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Abstract: For a fixed prime l 2 Z, we consider zeta functions for certain types of (not

necessarily commutative) algebras over the completion Ql of Q and show that they satisfy

several properties analogous to those of the usual Hasse-Weil zeta function of an algebraic variety

over a finite field.
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1. Introduction. The starting point of non-

commutative geometry is the replacement of topo-

logical spaces by (not necessarily commutative) C�-
algebras (see [1]). It follows that, given a smooth

scheme X over SpecðZÞ, we can associate to X a

manifold XðCÞ over C and hence the commutative

C�-algebra C�ðXðCÞÞ of complex valued continuous

functions on XðCÞ. In this paper, we consider

certain not necessarily commutative algebras over

a completion Ql of Q (l 2 Z being a given prime)

that enjoy several properties associated to schemes

over finite fields. We refer to these objects as ‘‘Q�l -
algebras’’.

The zeta function of an algebraic variety over

a finite field has been extended naturally to several

more general settings (see, for instance, Deitmar-

Koyama-Kurokawa [2], Deitmar [3], Kurokawa [6,8]

or Kurokawa-Wakayama [7]). For Q�l -algebras

with certain additional data (see Definition 2.3),

we introduce a zeta function that extends the usual

Hasse-Weil zeta function on an algebraic variety

over a finite field. Further, we develop appropriate

functional equations for these zeta functions and

also verify that they are rational functions over Ql.

We also extend classical results such as the

Lefschetz fixed point formula to this context.

2. Q�l -algebras. Throughout this paper, let

p 2 Z denote a fixed prime and let l 6¼ p be a prime

different from p. We note that the involution on a

usual C�-algebra may be seen as an action of the

group GalðC=RÞ. This suggests that a ‘‘Q�l -algebra’’

should carry an action of the Galois group

GalðFp=FpÞ, where Fp denotes the algebraic closure

of Fp. Then, we define:

Definition 2.1. Let l 2 Z be a fixed prime in

Z, different from p. A Q�l -algebra consists of a (not

necessarily unital) graded Ql-algebra H ¼ �1i¼0H
i

satisfying the following two properties:

(a) Each Hi, i � 0 is a finite dimensional Ql-vector

space.

(b) Each Hi, i � 0 carries a Ql-linear action of

the group GalðFp=FpÞ which is compatible with

the graded algebra structure on H, i.e., for any

� 2 GalðFp=FpÞ, 8x 2 Hi, y 2 Hj, i; j � 0, we have

�ðxÞ � �ðyÞ ¼ �ðx � yÞ.
The category of Q�l -algebras will be denoted by

AlgQ�
l
. Let Sm=Fp denote the category of smooth

projective schemes over Fp.

Proposition 2.2. The category AlgQ�
l

of Q�l -
algebras is a monoidal category. Further, there

exists a monoidal functor

Q�l : Sm=Fp �! AlgQ�
l

that associates to each object X of Sm=Fp a graded

commutative Q�l -algebra.

Proof. Let H ¼ �1i¼0H
i and H 0 ¼ �1i¼0H

0i be

two given Q�l -algebras. Then, H �Ql
H 0 is clearly a

graded Ql-algebra such that each

ðH �Ql
H 0Þi :¼ �jþj0¼iHj �Ql

H 0j
0

is a finite dimensional Ql-vector space. The group

GalðFp=FpÞ also acts on each ðH �Ql
H 0Þi via the

diagonal action compatible with the product struc-

ture on H �Ql
H 0. Hence, ðH �Ql

H 0Þ is also a Q�l -
algebra.

Further, given any smooth projective scheme

X over SpecðFpÞ, we let X denote the fibre product

X �SpecðFpÞ SpecðFpÞ. Then, we define

Q�l ðXÞ
i :¼ HiðX;QlÞ
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Then, Q�l ðXÞ :¼ �1i¼0Q
�
l ðXÞ

i becomes a graded

commutative algebra under the cup product on

l-adic cohomologies and carries a natural action

of GalðFp=FpÞ induced by the natural action of

GalðFp=FpÞ on X. Moreover, for any smooth

projective schemes X, Y over Fp, we have

Q�l ðX � Y Þ
i ¼ HiðX � Y ;QlÞ
¼	 �jþj0¼iHjðX;QlÞ �Ql

Hj0 ðY ;QlÞ
¼ �jþj0¼iQ�l ðXÞ

j �Ql
Q�l ðY Þ

j0

by Künneth theorem for l-adic cohomologies. It

follows that Q�l is a symmetric monoidal functor.�

We will now exhibit several natural examples

of Q�l -algebras.

