Zeta functions of certain noncommutative algebras

By Abhishek Banerjee
Department of Mathematics, Ohio State University, 231 W 18th Ave, Columbus, Ohio, 43210, U.S.A.

(Communicated by Shigefumi Mori, M.J.A., April 12, 2011)

Abstract

For a fixed prime $l \in \mathbf{Z}$, we consider zeta functions for certain types of (not necessarily commutative) algebras over the completion \mathbf{Q}_{l} of \mathbf{Q} and show that they satisfy several properties analogous to those of the usual Hasse-Weil zeta function of an algebraic variety over a finite field.

Key words: Zeta functions; l-adic cohomology.

1. Introduction. The starting point of noncommutative geometry is the replacement of topological spaces by (not necessarily commutative) C^{*} algebras (see [1]). It follows that, given a smooth scheme X over $\operatorname{Spec}(\mathbf{Z})$, we can associate to X a manifold $X(\mathbf{C})$ over \mathbf{C} and hence the commutative C^{*}-algebra $C^{*}(X(\mathbf{C}))$ of complex valued continuous functions on $X(\mathbf{C})$. In this paper, we consider certain not necessarily commutative algebras over a completion \mathbf{Q}_{l} of \mathbf{Q} ($l \in \mathbf{Z}$ being a given prime) that enjoy several properties associated to schemes over finite fields. We refer to these objects as " $Q_{l^{*}}^{*}$ algebras".

The zeta function of an algebraic variety over a finite field has been extended naturally to several more general settings (see, for instance, Deitmar-Koyama-Kurokawa [2], Deitmar [3], Kurokawa [6,8] or Kurokawa-Wakayama [7]). For Q_{l}^{*}-algebras with certain additional data (see Definition 2.3), we introduce a zeta function that extends the usual Hasse-Weil zeta function on an algebraic variety over a finite field. Further, we develop appropriate functional equations for these zeta functions and also verify that they are rational functions over \mathbf{Q}_{l}. We also extend classical results such as the Lefschetz fixed point formula to this context.
2. Q_{l}^{*}-algebras. Throughout this paper, let $p \in \mathbf{Z}$ denote a fixed prime and let $l \neq p$ be a prime different from p. We note that the involution on a usual C^{*}-algebra may be seen as an action of the group $\operatorname{Gal}(\mathbf{C} / \mathbf{R})$. This suggests that a " Q_{l}^{*}-algebra" should carry an action of the Galois group $\operatorname{Gal}\left(\overline{\mathbf{F}}_{p} / \mathbf{F}_{p}\right)$, where $\overline{\mathbf{F}}_{p}$ denotes the algebraic closure of \mathbf{F}_{p}. Then, we define:

[^0]Definition 2.1. Let $l \in \mathbf{Z}$ be a fixed prime in \mathbf{Z}, different from p. A Q_{l}^{*}-algebra consists of a (not necessarily unital) graded \mathbf{Q}_{l}-algebra $H=\oplus_{i=0}^{\infty} H^{i}$ satisfying the following two properties:
(a) Each $H^{i}, i \geq 0$ is a finite dimensional $\mathbf{Q}_{l \text {-vector }}$ space.
(b) Each $H^{i}, i \geq 0$ carries a \mathbf{Q}_{l}-linear action of the group $\operatorname{Gal}\left(\overline{\mathbf{F}}_{p} / \mathbf{F}_{p}\right)$ which is compatible with the graded algebra structure on H, i.e., for any $\sigma \in \operatorname{Gal}\left(\overline{\mathbf{F}}_{p} / \mathbf{F}_{p}\right), \forall x \in H^{i}, y \in H^{j}, i, j \geq 0$, we have $\sigma(x) \cdot \sigma(y)=\sigma(x \cdot y)$.

The category of Q_{l}^{*}-algebras will be denoted by $A l g_{Q_{l}^{*}}$. Let $S m / \mathbf{F}_{p}$ denote the category of smooth projective schemes over \mathbf{F}_{p}.

Proposition 2.2. The category $A l g_{Q_{l}^{*}}$ of Q_{l}^{*-} algebras is a monoidal category. Further, there exists a monoidal functor

$$
Q_{l}^{*}: S m / \mathbf{F}_{p} \longrightarrow A l g_{Q_{l}^{*}}
$$

that associates to each object X of $\operatorname{Sm} / \mathbf{F}_{p}$ a graded commutative Q_{l}^{*}-algebra.

Proof. Let $H=\oplus_{i=0}^{\infty} H^{i}$ and $H^{\prime}=\oplus_{i=0}^{\infty} H^{\prime i}$ be two given Q_{l}^{*}-algebras. Then, $H \otimes_{\mathbf{Q}_{l}} H^{\prime}$ is clearly a graded $\mathbf{Q}_{l^{-}}$-algebra such that each

$$
\left(H \otimes_{\mathbf{Q}_{l}} H^{\prime}\right)^{i}:=\oplus_{j+j^{\prime}=i} H^{j} \otimes_{\mathbf{Q}_{l}} H^{\prime j^{\prime}}
$$

is a finite dimensional \mathbf{Q}_{l}-vector space. The group $\operatorname{Gal}\left(\overline{\mathbf{F}}_{p} / \mathbf{F}_{p}\right)$ also acts on each $\left(H \otimes_{\mathbf{Q}_{l}} H^{\prime}\right)^{i}$ via the diagonal action compatible with the product structure on $H \otimes_{\mathbf{Q}_{l}} H^{\prime}$. Hence, $\left(H \otimes_{\mathbf{Q}_{l}} H^{\prime}\right)$ is also a Q_{l}^{*-} algebra.

