $X \oplus Y$, and one has $(X \oplus Y) \oplus Z=X \oplus(Y \oplus Z)$.
(ii) Multiple complexes $F\left(X_{1}, \cdots, X_{n}\right)$. For each sequence of objects $X_{1}, \cdots X_{n}(n \geq 2)$, a complex of free abelian groups $F\left(X_{1}, \cdots, X_{n}\right)$. More generally for a finite ordered set $I=\left\{i_{1}, \cdots, i_{n}\right\}$ with $n \geq 2$ and a sequence of objects X_{i} indexed by $i \in I$, there corresponds a complex $F(I)=F(I ; X):=$ $F\left(X_{i_{1}}, \cdots, X_{i_{n}}\right)$.

Let I_{1}, \cdots, I_{a} be the segmentation of $I=[1, n]$ corresponding to a subset S of $(1, n)$. We set $F\left(X_{1}, \cdots, X_{n}\lceil S):=F\left(I_{1}\right) \otimes \cdots \otimes F\left(I_{a}\right) ;\right.$ this is an a-tuple complex. More generally, for a finite ordered set I with cardinality ≥ 2, a sequence of objects $\left(X_{i}\right)_{i \in I}$, and $S \subset \stackrel{\circ}{I}$, one has the complex $F(I T S)=$ $F(I\rceil S ; X)$.
(iii) Multiple complexes $F\left(X_{1}, \cdots, X_{n} \mid S\right)$ and maps $\iota_{S}, \sigma_{S S^{\prime}}$ and φ_{K}.
(1) We require given a quasi-isomorphic multiple subcomplex of free abelian groups

$$
\left.\iota_{S}: F\left(X_{1}, \cdots, X_{n} \mid S\right) \hookrightarrow F\left(X_{1}, \cdots, X_{n}\right\rceil S\right)
$$

We assume $F\left(X_{1}, \cdots, X_{n} \mid \emptyset\right)=F\left(X_{1}, \cdots, X_{n}\right)$. The complex $F\left(X_{1}, \cdots, X_{n} \mid S\right)$ is additive in each variable, namely the following properties are satisfied: If a variable $X_{i}=O$, then it is zero. If $X_{1}=Y_{1} \oplus Z_{1}$, then one has a direct sum decomposition of complexes

$$
\begin{aligned}
& F\left(Y_{1} \oplus Z_{1}, X_{2}, \cdots, X_{n} \mid S\right) \\
& \quad=F\left(Y_{1}, \cdots, X_{n} \mid S\right) \oplus F\left(Z_{1}, \cdots, X_{n} \mid S\right)
\end{aligned}
$$

The same for X_{n}. If $1<i<n$ and $X_{i}=Y_{i} \oplus Z_{i}$, then there is a direct sum decomposition of complexes

$$
\begin{aligned}
& F\left(X_{1}, \cdots, X_{i-1}, Y_{i} \oplus Z_{i}, X_{i+1}, \cdots, X_{n} \mid S\right) \\
& \quad=F\left(X_{1}, \cdots, Y_{i}, \cdots, X_{n} \mid S\right) \\
& \quad \oplus F\left(X_{1}, \cdots, Z_{i}, \cdots, X_{n} \mid S\right) \\
& \quad \oplus F\left(X_{1}, \cdots, Y_{i} \mid S_{1}\right) \otimes F\left(Z_{i}, \cdots, X_{n} \mid S_{2}\right) \\
& \quad \oplus F\left(X_{1}, \cdots, Z_{i} \mid S_{1}\right) \otimes F\left(Y_{i}, \cdots, X_{n} \mid S_{2}\right)
\end{aligned}
$$

where S_{1}, S_{2} is the partition of S by i, namely $S_{1}=S \cap(1, i), S_{2}=S \cap(i, n)$. We often refer to the last two terms as the cross terms. (Note the complex $F\left(X_{1}, \cdots, X_{n} \llbracket S\right)$ is additive in this sense.) The inclusion ι_{S} is compatible with the additivity.

For a subset $T \subset S$, if I_{1}, \cdots, I_{c} is the segmentation corresponding to T, and $S_{i}=S \cap \stackrel{\circ}{I}_{i}$, one requires there is an inclusion of multiple complexes

$$
\begin{equation*}
F(I \mid S) \subset F\left(I_{1} \mid S_{1}\right) \otimes \cdots \otimes F\left(I_{c} \mid S_{c}\right) \tag{1.1.1}
\end{equation*}
$$

where the latter group is viewed as a subcomplex of $\left.\quad F(I\rceil S)=F\left(I_{1}\right\rceil S_{1}\right) \otimes \cdots \otimes F\left(I_{c}\left\lceil S_{c}\right) \quad\right.$ by the tensor product of the inclusions $\iota_{S_{i}}: F\left(I_{i} \mid S_{i}\right) \hookrightarrow$ $\left.F\left(I_{i}\right\rceil S_{i}\right)$.
(2) For $S \subset S^{\prime}$ we are given a surjective quasiisomorphism of multiple complexes

$$
\sigma_{S S^{\prime}}: F\left(X_{1}, \cdots, X_{n} \mid S\right) \rightarrow F\left(X_{1}, \cdots, X_{n} \mid S^{\prime}\right)
$$