Examples: (1) Proposition 2.2 shows that to

each smooth projective scheme X over Fp, we can

associate a natural graded commutative Q�l -alge-

bra, which we have denoted by Q�l ðXÞ.
(2) Let X be a smooth projective scheme over Fp

and define H ¼ �1i¼0H
i by setting Hi :¼ HiðX;QlÞ

as in the proof of Proposition 2.2. Let T : H ¼
�1i¼0H

i �! H ¼ �1i¼0H
i be a Ql-linear operator

of degree 0 that commutes with the action of

GalðFp=FpÞ (for instance, we could take T to be any

linear combination of elements of GalðFp=FpÞ, since

GalðFp=FpÞ ¼	 ẐZ is abelian). Then, we can define a

multiplicative structure on H by setting

x �T y :¼ x [ T ðyÞ

where x 2 Hi ¼ HiðX;QlÞ, y 2 Hj ¼ HjðX;QlÞ for

all i, j 2 Z and [ denotes the usual cup product map

on l-adic cohomologies. Then, H carries the struc-

ture of a graded algebra and �ðxÞ �T �ðyÞ ¼ �ðx �T yÞ.
We will denote this Q�l -algebra by Q�l ðXÞT .

(3) More generally, suppose that A is any finite

dimensional algebra over Ql with an action of

GalðFp=FpÞ. Then, we consider the universal

algebra �ðAÞ of A, defined as follows (see, for

instance, [5]): let ~AA denote the algebra obtained by

adjoining a unit to A (even if A is already unital)

and set

�iðAÞ :¼ ~AA� A�i:

The action of GalðFp=FpÞ on A can be extended to

�iðAÞ by setting �ðða0 þ � � 1Þ � a1 � . . .� aiÞ ¼
ð�ða0Þ þ � � 1Þ � �ða1Þ � . . .� �ðaiÞÞ for all a0; . . . ai 2
A. Then, it is clear that �ðAÞ ¼ �1i¼0�iðAÞ is a Q�l -
algebra in the sense of Definition 2.1.

Definition 2.3. Let n � 0 be a given inte-

ger. By a cycle of dimension n, we will mean a pair

ðH;
R
Þ consisting of a Q�l -algebra H ¼ �1i¼0H

i such

that Hi ¼ 0 for all i > n and a linear functionalR
: Hn �! Ql.

A cycle ðH;
R
Þ of dimension n will be said to be

smooth if: (a) the composition

Hi �Ql
Hn�i �! Hn �!

R
Ql

is a perfect pairing of Ql-vector spaces for all 0 

i 
 n and (b) the Kernel of

R
is invariant under the

action of GalðFp=FpÞ, i.e., for any � 2 GalðFp=FpÞ,
we have �ðKerð

R
ÞÞ � Kerð

R
Þ.

We conclude this section by giving natural

examples of smooth cycles ðH;
R
Þ:

(1) For any smooth and projective scheme X over

Fp of dimension d and for any Ql-linear auto-

morphism T on �2d
i¼0H

iðX;QlÞ of degree 0 that

commutes with the action of GalðFp=FpÞ, Poincare

duality

HiðX;QlÞ �Ql
H2d�iðX;QlÞ �!

1�T
H2dðX;QlÞ

�!¼
	

Ql

enables us to define a smooth cycle ðQ�l ðXÞT ;
R
XÞ of

dimension 2d. For instance, we could choose T to be

an element of GalðFp=FpÞ itself.