Further, given any smooth projective scheme X over $\operatorname{Spec}\left(\mathbf{F}_{p}\right)$, we let \bar{X} denote the fibre product $X \times{ }_{\operatorname{Spec}\left(\mathbf{F}_{p}\right)} \operatorname{Spec}\left(\overline{\mathbf{F}}_{p}\right)$. Then, we define

$$
Q_{l}^{*}(X)^{i}:=H^{i}\left(\bar{X}, \mathbf{Q}_{l}\right)
$$

Then, $\quad Q_{l}^{*}(X):=\oplus_{i=0}^{\infty} Q_{l}^{*}(X)^{i}$ becomes a graded commutative algebra under the cup product on l-adic cohomologies and carries a natural action of $\operatorname{Gal}\left(\overline{\mathbf{F}}_{p} / \mathbf{F}_{p}\right)$ induced by the natural action of $\operatorname{Gal}\left(\overline{\mathbf{F}}_{p} / \mathbf{F}_{p}\right)$ on \bar{X}. Moreover, for any smooth projective schemes X, Y over \mathbf{F}_{p}, we have

$$
\begin{aligned}
Q_{l}^{*}(X \times Y)^{i} & =H^{i}\left(\bar{X} \times \bar{Y}, \mathbf{Q}_{l}\right) \\
& \cong \oplus_{j+j^{\prime}=i} H^{j}\left(\bar{X}, \mathbf{Q}_{l}\right) \otimes_{\mathbf{Q}_{l}} H^{j^{\prime}}\left(\bar{Y}, \mathbf{Q}_{l}\right) \\
& =\oplus_{j+j^{\prime}=i} Q_{l}^{*}(X)^{j} \otimes_{\mathbf{Q}_{l}} Q_{l}^{*}(Y)^{j^{\prime}}
\end{aligned}
$$

by Künneth theorem for l-adic cohomologies. It follows that Q_{l}^{*} is a symmetric monoidal functor. \square

We will now exhibit several natural examples of \mathbf{Q}_{l}^{*}-algebras.

Examples: (1) Proposition 2.2 shows that to each smooth projective scheme X over \mathbf{F}_{p}, we can associate a natural graded commutative Q_{l}^{*}-algebra, which we have denoted by $Q_{l}^{*}(X)$.
(2) Let X be a smooth projective scheme over \mathbf{F}_{p} and define $H=\oplus_{i=0}^{\infty} H^{i}$ by setting $H^{i}:=H^{i}\left(\bar{X}, \mathbf{Q}_{l}\right)$ as in the proof of Proposition 2.2. Let $T: H=$ $\oplus_{i=0}^{\infty} H^{i} \longrightarrow H=\oplus_{i=0}^{\infty} H^{i}$ be a \mathbf{Q}_{l}-linear operator of degree 0 that commutes with the action of $\operatorname{Gal}\left(\overline{\mathbf{F}}_{p} / \mathbf{F}_{p}\right)$ (for instance, we could take T to be any linear combination of elements of $\operatorname{Gal}\left(\overline{\mathbf{F}}_{p} / \mathbf{F}_{p}\right)$, since $\operatorname{Gal}\left(\overline{\mathbf{F}}_{p} / \mathbf{F}_{p}\right) \cong \hat{\mathbf{Z}}$ is abelian $)$. Then, we can define a multiplicative structure on H by setting

$$
x \cdot^{T} y:=x \cup T(y)
$$

where $x \in H^{i}=H^{i}\left(\bar{X}, \mathbf{Q}_{l}\right), y \in H^{j}=H^{j}\left(\bar{X}, \mathbf{Q}_{l}\right)$ for all $i, j \in \mathbf{Z}$ and \cup denotes the usual cup product map on l-adic cohomologies. Then, H carries the structure of a graded algebra and $\sigma(x) \cdot{ }^{T} \sigma(y)=\sigma\left(x \cdot{ }^{T} y\right)$. We will denote this Q_{l}^{*}-algebra by $Q_{l}^{*}(X)_{T}$.
(3) More generally, suppose that A is any finite dimensional algebra over \mathbf{Q}_{l} with an action of $\operatorname{Gal}\left(\overline{\mathbf{F}}_{p} / \mathbf{F}_{p}\right)$. Then, we consider the universal algebra $\Omega(A)$ of A, defined as follows (see, for instance, [5]): let \tilde{A} denote the algebra obtained by adjoining a unit to A (even if A is already unital) and set

$$
\Omega^{i}(A):=\tilde{A} \otimes A^{\otimes i}
$$

The action of $\operatorname{Gal}\left(\overline{\mathbf{F}}_{p} / \mathbf{F}_{p}\right)$ on A can be extended to $\Omega^{i}(A)$ by setting $\sigma\left(\left(a_{0}+\lambda \cdot 1\right) \otimes a_{1} \otimes \ldots \otimes a_{i}\right)=$ $\left.\left(\sigma\left(a_{0}\right)+\lambda \cdot 1\right) \otimes \sigma\left(a_{1}\right) \otimes \ldots \otimes \sigma\left(a_{i}\right)\right)$ for all $a_{0}, \ldots a_{i} \in$ A. Then, it is clear that $\Omega(A)=\oplus_{i=0}^{\infty} \Omega^{i}(A)$ is a Q_{l}^{*} algebra in the sense of Definition 2.1.