For $S \subset S^{\prime} \subset S^{\prime \prime}, \sigma_{S S^{\prime \prime}}=\sigma_{S^{\prime} S^{\prime \prime}} \sigma_{S S^{\prime}}$. The $\sigma_{S S^{\prime}}\left(X_{1}, \cdots\right.$, $\left.X_{n}\right)$ is additive in each variable, namely if $X_{i}=$ $Y_{i} \oplus Z_{i}$, then $\sigma_{S S^{\prime}}\left(X_{1}, \cdots, X_{n}\right)$ is the direct sum of the maps $\sigma_{S S^{\prime}}\left(X_{1}, \cdots, Y_{i}, \cdots, X_{n}\right), \sigma_{S S^{\prime}}\left(X_{1}, \cdots\right.$, Z_{i}, \cdots, X_{n}), and the maps

$$
\begin{aligned}
\sigma_{S_{1} S_{1}^{\prime}} & \otimes \sigma_{S_{2} S_{2}^{\prime}}: F\left(X_{1}, \cdots, Y_{i} \mid S_{1}\right) \otimes F\left(Z_{i}, \cdots, X_{n} \mid S_{2}\right) \\
& \rightarrow F\left(X_{1}, \cdots, Y_{i} \mid S_{1}^{\prime}\right) \otimes F\left(Z_{i}, \cdots, X_{n} \mid S_{2}^{\prime}\right), \\
\sigma_{S_{1} S_{1}^{\prime}} & \otimes \sigma_{S_{2} S_{2}^{\prime}}: F\left(X_{1}, \cdots, Z_{i} \mid S_{1}\right) \otimes F\left(Y_{i}, \cdots, X_{n} \mid S_{2}\right) \\
& \rightarrow F\left(X_{1}, \cdots, Z_{i} \mid S_{1}^{\prime}\right) \otimes F\left(Y_{i}, \cdots, X_{n} \mid S_{2}^{\prime}\right),
\end{aligned}
$$

on the cross terms.
The σ is assumed compatible with the inclusion in (1.1.1): If $S \subset S^{\prime}$ and $S_{i}^{\prime}=S^{\prime} \cap \stackrel{\circ}{I}_{i}$ the following commutes:

$$
\begin{array}{ccc}
F(I \mid S) \hookrightarrow F\left(I_{1} \mid S_{1}\right) \otimes \cdots \otimes F\left(I_{1} \mid S_{1}\right) \\
\sigma_{S S^{\prime} \downarrow} \downarrow & \downarrow \otimes \sigma_{S_{i} S_{i}^{\prime}} \\
F\left(I \mid S^{\prime}\right) & \hookrightarrow F\left(I_{1} \mid S_{1}^{\prime}\right) \otimes \cdots \otimes F\left(I_{1} \mid S_{1}^{\prime}\right)
\end{array}
$$

We write $\sigma_{S}=\sigma_{\emptyset S}: F(I) \rightarrow F(I \mid S)$. The composition of σ_{S} and ι_{S} is denoted by $\tau_{S}: F(I) \rightarrow F(I T S)$.
(3) For $K=\left\{k_{1}, \cdots, k_{b}\right\} \subset(1, n)$ disjoint from S, a map of multiple complexes

$$
\begin{aligned}
\varphi_{K} & : F\left(X_{1}, \cdots, X_{n} \mid S\right) \\
& \rightarrow F\left(X_{1}, \cdots, \widehat{X_{k_{1}}}, \cdots, \widehat{X_{k_{b}}}, \cdots, X_{n} \mid S\right)
\end{aligned}
$$

If $\quad K=K^{\prime} \amalg K^{\prime \prime} \quad$ then $\quad \varphi_{K}=\varphi_{K^{\prime \prime}} \varphi_{K^{\prime}}: F(I \mid S) \rightarrow$ $F(I-K \mid S)$. The φ_{K} is additive in each variable: If $X_{i}=Y_{i} \oplus Z_{i}$, then $\varphi_{K}\left(X_{1}, \cdots, X_{n}\right)$ is the sum of $\varphi_{K}\left(X_{1}, \cdots, Y_{i}, \cdots, X_{n}\right), \quad \varphi_{K}\left(X_{1}, \cdots, Z_{i}, \cdots, X_{n}\right)$, and, if $i \notin K$, the maps
$\varphi_{K_{1}} \otimes \varphi_{K_{2}}$ on $\left.F\left(X_{1}, \cdots, Y_{i}\right\rceil S_{1}\right) \otimes F\left(Z_{i}, \cdots, X_{n} T S_{2}\right)$,
$\varphi_{K_{1}} \otimes \varphi_{K_{2}}$ on $\left.\left.F\left(X_{1}, \cdots, Z_{i}\right\rceil S_{1}\right) \otimes F\left(Y_{i}, \cdots, X_{n}\right\rceil S_{2}\right)$
on the cross terms (S_{1}, S_{2} is the partition of S by i, and K_{1}, K_{2} is the partition of K by i, and if $i \in K$, the zero maps on the cross terms.