(2) Let K be a field extension of Ql and let f :

K �! Ql denote a nonzero Ql-linear functional on

K. Let V be an n-dimensional K-vector space with

a K-linear action of GalðFp=FpÞ and let E ¼
fe1; e2; . . . ; eng be a basis for V . We choose an

isomorphism iE : �nV �!¼
	

K by taking e1 ^ . . . : ^ en
to 1 2 K. Let k � 0 and choose some v 2 �kV , v 6¼ 0.

Then v may be expressed as a finite sum v ¼P
ai1;...;ikei1 ^ . . . ^ eik where each ai1;...;ik 2 K and

ði1; . . . ; ikÞ varies over all tuples 1 
 i1 < i2 < . . . <

ik 
 n. Let c 2 K be such that fðcÞ 6¼ 0 and choose a

tuple 1 
 i01 < i02 < . . . < i0k 
 n such that ai0
1
...i0

k
6¼ 0.

Then there exists fj1; . . . ; jn�kg such that

fi01; . . . ; i0kg [ fj1; . . . ; jn�kg ¼ f1; 2; . . . ; ng. It fol-

lows that the composition

�kV �Ql
�n�kV �! �kV �K �n�kV �!

�nV �!
iE

¼	
K �!f Ql

carries v� c � a�1
i0
1
...i0

k
ej1
^ . . . ^ ejn�k to �fðcÞ 6¼ 0.

Hence, for each 0 
 k 
 n, the composition above

determines a perfect pairing of Ql-vector spaces.

Further, if we assume that for each � 2 GalðFp=FpÞ,
the determinant detð�Þ 2 Ql (where � is considered

as a K-linear automorphism on V ), it follows that
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the data ð�1i¼0�iV ; f  iEÞ determines a smooth

cycle of dimension n.

3. Zeta functions of cycles. In this sec-

tion, we will associate a zeta function to each n-

dimensional smooth cycle ðH;
R
Þ and show that it

satisfies several properties analogous to the (Hasse-

Weil) zeta functions of varieties over Fp.

Definition 3.1. Let ðH;
R
Þ be an n-dimen-

sional cycle and let F denote the Frobenius element

of GalðFp=FpÞ. For any k � 0, we set

NkðH;
R
Þ ¼

Xn
i¼0

ð�1ÞiTrðFk : Hi �! HiÞ

Let z denote an indeterminate. Then, the zeta

function �ðH;
R
ÞðzÞ is defined as the formal series:

�ðH;
R
ÞðzÞ ¼ exp

X1
k¼1

NkðH;
R
Þ
zk

k

 !
:

Proposition 3.2. Let X be a smooth, pro-

jective scheme over Fp of dimension d. Then, we

have �XðzÞ ¼ �ðQ�
l
ðXÞ;
R
X
Þ, where �XðzÞ denotes the

Hasse-Weil zeta function associated to X.

Proof. For any i � 0, by definition, the Q�l -
algebra Q�l ðXÞ is given by Q�l ðXÞ

i :¼ HiðX;QlÞ andR
X : H2dðX;QlÞ �! Ql is defined by the isomor-

phism H2dðX;QlÞ ¼	 Ql. Then, the result follows

directly from the well known Lefschetz fixed point

formula. �

Let ðH;
R
Þ and ðH 0;

R 0Þ be cycles of dimensions

n and n0 respectively. Then, we can define a

‘‘product cycle’’ ðH �H 0;
R
�
R 0Þ of dimension nþ

n0 by settingZ
�
Z 0� �
ð!� !0Þ ¼

Z
!

� �
�
Z 0

!0
� �

for all ! 2 Hn, !0 2 H 0n0 .
Additionally, if ðH;

R
Þ is smooth, we have

�ðKerð
R
ÞÞ � Kerð

R
Þ for each � 2 GalðFp=FpÞ andR

is a Ql-linear functional on Hn. Hence, for each

� 2 GalðFp=FpÞ, there exists a scalar ��ðH;
R
Þ 2 Ql

such that we haveR
�ð!Þ ¼ ��ðH;

R
Þ �
R
! 8! 2 Hn

Proposition 3.3. (a) Let ðH;
R
Þ and ðH 0;

R 0Þ
be cycles of dimensions n and n0 respectively. Then,

for any k � 0, we have NkððH �H 0;
R
�
R 0ÞÞ ¼

NkððH;
R
ÞÞ �NkððH 0;

R 0ÞÞ.
(b) If ðH;

R
Þ and ðH 0;

R 0Þ are smooth cycles of

dimensions n and n0 respectively, so is the product

cycle ðH �H 0;
R
�
R 0Þ.