Definition 2.3. Let $n \geq 0$ be a given integer. By a cycle of dimension n, we will mean a pair
$\left(H, \int\right)$ consisting of a Q_{l}^{*}-algebra $H=\oplus_{i=0}^{\infty} H^{i}$ such that $H^{i}=0$ for all $i>n$ and a linear functional $\int: H^{n} \longrightarrow \mathbf{Q}_{l}$.

A cycle $\left(H, \int\right)$ of dimension n will be said to be smooth if: (a) the composition

$$
H^{i} \otimes_{\mathbf{Q}_{l}} H^{n-i} \longrightarrow H^{n} \xrightarrow{\int} \mathbf{Q}_{l}
$$

is a perfect pairing of \mathbf{Q}_{l}-vector spaces for all $0 \leq$ $i \leq n$ and (b) the Kernel of \int is invariant under the action of $\operatorname{Gal}\left(\overline{\mathbf{F}}_{p} / \mathbf{F}_{p}\right)$, i.e., for any $\sigma \in \operatorname{Gal}\left(\overline{\mathbf{F}}_{p} / \mathbf{F}_{p}\right)$, we have $\sigma\left(\operatorname{Ker}\left(\int\right)\right) \subseteq \operatorname{Ker}\left(\int\right)$.

We conclude this section by giving natural examples of smooth cycles $\left(H, \int\right)$:
(1) For any smooth and projective scheme X over \mathbf{F}_{p} of dimension d and for any \mathbf{Q}_{l}-linear automorphism T on $\oplus_{i=0}^{2 d} H^{i}\left(\bar{X}, \mathbf{Q}_{l}\right)$ of degree 0 that commutes with the action of $\operatorname{Gal}\left(\overline{\mathbf{F}}_{p} / \mathbf{F}_{p}\right)$, Poincare duality

$$
\begin{aligned}
H^{i}\left(\bar{X}, \mathbf{Q}_{l}\right) \otimes_{\mathbf{Q}_{l}} H^{2 d-i}\left(\bar{X}, \mathbf{Q}_{l}\right) \xrightarrow{1 \otimes T} H^{2 d} & \left(\bar{X}, \mathbf{Q}_{l}\right) \\
& \cong \mathbf{Q}_{l}
\end{aligned}
$$

enables us to define a smooth cycle $\left(Q_{l}^{*}(X)_{T}, \int_{X}\right)$ of dimension 2d. For instance, we could choose T to be an element of $\operatorname{Gal}\left(\overline{\mathbf{F}}_{p} / \mathbf{F}_{p}\right)$ itself.
(2) Let K be a field extension of \mathbf{Q}_{l} and let f : $K \longrightarrow \mathbf{Q}_{l}$ denote a nonzero \mathbf{Q}_{l}-linear functional on K. Let V be an n-dimensional K-vector space with a K-linear action of $\operatorname{Gal}\left(\overline{\mathbf{F}}_{p} / \mathbf{F}_{p}\right)$ and let $E=$ $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be a basis for V. We choose an isomorphism $i_{E}: \Lambda^{n} V \stackrel{\cong}{\cong} K$ by taking $e_{1} \wedge \ldots \wedge e_{n}$ to $1 \in K$. Let $k \geq 0$ and choose some $v \in \Lambda^{k} V, v \neq 0$. Then v may be expressed as a finite sum $v=$ $\sum a_{i_{1}, \ldots, i_{k}} e_{i_{1}} \wedge \ldots \wedge e_{i_{k}}$ where each $a_{i_{1}, \ldots, i_{k}} \in K$ and $\left(i_{1}, \ldots, i_{k}\right)$ varies over all tuples $1 \leq i_{1}<i_{2}<\ldots<$ $i_{k} \leq n$. Let $c \in K$ be such that $f(c) \neq 0$ and choose a tuple $1 \leq i_{1}^{\prime}<i_{2}^{\prime}<\ldots<i_{k}^{\prime} \leq n$ such that $a_{i_{1}^{\prime} . . . i_{k}^{\prime}} \neq 0$. Then there exists $\left\{j_{1}, \ldots, j_{n-k}\right\}$ such that $\left\{i_{1}^{\prime}, \ldots, i_{k}^{\prime}\right\} \cup\left\{j_{1}, \ldots, j_{n-k}\right\}=\{1,2, \ldots, n\}$. It follows that the composition

$$
\left.\begin{array}{rl}
\Lambda^{k} V \otimes_{\mathbf{Q}_{l}} \Lambda^{n-k} V \longrightarrow \Lambda^{k} V \otimes_{K} \Lambda^{n-k} V \longrightarrow \\
\Lambda^{n} V \underset{i_{E}}{\cong}
\end{array}\right) \xrightarrow{f} \mathbf{Q}_{l}
$$