In a quasi DG category, to a pair of objects X, Y, there still corresponds a complex $F(X, Y)$. But there is no composition as in the DG case. Instead there is given a third complex $F(X, Y, Z)$, a quasiisomorphism $\quad \tau: F(X, Y, Z) \rightarrow F(X, Y) \otimes F(Y, Z)$, and a map of complexes $\varphi: F(X, Y, Z) \rightarrow F(X, Z)$. These maps give "composition" in a weak sense. Below we will give the precise definition.
φ_{K} is assumed to be compatible with the inclusion in (1.1.1): With the same notation as above and $K_{i}=K \cap I_{i}$, the following commutes:

\[

\]

If K and S^{\prime} are disjoint and $S \subset S^{\prime}$, the following commutes:

$$
\begin{array}{cr}
F(I \mid S) \xrightarrow{\varphi_{K}} & F(I-K \mid S) \\
\sigma_{S S^{\prime}} \downarrow & \\
F\left(I \mid S^{\prime}\right) \xrightarrow{\varphi_{K}} & F\left(I-K \mid S_{S S^{\prime}}\right) .
\end{array}
$$

(4) (acyclicity of σ) For disjoint subsets R, J of
$\stackrel{\circ}{I}$ with $|J| \neq \emptyset$, consider the following sequence of complexes, where the maps are alternating sums of σ, and S varies over subsets of J :

$$
\begin{aligned}
& F(I \mid R) \xrightarrow{\sigma} \bigoplus_{\substack{|S|=1 \\
S \subset J}} F(I \mid R \cup S) \\
& \stackrel{\sigma}{\substack{|S|=2 \\
S \subset J}} \mid \\
& \bigoplus(I \mid R \cup S) \rightarrow \cdots \rightarrow F(I \mid R \cup J) \rightarrow 0 .
\end{aligned}
$$

Then the sequence is exact.
(5) (existence of the identity in the ring $H^{0} F(X, X)$) Before stating the condition, note there are composition maps for $H^{0} F(X, Y)$ defined as follows. For three objects X, Y and Z, let

$$
\psi_{Y}: F(X, Y) \otimes F(Y, Z) \rightarrow F(X, Z)
$$

be the map in the derived category defined as the composition $\varphi_{Y} \circ\left(\sigma_{Y}\right)^{-1}$ where the maps are as in

$$
F(X, Y) \otimes F(Y, Z) \stackrel{\sigma_{Y}}{\longleftarrow} F(X, Y, Z) \xrightarrow{\varphi_{Y}} F(X, Z) .
$$

The map ψ_{Y} is verified to be associative, namely the following commutes in the derived category:

Let $H^{0} F(X, Y)$ be the 0-th cohomology of $F(X, Y) . \psi_{Y}$ induces a map

$$
\psi_{Y}: H^{0} F(X, Y) \otimes H^{0} F(Y, Z) \rightarrow H^{0} F(X, Z)
$$

which is associative. If $u \in H^{0} F(X, Y), \quad v \in$ $H^{0} F(Y, Z)$, we write $u \cdot v$ for $\psi_{Y}(u \otimes v)$.

We now require: For each X there is an element $1_{X} \in H^{0} F(X, X)$ such that $1_{X} \cdot u=u$ for any $u \in$ $H^{0} F(X, Y)$ and $u \cdot 1_{X}=u$ for $u \in H^{0} F(Y, X)$.
(iv) Diagonal elements and diagonal extension.
(6) For each object X and a constant sequence of objects $i \mapsto X_{i}=X$ on a finite ordered set I with $|I| \geq 2$, there is a distinguished element, called the diagonal element

$$
\boldsymbol{\Delta}_{X}(I) \in F(I)=F(X, \cdots, X)
$$

of degree zero and coboundary zero. In particular for $|I|=2$ we write $\Delta_{X}=\Delta_{X}(I) \in F(X, X)$. One requires:
(6-1) If $S \subset \stackrel{\circ}{I}$, and I_{1}, \cdots, I_{c} the corresponding segmentation, one has

$$
\tau_{S}\left(\boldsymbol{\Delta}_{X}(I)\right)=\boldsymbol{\Delta}_{X}\left(I_{1}\right) \otimes \cdots \otimes \boldsymbol{\Delta}_{X}\left(I_{c}\right)
$$

in $F(I T S)=F\left(I_{1}\right) \otimes \cdots \otimes F\left(I_{c}\right)$.
(6-2) For $K \subset \stackrel{\circ}{I}, \varphi_{K}\left(\boldsymbol{\Delta}_{X}(I)\right)=\boldsymbol{\Delta}_{X}(I-K)$.
(7) Let I be a finite ordered set, $k \in I, m \geq 2$, and \tilde{I} be the finite ordered set obtained by replacing k by a finite ordered set with m elements $\left\{k_{1}, \cdots, k_{m}\right\}$. If $I=[1, n], \check{I}$ is $\left\{1, \cdots, k-1, k_{1}, \cdots\right.$, $\left.k_{m}, k+1, \cdots, n\right\}$.