Proof. (a) We choose any k � 0. Then, by

definition

NkððH �H 0;
R 00Þ

¼
Pnþn0
i¼0

ð�1ÞiTrðFk : ðH �H 0Þi �! ðH �H 0ÞiÞ

¼
Pnþn0
i¼0

ð�1Þi
P

jþj0¼i
TrðFkjHjÞ � TrðFkjH 0j0 Þ

¼
Pnþn0
i¼0

P
jþj0¼i

ð�1ÞjTrðFkjHjÞ � ð�1Þj
0
TrðFkjH 0j0 Þ

¼
Pn
l¼0

ð�1ÞlTrðFkjHlÞ
� �

�
Pn0
l0¼0

ð�1Þl
0
TrðFkjH 0l0 Þ

� �
¼ NkðH;

R
Þ �NkðH 0;

R 0Þ
(b) For any 0 
 i 
 nþ n0, we know that ðH �
H 0Þi :¼ �jþj0¼iHj �H 0j0 . Then, it is clear that

the linear functional
R
�
R 0

: ðH �H 0Þnþn
0
�! Ql

defined byZ
�
Z 0� �
ð!� !0Þ ¼

Z
!

� �
�
Z 0

!0
� �

for all ! 2 Hn, !0 2 H 0n0 composed with the product on

H �H 0 defines a perfect pairing of ðH �H 0Þi with

ðH �H 0Þnþn
0�i for each 0 
 i 
 nþ n0. Choose any

� 2 GalðFp=FpÞ. Since ðH;
R
Þ and ðH 0;

R 0Þ are smooth,

we have �ðKerð
R
ÞÞ � Kerð

R
Þ and �ðKerð

R 0ÞÞ �
Kerð

R 0Þ. Suppose that we have a finite sumPN
i¼1 !i � !0i, !i 2 Hn, !0 2 H 0n0 such that

ð
R
�
R 0ÞðPN

i¼1 !i � !0iÞ ¼
PN

i¼1ð
R
!iÞ � ð

R 0
!0iÞ ¼ 0

Then, it follows that

ð
R
�
R 0ÞðPN

i¼1 �ð!iÞ � �ð!0iÞÞ
¼
PN

i¼1ð
R
�ð!iÞÞ � ð

R 0
�ð!0iÞÞ

¼
PN

i¼1ð��ðH;
R
Þ��ðH 0;

R 0ÞÞðR !iÞ � ðR 0 !0iÞ
¼ ð��ðH;

R
Þ��ðH 0;

R 0ÞÞPN
i¼1ð

R
!iÞ � ð

R 0
!0iÞ ¼ 0

from which it follows that �ðKerð
R
�
R 0ÞÞ �

Kerð
R
�
R 0Þ. Hence, ðH �H 0;

R
�
R 0Þ is a smooth

cycle of dimension nþ n0. �

Our next objective is to prove a version of

Lefschetz fixed point theorem for smooth cycles

ðH;
R
Þ of some given dimension n. We note that

if ’ : X �! X is a morphism of smooth schemes

over Fp, ’ induces a morphism ’� : H�ðX;QlÞ �!
H�ðX;QlÞ of degree 0. If X has dimension d, the

morphism ’� can be described completely in terms

of the class of �’ in H2dðX �XÞ, �’ � X �X being

the graph of ’. We will now associate to each
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morphism ’ : H� �! H� of degree 0 on a smooth

cycle ðH;
R
Þ of dimension n a class clð’Þ 2

ðH �HÞn.

Proposition 3.4. Let ðH;
R
Þ be a smooth

cycle of dimension n. Let ’ : H� �! H� be a linear

operator of degree 0. Then, ’ induces a natural class

clð’Þ 2 ðH �HÞn.