carries $\quad v \otimes c \cdot a_{i_{1}^{\prime} \ldots i_{k}^{\prime}}^{-1} e_{j_{1}} \wedge \ldots \wedge e_{j_{n-k}} \quad$ to $\quad \pm f(c) \neq 0$. Hence, for each $0 \leq k \leq n$, the composition above determines a perfect pairing of \mathbf{Q}_{l}-vector spaces. Further, if we assume that for each $\sigma \in \operatorname{Gal}\left(\overline{\mathbf{F}}_{p} / \mathbf{F}_{p}\right)$, the determinant $\operatorname{det}(\sigma) \in \mathbf{Q}_{l}$ (where σ is considered as a K-linear automorphism on V), it follows that
the data $\left(\oplus_{i=0}^{\infty} \Lambda^{i} V, f \circ i_{E}\right)$ determines a smooth cycle of dimension n.
3. Zeta functions of cycles. In this section, we will associate a zeta function to each n dimensional smooth cycle $\left(H, \int\right)$ and show that it satisfies several properties analogous to the (HasseWeil) zeta functions of varieties over \mathbf{F}_{p}.

Definition 3.1. Let $\left(H, \int\right)$ be an n-dimensional cycle and let F denote the Frobenius element of $\operatorname{Gal}\left(\overline{\mathbf{F}}_{p} / \mathbf{F}_{p}\right)$. For any $k \geq 0$, we set

$$
N_{k}\left(H, \int\right)=\sum_{i=0}^{n}(-1)^{i} \operatorname{Tr}\left(F^{k}: H^{i} \longrightarrow H^{i}\right)
$$

Let z denote an indeterminate. Then, the zeta function $\zeta_{\left(H, \int\right)}(z)$ is defined as the formal series:

$$
\zeta_{\left(H, \int\right)}(z)=\exp \left(\sum_{k=1}^{\infty} N_{k}\left(H, \int\right) \frac{z^{k}}{k}\right)
$$

Proposition 3.2. Let X be a smooth, projective scheme over \mathbf{F}_{p} of dimension d. Then, we have $\zeta_{X}(z)=\zeta_{\left(Q_{i}^{*}(X), \int_{X}\right)}$, where $\zeta_{X}(z)$ denotes the Hasse-Weil zeta function associated to X.

Proof. For any $i \geq 0$, by definition, the $Q_{l^{-}}^{*}$ algebra $Q_{l}^{*}(X)$ is given by $Q_{l}^{*}(X)^{i}:=H^{i}\left(\bar{X}, \mathbf{Q}_{l}\right)$ and $\int_{X}: H^{2 d}\left(\bar{X}, \mathbf{Q}_{l}\right) \longrightarrow \mathbf{Q}_{l}$ is defined by the isomorphism $H^{2 d}\left(\bar{X}, \mathbf{Q}_{l}\right) \cong \mathbf{Q}_{l}$. Then, the result follows directly from the well known Lefschetz fixed point formula.

Let $\left(H, \int\right)$ and $\left(H^{\prime}, \int^{\prime}\right)$ be cycles of dimensions n and n^{\prime} respectively. Then, we can define a "product cycle" $\left(H \otimes H^{\prime}, \int \otimes \int^{\prime}\right)$ of dimension $n+$ n^{\prime} by setting

$$
\left(\int \otimes J^{\prime}\right)\left(\omega \otimes \omega^{\prime}\right)=\left(\int \omega\right) \cdot\left(\int^{\prime} \omega^{\prime}\right)
$$

for all $\omega \in H^{n}, \omega^{\prime} \in H^{\prime n^{\prime}}$.
Additionally, if $\left(H, \int\right)$ is smooth, we have $\sigma\left(\operatorname{Ker}\left(\int\right)\right) \subseteq \operatorname{Ker}\left(\int\right)$ for each $\sigma \in \operatorname{Gal}\left(\overline{\mathbf{F}}_{p} / \mathbf{F}_{p}\right)$ and \int is a \mathbf{Q}_{l}-linear functional on H^{n}. Hence, for each $\sigma \in \operatorname{Gal}\left(\overline{\mathbf{F}}_{p} / \mathbf{F}_{p}\right)$, there exists a scalar $\lambda_{\sigma}\left(H, \int\right) \in \mathbf{Q}_{l}$ such that we have

$$
\int \sigma(\omega)=\lambda_{\sigma}\left(H, \int\right) \cdot \int \omega \quad \forall \omega \in H^{n}
$$

Proposition 3.3. (a) Let $\left(H, \int\right)$ and $\left(H^{\prime}, \int^{\prime}\right)$ be cycles of dimensions n and n^{\prime} respectively. Then, for any $k \geq 0$, we have $N_{k}\left(\left(H \otimes H^{\prime}, \int \otimes \int^{\prime}\right)\right)=$ $N_{k}\left(\left(H, \int\right)\right) \cdot N_{k}\left(\left(H^{\prime}, \int^{\prime}\right)\right)$.
(b) If $\left(H, \int\right)$ and $\left(H^{\prime}, \int^{\prime}\right)$ are smooth cycles of dimensions n and n^{\prime} respectively, so is the product cycle $\left(H \otimes H^{\prime}, \int \otimes \int^{\prime}\right)$.