There is given a map of complexes, called the diagonal extension,

$$
\operatorname{diag}\left(I, \tilde{I^{\prime}}\right): F(I) \rightarrow F\left(I^{\sim}\right)
$$

subject to the following conditions (for simplicity assume $I=[1, n]$):
(7-1) If $\quad k^{\prime} \neq k, \quad \varphi_{k^{\prime}} \operatorname{diag}\left(I, I^{\sim}\right)=\operatorname{diag}(I-$ $\left.\left\{k^{\prime}\right\}, \tilde{I^{2}}-\left\{k^{\prime}\right\}\right) \varphi_{k^{\prime}}$, namely the following square commutes:f1/

$$
\begin{array}{ccc}
F(I) & \xrightarrow{\operatorname{diag}\left(I, I^{\sim}\right)} & F\left(I^{\sim}\right) \\
\varphi_{k^{\prime}} \downarrow & & \downarrow \varphi_{k^{\prime}} \\
F(I-\{k\}) & \xrightarrow{\operatorname{diag}\left(I-\left\{k^{\prime}\right\}, I^{-}-\left\{k^{\prime}\right\}\right)} & F\left(I^{\sim}-\left\{k^{\prime}\right\}\right) .
\end{array}
$$

If $\ell \in\left\{k_{1}, \cdots, k_{m}\right\}, \varphi_{\ell} \operatorname{diag}\left(I, \tilde{I^{2}}\right)=\operatorname{diag}\left(I, \tilde{I^{2}}-\{\ell\}\right)$. If $m=2$ the right side is the identity.
(7-2) If $k=n, \ell \underset{\sim}{\in}\left\{n_{1}, \cdots, n_{m}\right\}$, let $I_{1}^{\prime}, I^{\prime \prime}$ be the segmentation of I^{\sim} by ℓ. Then the following diagram commutes:

$$
\left.\begin{array}{rlc}
F(I) & \xrightarrow{\operatorname{diag}\left(I, I^{\sim}\right)} & F\left(\tilde{I^{2}}\right) \\
\operatorname{diag}\left(I, I_{1}^{\prime}\right) \downarrow & & \downarrow \tau_{\ell} \\
F\left(I_{1}^{\prime}\right) & \longrightarrow & \\
& & \\
\hline 1
\end{array}\right) \otimes F\left(I^{\prime \prime}\right) . ~ \$
$$

The lower horizontal map is $u \mapsto u \otimes \boldsymbol{\Delta}\left(I^{\prime \prime}\right)$. Note $I^{\prime \prime}$ parametrizes a constant sequence of objects, so one has $\boldsymbol{\Delta}\left(I^{\prime \prime}\right) \in F\left(I^{\prime \prime}\right)$. Similarly in case $k=1$, $\ell \in\left\{1_{1}, \cdots, 1_{m}\right\}$.

If $1<k<n$ and $\ell \in\left\{k_{1}, \cdots, k_{m}\right\}$, let I_{\sim}, I_{2} be the segmentation of I by k, and $I_{1}^{\prime}, I_{2}^{\prime}$ of I^{\sim} by ℓ. One then has a commutative diagram:

$$
\begin{array}{ccc}
F(I) & \xrightarrow{\operatorname{diag}\left(I, I^{\prime}\right)} & F\left(I^{\sim}\right) \\
\tau_{k} \downarrow & & \downarrow \tau_{\ell} \\
F\left(I_{1}\right) \otimes F\left(I_{2}\right) & \longrightarrow & F\left(I_{1}^{\prime}\right) \otimes F\left(I_{2}^{\prime}\right),
\end{array}
$$

where the lower horizontal arrow is $\operatorname{diag}\left(I_{1}, I_{1}^{\prime}\right) \otimes$ $\operatorname{diag}\left(I_{2}, I_{2}^{\prime}\right)$.