Proof. Suppose that V is a finite dimensional

Ql-vector space and let  : V �! V be a linear

operator on V . Let B ¼ fv1; . . . ; vkg be a given basis

of V and let B
� ¼ fv�1; . . . ; v�kg be the dual basis

of B. Let V � denote the linear dual of V . Then,

it is easy to check that the sum
Pk

i¼1  ðviÞ � v�i 2
V � V � is independent of the choice of the basis B.

We set clV ð Þ ¼
Pk

i¼1  ðviÞ � v�i .
Given the smooth cycle ðH;

R
Þ and a linear

operator ’ : H� �! H� of degree 0, we let ’i : Hi �!
Hi, i � 0 denote the restriction of ’ to each Hi. For

each i, we define clið’Þ ¼ clHið’iÞ 2 Hi �Hi�, where

Hi� denotes the linear dual of Hi. Since ðH;
R
Þ is a

smooth cycle of dimension n, we may takeHi� ¼ Hn�i.
Then, we have clið’Þ 2 Hi �Hn�i. Finally, we set

clð’Þ ¼
Xn
i¼0

clið’Þ 2
Xn
i¼0

Hi �Hn�i ¼ ðH �HÞn:

�

In the notation of the proof of Proposition 3.4,

for any linear operator  : V �! V on a finite

dimensional vector space V of dimension k, we can

also consider the transpose cltV ð Þ of clV ð Þ, defined

as cltV ð Þ ¼
Pk

i¼1 v
�
i �  ðviÞ 2 V � � V . Then, given

a linear operator ’ : H� �! H� of degree 0 on a

smooth cycle ðH;
R
Þ, we can define

cltð’Þ ¼
Xn
i¼0

ð�1ÞicltHið’iÞ 2 Hn�i �Hi ¼ ðH �HÞn

(since each Hn�i ¼ Hi�) and refer to cltð’Þ as the

graded transpose of clð’Þ. We can now prove a

version of Lefschetz fixed point theorem.

Proposition 3.5. Let ðH;
R
Þ be a smooth

n-dimensional cycle. Let F denote the Frobenius

operator in the group GalðFp=FpÞ and let I denote

the identity map. Then, for any k � 0, we have:

ð
R
�
R
ÞðcltðFkÞ � clðIÞÞ ¼ NkðH;

R
Þ

¼
Pn

r¼0ð�1ÞrTrðFkjHrÞ
Proof. For each 0 
 r 
 n, let dr ¼ dimQl

ðHrÞ.
We let Er ¼ ferig1
i
dr be a basis of Hr and let Fr ¼
ffn�ri g1
i
dr denote a dual basis of Er. Hence Fr may

be taken as a basis for Hn�r. Then, by definition:

cltðFkÞ ¼
Xn
r¼0

ð�1Þr
Xdr
i¼0

fn�ri � Fkðeri Þ

and

clðIÞ ¼
Xn
r¼0

Xdr
i¼0

eri � fn�ri :

Then, the product

ð
R
�
R
ÞðcltðFkÞ � clðIÞÞ ¼ ð

R
�
R
Þ

Pn
r¼0

ð�1Þr
Pdr
i¼0

fn�ri � Fkðeri Þ
� �

�
Pn
s¼0

Pds
i¼0

esi � fn�si

� �� �

¼
Pn
r¼0

ð�1Þr
Pdr
i¼0

R
ðfn�ri � eri Þ �

R
ðFkðeri Þ � fn�ri Þ

¼
Pn
r¼0

ð�1ÞrTrðFkjHrÞ ¼ NkðH;
R
Þ:

�

Proposition 3.6. Let ðH;
R
Þ be a cycle of

dimension n. Then, the zeta function �ðH;
R
ÞðzÞ of

ðH;
R
Þ is a rational function of z with Ql coeffi-

cients.

Proof. By definition, we know that

�ðH;
R
ÞðzÞ ¼ exp

P1
k¼1

Pn
r¼0

ð�1ÞrTrðFkjHrÞzk
k

� �

¼
Qn
r¼0

exp
P1
k¼1

TrðFkjHrÞzk
k

� �ð�1Þr

:

Since the Frobenius F is a linear operator on each

finite dimensional vector space Hr, we have

exp
X1
k¼1

TrðFkjHrÞ
zk

k

 !
¼ detð1� FzjHrÞ�1:

For each r, the determinant detð1� FtjHrÞ is a

polynomial in Ql½t�. Hence, the result follows. �

Given a smooth cycle ðH;
R
Þ of dimension n, for

any 0 
 r 
 n, we will always let dr ¼ dimQl
ðHrÞ.