Proof. (a) We choose any $k \geq 0$. Then, by definition

$$
\begin{aligned}
N_{k} & \left(\left(H \otimes H^{\prime}, \int^{\prime \prime}\right)\right. \\
& =\sum_{i=0}^{n+n^{\prime}}(-1)^{i} \operatorname{Tr}\left(F^{k}:\left(H \otimes H^{\prime}\right)^{i} \longrightarrow\left(H \otimes H^{\prime}\right)^{i}\right) \\
& =\sum_{i=0}^{n+n^{\prime}}(-1)^{i} \sum_{j+j^{\prime}=i} \operatorname{Tr}\left(F^{k} \mid H^{j}\right) \cdot \operatorname{Tr}\left(F^{k} \mid H^{\prime j^{\prime}}\right) \\
& =\sum_{i=0}^{n+n^{\prime}} \sum_{j+j^{\prime}=i}(-1)^{j} \operatorname{Tr}\left(F^{k} \mid H^{j}\right) \cdot(-1)^{j^{\prime}} \operatorname{Tr}\left(F^{k} \mid H^{j^{\prime}}\right) \\
& =\left(\sum_{l=0}^{n}(-1)^{l} \operatorname{Tr}\left(F^{k} \mid H^{l}\right)\right) \cdot\left(\sum_{l^{\prime}=0}^{n^{\prime}}(-1)^{l^{\prime}} \operatorname{Tr}\left(F^{k} \mid H^{\prime^{\prime}}\right)\right) \\
& =N_{k}\left(H, \int\right) \cdot N_{k}\left(H^{\prime}, \int^{\prime}\right)
\end{aligned}
$$

(b) For any $0 \leq i \leq n+n^{\prime}$, we know that $(H \otimes$ $\left.H^{\prime}\right)^{i}:=\oplus_{j+j^{\prime}=i} H^{j} \otimes H^{\prime j^{\prime}}$. Then, it is clear that the linear functional $\int \otimes \int^{\prime}:\left(H \otimes H^{\prime}\right)^{n+n^{\prime}} \longrightarrow \mathbf{Q}_{l}$ defined by

$$
\left(\int \otimes \int^{\prime}\right)\left(\omega \otimes \omega^{\prime}\right)=\left(\int \omega\right) \cdot\left(\int^{\prime} \omega^{\prime}\right)
$$

for all $\omega \in H^{n}, \omega^{\prime} \in H^{\prime n^{\prime}}$ composed with the product on $H \otimes H^{\prime}$ defines a perfect pairing of $\left(H \otimes H^{\prime}\right)^{i}$ with $\left(H \otimes H^{\prime}\right)^{n+n^{\prime}-i}$ for each $0 \leq i \leq n+n^{\prime}$. Choose any $\sigma \in \operatorname{Gal}\left(\overline{\mathbf{F}}_{p} / \mathbf{F}_{p}\right)$. Since $\left(H, \int\right)$ and $\left(H^{\prime}, \int^{\prime}\right)$ are smooth, we have $\sigma\left(\operatorname{Ker}\left(\int\right)\right) \subseteq \operatorname{Ker}\left(\int\right)$ and $\sigma\left(\operatorname{Ker}\left(\int^{\prime}\right)\right) \subseteq$ $\operatorname{Ker}\left(\int^{\prime}\right)$. Suppose that we have a finite sum $\sum_{i=1}^{N} \omega_{i} \otimes \omega_{i}^{\prime}, \omega_{i} \in H^{n}, \omega^{\prime} \in H^{\prime n^{\prime}}$ such that

$$
\left(\int \otimes \int^{\prime}\right)\left(\sum_{i=1}^{N} \omega_{i} \otimes \omega_{i}^{\prime}\right)=\sum_{i=1}^{N}\left(\int \omega_{i}\right) \cdot\left(\int^{\prime} \omega_{i}^{\prime}\right)=0
$$

Then, it follows that

$$
\begin{aligned}
& \left(\int \otimes \int^{\prime}\right)\left(\sum_{i=1}^{N} \sigma\left(\omega_{i}\right) \otimes \sigma\left(\omega_{i}^{\prime}\right)\right) \\
& \quad=\sum_{i=1}^{N}\left(\int \sigma\left(\omega_{i}\right)\right) \cdot\left(\int^{\prime} \sigma\left(\omega_{i}^{\prime}\right)\right) \\
& \quad=\sum_{i=1}^{N}\left(\lambda_{\sigma}\left(H, \int\right) \lambda_{\sigma}\left(H^{\prime}, \int^{\prime}\right)\right)\left(\int \omega_{i}\right) \cdot\left(\int^{\prime} \omega_{i}^{\prime}\right) \\
& \quad=\left(\lambda_{\sigma}\left(H, \int\right) \lambda_{\sigma}\left(H^{\prime}, \int^{\prime}\right)\right) \sum_{i=1}^{N}\left(\int \omega_{i}\right) \cdot\left(\int^{\prime} \omega_{i}^{\prime}\right)=0
\end{aligned}
$$

from which it follows that $\sigma\left(\operatorname{Ker}\left(\int \otimes \int^{\prime}\right)\right) \subseteq$ $\operatorname{Ker}\left(\int \otimes \int^{\prime}\right)$. Hence, $\left(H \otimes H^{\prime}, \int \otimes \int^{\prime}\right)$ is a smooth cycle of dimension $n+n^{\prime}$.