Remark. From (6) and (7) it follows that $\left[\Delta_{X}\right] \in H^{0} F(X, X)$ is the identity in the sense of (5). Indeed the following stronger property is satisfied for the maps $\psi_{Y}: H^{m} F(X, Y) \otimes H^{n} F(Y, Z) \rightarrow$ $H^{m+n} F(X, Z)$ for $m, n \in \mathbf{Z}$, defined in a similar manner as in (5) above.
(5) ${ }^{\prime}$ For each $u \in H^{n} F(X, Y), \quad n \in \mathbf{Z}$, one has $1_{X} \cdot u=u$. Similarly for $u \in H^{n} F(Y, X), u$. $1_{X}=u$.
(v) The set of generators, notion of proper intersection, and distinguished subcomplexes with respect to constraints.
(8) (the generating set) For a sequence X on I, the complex $F(I)=F(I ; X)$ is degree-wise \mathbf{Z}-free on a given set of generators $\mathcal{S}_{F}(I)=\mathcal{S}_{F}(I ; X)$. More precisely $\mathcal{S}_{F}(I)=\amalg_{p \in \mathbf{Z}} \mathcal{S}_{F}(I)^{p}$, where $\mathcal{S}_{F}(I)^{p}$ generates $F(I)^{p}$. This set is compatible with direct sum in each variable: Assume for an element $k \in I$ one has $X_{k}=Y_{k} \oplus Z_{k}$; let X^{\prime} (resp. $X^{\prime \prime}$) be the sequence such that $X_{i}^{\prime}=X_{i}$ for $i \neq k$, and $X_{k}^{\prime}=Y_{k}$ (resp. $X_{i}^{\prime \prime}=X_{i}$ for $i \neq k$, and $\left.X_{k}^{\prime \prime}=Z_{k}\right)$. Then $\mathcal{S}_{F}(I ; X)=$ $\mathcal{S}_{F}\left(I ; X^{\prime}\right) \amalg \mathcal{S}_{F}\left(I ; X^{\prime \prime}\right)$.
(9) (notion of proper intersection.) Let I be a finite ordered set, I_{1}, \cdots, I_{r} be almost disjoint sub-intervals of I, which means one has $\operatorname{tm}\left(I_{i}\right) \leq$ $\operatorname{in}\left(I_{i+1}\right)$ for each i. Assume given a sequence of objects X_{i} on I. For any subset A of $\{1, \cdots, r\}$, and an element $\left\{\alpha_{i}\right\}_{i \in A} \in \prod_{i \in A} \mathcal{S}_{F}\left(I_{i}\right)$, we assume given the notion of proper intersection satisfying the following properties:

- If $\left\{\alpha_{i} \mid i \in A\right\}$ is properly intersecting, for any subset B of $A,\left\{\alpha_{i} \mid i \in B\right\}$ is properly intersecting.
- Let A and A^{\prime} be subsets of $\{1, \cdots, r\}$ such that $\operatorname{tm}(A)<\operatorname{in}\left(A^{\prime}\right)$. If $\left\{\alpha_{i} \mid i \in A\right\}$ and $\left\{\alpha_{i} \mid i \in A^{\prime}\right\}$ are both properly intersecting sets, the union $\left\{\alpha_{i} \mid i \in A \cup A^{\prime}\right\}$ is also properly intersecting.
- If $\left\{\alpha_{1}, \cdots, \alpha_{r}\right\}$ is properly intersecting, then for any i, writing $\partial \alpha_{i}=\sum c_{i \nu} \beta_{\nu}$ with $\beta_{\nu} \in \mathcal{S}_{F}\left(I_{i}\right)$, each set

$$
\left\{\alpha_{1}, \cdots, \alpha_{i-1}, \beta_{\nu}, \alpha_{i+1}, \cdots, \alpha_{r}\right\}
$$

is properly intersecting.

- The condition of proper intersection is compatible with direct sum in each variable. To be precise, under the same assumption as in (8), for a set of elements $\alpha_{i} \in \mathcal{S}_{F}\left(I_{i} ; X^{\prime}\right)$ for $i=1, \cdots, r$, the set $\left\{\alpha_{i} \in \mathcal{S}_{F}\left(I_{i} ; X^{\prime}\right)\right\}_{i}$ is properly intersecting if and only if the set $\left\{\alpha_{i} \in \mathcal{S}_{F}\left(I_{i} ; X\right)\right\}_{i}$ is properly intersecting.
Remark. For I_{i} almost disjoint and elements $\alpha_{i} \in F\left(I_{i}\right)$, one defines $\left\{\alpha_{i} \in F\left(I_{i}\right) \mid i \in A\right\}$ to be properly intersecting if the following holds. Write $\alpha_{i}=\sum c_{i \nu} \alpha_{i \nu}$ with $\alpha_{i \nu} \in \mathcal{S}_{F}\left(I_{i}\right)$, then for any choice of ν_{i} for $i \in A$, the set $\left\{\alpha_{i \nu_{i}} \mid i \in A\right\}$ is properly intersecting.