Then, we denote by B the ‘‘Euler characteristic’’

B :¼
Pn

r¼0ð�1Þrdr of the smooth cycle ðH;
R
Þ.

Further, we will always let PrðzÞ :¼ detð1�
FzjHrÞ. Then, if we set:

QrðzÞ :¼
PrðzÞ
ð�1Þdrzdr

¼ det F �
1

z
jHr

� �

it makes sense to write Qrð1Þ :¼ detðF jHrÞ. We

also set

~��ðH;
R
ÞðzÞ ¼

Qn
r¼0

QrðzÞð�1Þr
� ��1

¼ ð�1ÞBzB�ðH;
R
ÞðzÞ:

Accordingly, it makes sense to write:
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~��ðH;
R
Þð1Þ :¼

Qn
r¼0

Qrð1Þð�1Þr
� ��1

¼
Qn
r¼0

detðF jHrÞð�1Þr
� ��1

:

Proposition 3.7. Let ðH;
R
Þ be a smooth

cycle of dimension n. Let F 2 GalðFp=FpÞ be the

Frobenius and let � ¼ �F ðH;
R
Þ. Then:

(a) If n is even, we have the functional equation:

�ðH;
R
Þ

1

�z

� �� �2

¼ �Bz2B�ðH;
R
ÞðzÞ

2:

(b) If n is odd, we have the functional equation:

~��ðH;
R
ÞðzÞ~��ðH;

R
Þ

1

�z

� �
¼ ð�1ÞBz�B ~��ðH;

R
Þð1Þ:

Proof. For any 0 
 r 
 n, we have perfect

pairings of Ql-vector spaces and a commutative

diagram:

Hr �Ql
Hn�r ���! Hn ���!

R
Ql

F�F# F# �#
Hr �Ql

Hn�r ���! Hn ���!
R

Ql :

Since �
R
ðx � yÞ ¼

R
ðF ðx � yÞÞ ¼

R
ðF ðxÞ � F ðyÞÞ for

any x 2 Hr, y 2 Hn�r, it follows from [4, Appendix

C, Lemma 4.3] that

Pn�rðzÞ ¼ detð1� FzjHn�rÞ

¼ ð�1Þdr �dr zdr
detðF jHrÞ detð1� F

�z
jHrÞ

¼ ð�1Þdr �dr zdr
detðF jHrÞ Prð

1
�z
Þ

and

detðF jHn�rÞ ¼
�dr

detðF jHrÞ :

(a) When n is even, we have:

�ðH;
R
Þð

1
�z
Þ

� �2

¼
Qn
r¼0

Prð 1
�z
Þð�1Þr

� ��2

¼
Qn
r¼0

Pn�rðzÞð�1Þn�r
� ��2

�
Qn
r¼0

detðF jHrÞ2
�2dr z2dr

� �ð�1Þr
� ��1

¼ ð�ðH;
R
ÞðzÞÞ

2 � ��Bz�2B
� ��1¼ �Bz2B�ðH;

R
ÞðzÞ

2:

(b) Since dr ¼ dn�r, it is clear that, for odd n:

Qn�rðzÞ ¼
ð�1Þdrz�dr
detðF jHrÞQr

1

�z

� �
:

Hence:

~��ðH;
R
Þð

1
�z
Þ ¼

Qn
r¼0

Qrð 1
�z
Þð�1Þr

� ��1

¼
Qn
r¼0

Qn�rðzÞð�1Þn�r
� �

�
Qn
r¼0

detðF jHrÞ
ð�1Þdr z�dr

� �ð�1Þr
� ��1

¼ ð�1ÞBz�Bð~��ðH;
R
ÞðzÞÞ

�1 � ~��ðH;
R
Þð1Þ:

�
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