Our next objective is to prove a version of Lefschetz fixed point theorem for smooth cycles $\left(H, \int\right)$ of some given dimension n. We note that if $\varphi: X \longrightarrow X$ is a morphism of smooth schemes over \mathbf{F}_{p}, φ induces a morphism $\varphi^{*}: H^{*}\left(\bar{X}, \mathbf{Q}_{l}\right) \longrightarrow$ $H^{*}\left(\bar{X}, \mathbf{Q}_{l}\right)$ of degree 0 . If X has dimension d, the morphism φ^{*} can be described completely in terms of the class of Γ_{φ} in $H^{2 d}(\bar{X} \times \bar{X}), \Gamma_{\varphi} \subseteq \bar{X} \times \bar{X}$ being the graph of φ. We will now associate to each
morphism $\varphi: H^{*} \longrightarrow H^{*}$ of degree 0 on a smooth cycle $\left(H, \int\right)$ of dimension n a $\operatorname{class} \operatorname{cl}(\varphi) \in$ $(H \otimes H)^{n}$.

Proposition 3.4. Let $\left(H, \int\right)$ be a smooth cycle of dimension n. Let $\varphi: H^{*} \longrightarrow H^{*}$ be a linear operator of degree 0 . Then, φ induces a natural class $c l(\varphi) \in(H \otimes H)^{n}$.

Proof. Suppose that V is a finite dimensional \mathbf{Q}_{l}-vector space and let $\psi: V \longrightarrow V$ be a linear operator on V. Let $\mathfrak{B}=\left\{v_{1}, \ldots, v_{k}\right\}$ be a given basis of V and let $\mathfrak{B}^{*}=\left\{v_{1}^{*}, \ldots, v_{k}^{*}\right\}$ be the dual basis of \mathfrak{B}. Let V^{*} denote the linear dual of V. Then, it is easy to check that the sum $\sum_{i=1}^{k} \psi\left(v_{i}\right) \otimes v_{i}^{*} \in$ $V \otimes V^{*}$ is independent of the choice of the basis \mathcal{B}. We set $c l_{V}(\psi)=\sum_{i=1}^{k} \psi\left(v_{i}\right) \otimes v_{i}^{*}$.

Given the smooth cycle $\left(H, \int\right)$ and a linear operator $\varphi: H^{*} \longrightarrow H^{*}$ of degree 0 , we let $\varphi_{i}: H^{i} \longrightarrow$ $H^{i}, i \geq 0$ denote the restriction of φ to each H^{i}. For each i, we define $c l_{i}(\varphi)=c l_{H^{i}}\left(\varphi_{i}\right) \in H^{i} \otimes H^{i *}$, where $H^{i *}$ denotes the linear dual of H^{i}. Since $\left(H, \int\right)$ is a smooth cycle of dimension n, we may take $H^{i *}=H^{n-i}$. Then, we have $c l_{i}(\varphi) \in H^{i} \otimes H^{n-i}$. Finally, we set

$$
c l(\varphi)=\sum_{i=0}^{n} c l_{i}(\varphi) \in \sum_{i=0}^{n} H^{i} \otimes H^{n-i}=(H \otimes H)^{n}
$$

In the notation of the proof of Proposition 3.4, for any linear operator $\psi: V \longrightarrow V$ on a finite dimensional vector space V of dimension k, we can also consider the transpose $c l_{V}^{t}(\psi)$ of $c l_{V}(\psi)$, defined as $c l_{V}^{t}(\psi)=\sum_{i=1}^{k} v_{i}^{*} \otimes \psi\left(v_{i}\right) \in V^{*} \otimes V$. Then, given a linear operator $\varphi: H^{*} \longrightarrow H^{*}$ of degree 0 on a smooth cycle $\left(H, \int\right)$, we can define

$$
c l^{t}(\varphi)=\sum_{i=0}^{n}(-1)^{i} c l_{H^{i}}^{t}\left(\varphi_{i}\right) \in H^{n-i} \otimes H^{i}=(H \otimes H)^{n}
$$

(since each $H^{n-i}=H^{i *}$) and refer to $\operatorname{cl}^{t}(\varphi)$ as the graded transpose of $\operatorname{cl}(\varphi)$. We can now prove a version of Lefschetz fixed point theorem.

Proposition 3.5. Let $\left(H, \int\right)$ be a smooth n-dimensional cycle. Let F denote the Frobenius operator in the group $\operatorname{Gal}\left(\overline{\mathbf{F}}_{p} / \mathbf{F}_{p}\right)$ and let I denote the identity map. Then, for any $k \geq 0$, we have:

$$
\begin{aligned}
\left(\int \otimes \int\right)\left(c l^{t}\left(F^{k}\right) \cdot c l(I)\right) & =N_{k}\left(H, \int\right) \\
& =\sum_{r=0}^{n}(-1)^{r} \operatorname{Tr}\left(F^{k} \mid H^{r}\right)
\end{aligned}
$$