Further, if $S_{i} \subset \stackrel{\circ}{I}_{i}$, one can define the condition of proper intersection for $\left\{\alpha_{i} \in F\left(I_{i} \mid S_{i}\right) \mid i \in A\right\}$ by writing each α_{i} as a sum of tensors of elements in the generating set.
(10) (description of $F(I \mid S)$) (10) (description of $F(I \mid S)$) When I_{1}, \cdots, I_{r} is a segmentation of I, namely when $\operatorname{in}\left(I_{1}\right)=\operatorname{in}(I), \operatorname{tm}\left(I_{i}\right)=\operatorname{in}\left(I_{i+1}\right)$ and $\operatorname{tm}\left(I_{r}\right)=\operatorname{tm}(I)$, the subcomplex of $F\left(I_{1}\right) \otimes \cdot \otimes F\left(I_{r}\right)$ generated by $\alpha_{1} \otimes \cdots \otimes \alpha_{r}$ with $\left\{\alpha_{i}\right\}$ properly intersecting is denoted by $F\left(I_{1}\right) \hat{\otimes} \cdots \hat{\otimes} F\left(I_{r}\right)$. If $S \subset$ $\stackrel{\circ}{I}$ is the subset corresponding to the segmentation, this subcomplex coincides with $F(I \mid S)$.
(11) (distinguished subcomplexes) Let I be a finite ordered set, L_{1}, \cdots, L_{r} be almost disjoint sub-intervals such that $\cup L_{i}=I$; equivalently, $\operatorname{in}\left(L_{1}\right)=\operatorname{in}(I), \operatorname{tm}\left(L_{i}\right)=\operatorname{in}\left(L_{i+1}\right)$ or $\operatorname{tm}\left(L_{i}\right)+1=$ $\operatorname{in}\left(L_{i+1}\right)$, and $\operatorname{tm}\left(L_{r}\right)=\operatorname{tm}(I)$. Assume given a sequence of objects X_{i} on I. Let Dist be the smallest class of subcomplexes of $F\left(L_{1}\right) \otimes \cdots \otimes F\left(L_{r}\right)$ satisfying the conditions below. It is then required that each subcomplex in Dist is a quasi-isomorphic subcomplex.
(11-1) A subcomplex obtained as follows is in Dist. Let I_{1}, \cdots, I_{c} be a set of almost disjoint sub-
intervals of I with union I, that is coarser than L_{1}, \cdots, L_{r}; let $S_{i} \subset \stackrel{\circ}{I}_{i}$ such that the segmentations of I_{i} by S_{i}, when combined for all i, give precisely the L_{i} 's. Let $I \hookrightarrow \mathbf{I}$ be an inclusion into a finite ordered set \mathbf{I} such that the image of each I_{a} is a sub-interval. Assume given an extension of X to I. Let $J_{1}, \cdots, J_{s} \subset \mathbf{I}$ be sub-intervals of \mathbf{I} such that the set $\left\{I_{i}, J_{j}\right\}_{i, j}$ is almost disjoint, $T_{j} \subset \stackrel{\breve{J}}{j}$ be subsets, and $f_{j} \in F\left(J_{j} \mid T_{j}\right), j=1, \cdots, s$ be a properly intersecting set. Then one defines the subcomplex

$$
\left[F\left(I_{1} \mid S_{1}\right) \otimes \cdots \otimes F\left(I_{c} \mid S_{c}\right)\right]_{\mathbf{I} ; f}
$$

as the one generated by $\alpha_{1} \otimes \cdots \otimes \alpha_{c}, \alpha_{i} \in F\left(I_{i} \mid S_{i}\right)$, such that the set
$\left\{\alpha_{1}, \cdots, \alpha_{c}, f_{j}(j=1, \cdots, s)\right\}$ is properly intersecting. We require it is in Dist.

The data consisting of $I \hookrightarrow \mathbf{I}, X$ on \mathbf{I}, subintervals $J_{i} \subset \mathbf{I}$ and subsets $T_{j} \subset \stackrel{J}{j}_{j}$, and elements $f_{j} \in F\left(J_{j} \mid T_{j}\right)$ is called a constraint, and the corresponding subcomplex the distinguished subcomplex for the constraint.
(11-2) Tensor product of subcomplexes in Dist is again in Dist. For this to make sense, note complexes of the form $F\left(L_{1}\right) \otimes \cdots \otimes F\left(I_{r}\right)$ are closed under tensor products: If I^{\prime} is another finite ordered set and $L_{1}^{\prime}, \cdots, L_{s}^{\prime}$ are almost disjoint subintervals with union I^{\prime}, then the tensor product

$$
F\left(L_{1}\right) \otimes \cdots \otimes F\left(I_{r}\right) \otimes F\left(L_{1}^{\prime}\right) \otimes \cdots \otimes F\left(I_{s}^{\prime}\right)
$$

is associated with the ordered set $I \amalg I^{\prime}$ and almost disjoint sub-intervals $\left(L_{1}, \cdots, L_{r}, L_{1}^{\prime}, \cdots, L_{s}^{\prime}\right)$.
(11-3) A finite intersection of subcomplexes in Dist is again in Dist.
(1.2) Definition. To a quasi DG category \mathcal{C} one can associate an additive category, called its homotopy category, denoted by $\operatorname{Ho}(\mathcal{C})$. Objects of $H o(\mathcal{C})$ are the same as the objects of \mathcal{C}, and $\operatorname{Hom}(X, Y):=H^{0} F(X, Y)$. Composition of arrows is induced from ψ_{Y} as in (5) above. (Note $u \cdot v=$ $\psi_{Y}(u \otimes v)$ is denoted by $v \circ u$ in the usual notation.) The object O is the zero object, and the direct sum $X \oplus Y$ is the direct sum in the categorical sense. 1_{X} gives the identity $X \rightarrow X$.
(1.3) Definition. Let \mathcal{C} be a quasi DG category. A C-diagram in \mathcal{C}^{Δ} is an object of the form $K=\left(K^{m} ; f\left(m_{1}, \cdots, m_{\mu}\right)\right)$, where $\left(K^{m}\right)$ is a sequence of objects of \mathcal{C} indexed by $m \in \mathbf{Z}$, which are zero except for a finite number of them, and

$$
f\left(m_{1}, \cdots, m_{\mu}\right) \in F\left(K^{m_{1}}, \cdots, K^{m_{\mu}}\right)^{-\left(m_{\mu}-m_{1}-\mu+1\right)}
$$

is a collection of elements indexed by sequences ($m_{1}<m_{2}<\cdots<m_{\mu}$) with $\mu \geq 2$. We require the following conditions:
(i) For each $j=2, \cdots, \mu-1$

$$
\begin{aligned}
& \tau_{K^{m_{j}}}\left(f\left(m_{1}, \cdots, m_{\mu}\right)\right) \\
& \quad=f\left(m_{1}, \cdots, m_{j}\right) \otimes f\left(m_{j}, \cdots, m_{\mu}\right)
\end{aligned}
$$

in $F\left(K^{m_{1}}, \cdots, K^{m_{j}}\right) \otimes F\left(K^{m_{j}}, \cdots, K^{m_{\mu}}\right)$.
(ii) For each $\left(m_{1}, \cdots, m_{\mu}\right)$, one has
$\partial f\left(m_{1}, \cdots, m_{\mu}\right)$
$+\sum(-1)^{m_{\mu}+\mu+k+t} \varphi_{K^{m_{k}}}\left(f\left(m_{1}, \cdots, m_{t}, k, m_{t+1}, \cdots, m_{\mu}\right)\right)=0$.
(the sum is over t with $1 \leq t<\mu$, and k with $m_{t}<$ $k<m_{t+1}$).

For an object X in \mathcal{C} and $n \in \mathbf{Z}$, one considers the C-diagram K with $K^{n}=X, K^{m}=0$ if $m \neq n$, and $f(M)=0$ for all $M=\left(m_{1}, \ldots, m_{\mu}\right)$. We write $X[-n]$ for this.
(1.4) Theorem. Let \mathcal{C} be a quasi $D G$ category satisfying the extra conditions (iv), (v) of Definition (1.1). There is a quasi $D G$ category \mathcal{C}^{Δ} satisfying the following properties:
(i) The objects are the C-diagrams in \mathcal{C}.
(ii) For a sequence of C-diagrams K_{1}, \ldots, K_{n} with $n \geq 2$, as part of the structure of a quasi $D G$ category, one has the corresponding complex of abelian groups $\mathbf{F}\left(K_{1}, \ldots, K_{n}\right)$, and the maps ι, σ, and φ. This complex has the following description if $n=2$ and the diagrams K_{1}, K_{2} are "objects of \mathcal{C} with shifts": For a pair of objects X, Y in \mathcal{C}, and $m, n \in \mathbf{Z}$, and the corresponding C-diagrams $X[m]$, $Y[n]$, one has a canonical isomorphism of complexes

$$
\mathbf{F}(X[m], Y[n])=F(X, Y)[n-m]
$$

In particular, in the homotopy category $\operatorname{Ho}\left(\mathcal{C}^{\Delta}\right)$ of \mathcal{C}^{Δ}, one has

$$
\operatorname{Hom}_{H o\left(C^{\Delta}\right)}(X[m], Y[n])=H^{n-m} F(X, Y)
$$

Further, the map

$$
\psi_{Y}: H^{m} F(X, Y) \otimes H^{n} F(Y, Z) \rightarrow H^{m+n} F(X, Z)
$$

for $m, n \in \mathbf{Z}$, defined using the maps σ, φ and $F(X, Y, Z)$ (see the remark just before (v) in (1.1)) coincides with the map

$$
\begin{aligned}
\psi_{Y} & : H^{0} \mathbf{F}(X, Y[m]) \otimes H^{0} \mathbf{F}(Y[m], Z[m+n]) \\
& \rightarrow H^{0} \mathbf{F}(X, Z[m+n])
\end{aligned}
$$

defined similarly using the maps σ, φ and $\mathbf{F}(X, Y[m], Z[m+n])$, via the isomorphisms $H^{m} F(X, Y)=H^{0} \mathbf{F}(X, Y[m])$, etc.
(iii) The homotopy category $\operatorname{Ho}\left(\mathcal{C}^{\Delta}\right)$ of \mathcal{C}^{Δ} has the structure of a triangulated category.

For the proof, we must define the complexes $\mathbf{F}\left(K_{1}, \cdots, K_{n}\right)$ for a sequence of C-diagrams, together with maps σ and φ, satisfying the condition (ii) of the theorem, and the axioms (i)-(iii) of a quasi DG category. We then proceed to show that the homotopy category of \mathcal{C}^{Δ} is triangulated. If \mathcal{C} is a DG category, there is a procedure to construct a triangulated category, as in [4-6] and [9]. The present construction may be viewed as its generalization.
§2. The quasi DG category of smooth varieties over a base. We consider quasiprojective varieties over a field k. We refer the reader to [1], [2], [3] for the definition of the cycle complexes and the higher Chow groups of quasiprojective varieties. We will use the integral cubical version, as in [3]. Thus to a quasi-projective variety X over k and $s \in \mathbf{Z}$, there corresponds the cycle complex $\mathcal{Z}_{s}(X, \cdot)$; the group $\mathcal{Z}_{s}(X, n)$ is a quotient of the free abelian group of algebraic cycles on $X \times \square^{n}$ of dimension $s+n$, meeting faces properly. (See [3] for the precise definition, where the indexing is by codimension.) The variety X need not be assumed equi-dimensional when we use the indexing by "dimension" instead of codimension. The higher Chow groups are the homology groups of this complex: $\mathrm{CH}_{s}(X, n)=H_{n} \mathcal{Z}_{s}(X, \cdot)$.