Proof. For each $0 \leq r \leq n$, let $d_{r}=\operatorname{dim}_{\mathbf{Q}_{l}}\left(H^{r}\right)$. We let $\mathfrak{E}_{r}=\left\{e_{i}^{r}\right\}_{1 \leq i \leq d_{r}}$ be a basis of H^{r} and let $\mathfrak{F}_{r}=$ $\left\{f_{i}^{n-r}\right\}_{1 \leq i \leq d_{r}}$ denote a dual basis of \mathfrak{E}_{r}. Hence \mathfrak{F}_{r} may be taken as a basis for H^{n-r}. Then, by definition:

$$
c l^{t}\left(F^{k}\right)=\sum_{r=0}^{n}(-1)^{r} \sum_{i=0}^{d_{r}} f_{i}^{n-r} \otimes F^{k}\left(e_{i}^{r}\right)
$$

and

$$
c l(I)=\sum_{r=0}^{n} \sum_{i=0}^{d_{r}} e_{i}^{r} \otimes f_{i}^{n-r}
$$

Then, the product

$$
\begin{aligned}
& \left(\int \otimes \int\right)\left(c l^{t}\left(F^{k}\right) \cdot c l(I)\right)=\left(\int \otimes \int\right) \\
& \left(\left(\sum_{r=0}^{n}(-1)^{r} \sum_{i=0}^{d_{r}} f_{i}^{n-r} \otimes F^{k}\left(e_{i}^{r}\right)\right) \cdot\left(\sum_{s=0}^{n} \sum_{i=0}^{d_{s}} e_{i}^{s} \otimes f_{i}^{n-s}\right)\right) \\
& \quad=\sum_{r=0}^{n}(-1)^{r} \sum_{i=0}^{d_{r}} \int\left(f_{i}^{n-r} \cdot e_{i}^{r}\right) \cdot \int\left(F^{k}\left(e_{i}^{r}\right) \cdot f_{i}^{n-r}\right) \\
& \quad=\sum_{r=0}^{n}(-1)^{r} \operatorname{Tr}\left(F^{k} \mid H^{r}\right)=N_{k}\left(H, \int\right) .
\end{aligned}
$$

Proposition 3.6. Let $\left(H, \int\right)$ be a cycle of dimension n. Then, the zeta function $\zeta_{\left(H, \int\right)}(z)$ of $\left(H, \int\right)$ is a rational function of z with \mathbf{Q}_{l} coefficients.

Proof. By definition, we know that

$$
\begin{aligned}
\zeta_{\left(H, \int\right)}(z) & =\exp \left(\sum_{k=1}^{\infty} \sum_{r=0}^{n}(-1)^{r} \operatorname{Tr}\left(F^{k} \mid H^{r}\right) \frac{z^{k^{k}}}{k}\right) \\
& =\prod_{r=0}^{n} \exp \left(\sum_{k=1}^{\infty} \operatorname{Tr}\left(F^{k} \mid H^{r}\right) \frac{z^{k}}{k}\right)^{(-1)^{r}}
\end{aligned}
$$

Since the Frobenius F is a linear operator on each finite dimensional vector space H^{r}, we have

$$
\exp \left(\sum_{k=1}^{\infty} \operatorname{Tr}\left(F^{k} \mid H^{r}\right) \frac{z^{k}}{k}\right)=\operatorname{det}\left(1-F z \mid H^{r}\right)^{-1}
$$

For each r, the determinant $\operatorname{det}\left(1-F t \mid H^{r}\right)$ is a polynomial in $\mathbf{Q}_{l}[t]$. Hence, the result follows.

Given a smooth cycle $\left(H, \int\right)$ of dimension n, for any $0 \leq r \leq n$, we will always let $d_{r}=\operatorname{dim}_{\mathbf{Q}_{l}}\left(H^{r}\right)$. Then, we denote by B the "Euler characteristic" $B:=\sum_{r=0}^{n}(-1)^{r} d_{r}$ of the smooth cycle $\left(H, \int\right)$.

Further, we will always let $P_{r}(z):=\operatorname{det}(1-$ $\left.F z \mid H^{r}\right)$. Then, if we set:

$$
Q_{r}(z):=\frac{P_{r}(z)}{(-1)^{d_{r}} z^{d_{r}}}=\operatorname{det}\left(\left.F-\frac{1}{z} \right\rvert\, H^{r}\right)
$$

it makes sense to write $Q_{r}(\infty):=\operatorname{det}\left(F \mid H^{r}\right)$. We also set

$$
\tilde{\zeta}_{\left(H, \int\right)}(z)=\left(\prod_{r=0}^{n} Q_{r}(z)^{(-1)^{r}}\right)^{-1}=(-1)^{B} z^{B} \zeta_{\left(H, \int\right)}(z)
$$

Accordingly, it makes sense to write:

$$
\begin{aligned}
\tilde{\zeta}_{\left(H, \int\right)}(\infty) & :=\left(\prod_{r=0}^{n} Q_{r}(\infty)^{(-1)^{r}}\right)^{-1} \\
& =\left(\prod_{r=0}^{n} \operatorname{det}\left(F \mid H^{r}\right)^{(-1)^{r}}\right)^{-1} .
\end{aligned}
$$

Proposition 3.7. Let $\left(H, \int\right)$ be a smooth cycle of dimension n. Let $F \in \operatorname{Gal}\left(\overline{\mathbf{F}}_{p} / \mathbf{F}_{p}\right)$ be the Frobenius and let $\lambda=\lambda_{F}\left(H, \int\right)$. Then:
(a) If n is even, we have the functional equation:

$$
\left(\zeta_{\left(H, \int\right)}\left(\frac{1}{\lambda z}\right)\right)^{2}=\lambda^{B} z^{2 B} \zeta_{\left(H, \int\right)}(z)^{2}
$$

(b) If n is odd, we have the functional equation:

$$
\tilde{\zeta}_{\left(H, \int\right)}(z) \tilde{\zeta}_{\left(H, \int\right)}\left(\frac{1}{\lambda z}\right)=(-1)^{B} z^{-B} \tilde{\zeta}_{\left(H, \int\right)}(\infty)
$$

Proof. For any $0 \leq r \leq n$, we have perfect pairings of \mathbf{Q}_{l}-vector spaces and a commutative diagram:

Since $\quad \lambda \int(x \cdot y)=\int(F(x \cdot y))=\int(F(x) \cdot F(y))$ for any $x \in H^{r}, y \in H^{n-r}$, it follows from [4, Appendix C, Lemma 4.3] that

$$
\begin{aligned}
P_{n-r}(z) & =\operatorname{det}\left(1-F z \mid H^{n-r}\right) \\
& =\frac{(-1)^{d_{r}} \lambda^{d_{r} z^{d_{r}}}}{\operatorname{det} F\left(F H^{r}\right)} \operatorname{det}\left(\left.1-\frac{F}{\lambda_{z}} \right\rvert\, H^{r}\right) \\
& =\frac{(-1)^{d_{r}}{ }^{d_{r} r^{d_{r}}}}{\operatorname{det}\left(F \mid H^{r}\right)} P_{r}\left(\frac{1}{\lambda_{z}}\right)
\end{aligned}
$$

and

$$
\operatorname{det}\left(F \mid H^{n-r}\right)=\frac{\lambda^{d_{r}}}{\operatorname{det}\left(F \mid H^{r}\right)}
$$

(a) When n is even, we have:

$$
\left(\zeta_{\left(H, \int\right)}\left(\frac{1}{\lambda z}\right)\right)^{2}=\left(\prod_{r=0}^{n} P_{r}\left(\frac{1}{\lambda z}\right)^{(-1)^{r}}\right)^{-2}
$$

$$
\begin{aligned}
& =\left(\prod_{r=0}^{n} P_{n-r}(z)^{(-1)^{n-r}}\right)^{-2} \cdot\left(\prod_{r=0}^{n}\left(\frac{\operatorname{det}\left(F \mid H^{r}\right)^{2}}{\lambda^{2 d r} z^{2 d r}}\right)^{(-1)^{r}}\right)^{-1} \\
& =\left(\zeta_{\left(H, \int\right)}(z)\right)^{2} \cdot\left(\lambda^{-B} z^{-2 B}\right)^{-1}=\lambda^{B} z^{2 B} \zeta_{\left(H, \int\right)}(z)^{2}
\end{aligned}
$$

(b) Since $d_{r}=d_{n-r}$, it is clear that, for odd n :

$$
Q_{n-r}(z)=\frac{(-1)^{d_{r}} z^{-d_{r}}}{\operatorname{det}\left(F \mid H^{r}\right)} Q_{r}\left(\frac{1}{\lambda z}\right)
$$

Hence:

$$
\begin{aligned}
& \tilde{\zeta}_{\left(H, \int\right)}\left(\frac{1}{\lambda z}\right)=\left(\prod_{r=0}^{n} Q_{r}\left(\frac{1}{\lambda z}\right)^{(-1)^{r}}\right)^{-1} \\
& \quad=\left(\prod_{r=0}^{n} Q_{n-r}(z)^{(-1)^{n-r}}\right) \cdot\left(\prod_{r=0}^{n}\left(\frac{\operatorname{det}\left(F \mid H^{r}\right)}{(-1)^{d_{r} z^{-d_{r}}}}\right)^{(-1)^{r}}\right)^{-1} \\
& \quad=(-1)^{B} z^{-B}\left(\tilde{\zeta}_{\left(H, \int\right)}(z)\right)^{-1} \cdot \tilde{\zeta}_{\left(H, \int\right)}(\infty)
\end{aligned}
$$

References

[1] A. Connes, Noncommutative geometry, Academic Press, San Diego, CA, 1994.
[2] A. Deitmar, S. Koyama and N. Kurokawa, Absolute zeta functions, Proc. Japan Acad. Ser. A Math. Sci. 84 (2008), no. 8, 138-142.
[3] A. Deitmar, Remarks on zeta functions and K theory over \mathbf{F}_{1}, Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), no. 8, 141-146.
[4] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, Springer-Verlag, New York, Heidelberg, Berlin, 1977.
[5] M. Karoubi, Connexions, courbures et classes caractéristiques en K-théorie algébrique, in Current trends in algebraic topology, Part 1 (London, Ont., 1981), 19-27, CMS Conf. Proc., 2 Amer. Math. Soc., Providence, RI.
[6] N. Kurokawa, Zeta functions over \mathbf{F}_{1}, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 10, 180184 (2006).
[7] N. Kurokawa and M. Wakayama, Zeta extensions, Proc. Japan Acad. Ser. A Math. Sci. 78 (2002), no. 7, 126-130.
[8] N. Kurokawa, Zeta functions of categories, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), no. 10, 221-222.

[^0]: 2000 Mathematics Subject Classification. Primary 11M38.