Let S be a quasi-projective variety. Let (Smooth $/ k$, Proj/ S) be the category of smooth varieties X equipped with projective maps to S. A symbol over S is an object the form

$$
\bigoplus_{\alpha \in A}\left(X_{\alpha} / S, r_{\alpha}\right)
$$

where X_{α} is a collection of objects in (Smooth $/ k$, $\operatorname{Proj} / S)$ indexed by a finite set A, and $r_{\alpha} \in \mathbf{Z}$.
(2.1) Theorem. There is a quasi DG category satisfying the conditions (iv), (v), denoted by $\operatorname{Symb}(S)$, with the following properties:
(i) The objects are the symbols over S.
(ii) For a sequence of symbols K_{1}, \ldots, K_{n} with $n \geq 2$, as part of the structure of a quasi $D G$ category, one has the corresponding complex of abelian groups $F\left(K_{1}, \ldots, K_{n}\right)$, and the maps ι, σ, and φ. When the symbols are of the form $K_{i}=\left(X_{i} /\right.$ $\left.S, r_{i}\right)$, the corresponding complex $F\left(K_{1}, \ldots, K_{n}\right)$ is quasi-isomorphic to

$$
\mathcal{Z}_{d_{1}}\left(X_{1} \times_{S} X_{2}\right) \otimes \cdots \otimes \mathcal{Z}_{d_{n-1}}\left(X_{n-1} \times_{S} X_{n}\right)
$$

with $d_{i}=\operatorname{dim} X_{i+1}-r_{i+1}+r_{i}$, the tensor product of the cycle complexes of the fiber products $X_{i} \times{ }_{S} X_{i+1}$.

We consider $\operatorname{Symb}(S)^{\Delta}$, the quasi DG category of C-diagrams in $\operatorname{Symb}(S)$, and then take its homotopy category. The resulting category is denoted by $\mathcal{D}(S)$, and called the triangulated category of mixed motives over S. The next theorem follows from (1.3) and (2.1).
(2.2) Theorem. For X in (Smooth $/ k, \operatorname{Proj} / S)$ and $r \in \mathbf{Z}$, there corresponds an object $h(X / S)(r):=$ $(X / S, r)[-2 r]$ in $\mathcal{D}(S)$. For two such objects we have

$$
\begin{aligned}
& \operatorname{Hom}_{\mathcal{D}(S)}(h(X / S)(r)[2 r], h(Y / S)(s)[2 s-n]) \\
& \quad=\mathrm{CH}_{\operatorname{dim} Y-s+r}\left(X \times_{S} Y, n\right)
\end{aligned}
$$

the right hand side being the higher Chow group of the fiber product $X \times{ }_{S} Y$.

There is a functor

$$
h:(\text { Smooth } / k, \operatorname{Proj} / S)^{o p p} \rightarrow \mathcal{D}(S)
$$

that sends X to $h(X / S)$, and a map $f: X \rightarrow Y$ to the class of its graph $\left[\Gamma_{f}\right] \in \mathrm{CH}_{\operatorname{dim} X}\left(Y \times_{S} X\right)$.

Acknowledgement. We would like to warmly thank the referee for useful comments.

References

[1] S. Bloch, Algebraic cycles and higher K-theory, Adv. in Math. 61 (1986), no. 3, 267-304.
[2] S. Bloch, The moving lemma for higher Chow groups, J. Algebraic Geom. 3 (1994), no. 3, 537-568.
[3] S. Bloch, Some notes on elementary properties of higher chow groups, including functoriality properties and cubical chow groups, on Bloch's home page, http://www.math.uchicago.edu/~bloch/ publications.html. (Preprint).
[4] M. Hanamura, Mixed motives and algebraic cycles. I, Math. Res. Lett. 2 (1995), no. 6, 811-821.
[5] M. Hanamura, Mixed motives and algebraic cycles. II, Invent. Math. 158 (2004), no. 1, 105-179.
[6] M. Hanamura, Mixed motives and algebraic cycles. III, Math. Res. Lett. 6 (1999), no. 1, 61-82.
[7] M. Hanamura, Cycle theory of relative correspondences. (Preprint).
[8] M. Hanamura, Quasi DG categories and mixed motivic sheaves. (Preprint).
[9] M. M. Kapranov, On the derived categories of coherent sheaves on some homogeneous spaces, Invent. Math. 92 (1988), no. 3, 479-508.

[^0]: 2010 Mathematics Subject Classification. Primary 14C25, $14 \mathrm{C} 15,14 \mathrm{C} 35$.

