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Abstract: In this paper, we give examples of Kirchhoff rod centerlines fully immersed in

higher-dimensional space forms. More precisely, we prove that any helix in a space form is a

Kirchhoff rod centerline. These examples imply the difference of the geometric properties

between Kirchhoff rod centerlines and elasticae.
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1. Introduction. The elastica and the

Kirchhoff elastic rod (or simply Kirchhoff rod) are

both classical mathematical models of thin elastic

rods. The elastica is probably the simplest model,

and is characterized as a critical curve of the energy

of bending only. On the other hand, the Kirchhoff

rod is some more complicated model, and is charac-

terized as a critical framed curve of the energy with

the effects of both bending and twisting. The curve

obtained by eliminating the frame of a Kirchhoff rod

is called aKirchhoff rod centerline. Then a Kirchhoff

rod centerline is a generalization of an elastica.

These curves were originally considered in

the two or three-dimensional Euclidean space, but

these notions (or their generalizations) are natu-

rally extended to those in general Riemannian

manifolds (see, e.g., [1,2,8,9,12–14,16,17,20]).

In this paper, we consider Kirchhoff rod center-

lines in simply-connected n-dimensional space

forms M ¼ Rn; Sn;Hn, n � 2. It is known that

when n ¼ 2; 3, all Kirchhoff rod centerlines in M
are explicitly expressed in terms of Jacobi sn

function and the elliptic integrals ([11], see also

[6,10,15,18,19,21,22]). However, in the case where

n � 4, examples of Kirchhoff rod centerlines fully

immersed in M are not known. The purpose of this

paper is to give examples of Kirchhoff rod center-

lines fully immersed in M ¼ Rn; Sn;Hn, where

n � 4. We obtain the following main theorem.

Theorem 1.1 (Theorem 4.1). Let � be any

helix in M ¼ Rn; Sn;Hn, where n � 2. Then � is a

Kirchhoff rod centerline.

Here, a helix is defined to be a curve all of

whose Frenet curvatures are constant. (For details

about the definition of a helix, see Section 3.) Since

there exists a helix in M which does not lie in any

ðn� 1Þ-dimensional totally geodesic submanifold of

M, we have the following

Corollary 1.2 (Corollary 4.2). There exists

a Kirchhoff rod centerline inM ¼ Rn; Sn;Hn, n � 2

which does not lie in any ðn� 1Þ-dimensional totally

geodesic submanifold of M.

On the other hand, as for elasticae, the follow-

ing result is known ([16], see also [5]).

Proposition 1.3 (Langer-Singer [16]). Let

� be an elastica in M ¼ Rn; Sn;Hn, where n � 4.

Then � lies in a three-dimensional totally geodesic

submanifold of M.

Corollary 1.2 and Proposition 1.3 show the dif-

ference of the geometric properties between elasti-

cae and Kirchhoff rod centerlines in space forms.

2. Elasticae and Kirchhoff rod centerli-

nes. In this section, we define an elastica and a

Kirchhoff rod centerline.

Let M be Rn, Sn, Hn of constant sectional

curvature G. We denote by h�; �i the Riemannian

metric of M, and by j � j the norm. Unless otherwise

specified, all curves, vector fields etc. are assumed

to be of class C1.

First we define an elastica. Let � ¼ �ðtÞ : ½t1; t2� !
M be a unit-speed curve in M. We denote by T ðtÞ ¼
�0ðtÞ the tangent vector to � and by rT ¼ r@=@t the

covariant derivative along �. The bending energy of �

is defined to be the total squared curvature of �, that is,

Fð�Þ ¼
Z t2

t1

jrTT j2dt:
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We call � an elastica if � is a critical point of the

bending energy F with respect to the variations of

unit-speed curves which preserve the end points

�ðt1Þ; �ðt2Þ and the tangent vectors T ðt1Þ; T ðt2Þ at

the end points. More precisely, an elastica is defined

to be a solution of the associated Euler-Lagrange

equation:

rT ½2ðrT Þ2T þ ð3jrTT j2 � �þ 2GÞT � ¼ 0;ð1Þ

where � is a real constant. For the derivation of the

Euler-Lagrange equation in a general Riemannian

manifold, see Section 1 of [16].

Definition 2.1. A unit-speed curve � in M
is called an elastica if there exists � 2 R such that

(1) holds.

Next we define a Kirchhoff rod, which is a

mathematical model of an elastic rod with the

effects of both bending and twisting. The twisting of

an elastic rod cannot be represented by a curve �

only. (Note that the torsion � or the higher order

Frenet curvatures of � are not directly related to

the twisting of the elastic rod.) To describe how the

elastic rod is twisted, we utilize an orthonormal

frame field M ¼ ðM1;M2; . . . ;Mn�1Þ in the normal

bundle T?M along �. We call such a pair f�;Mg a

unit-speed curve with adapted orthonormal frame,

and � the centerline of f�;Mg.
Let � be a fixed positive constant, which is

determined by the material of the elastic rod. We

define the energy T, which includes the effects of

both bending and twisting, as follows:

Tðf�;MgÞ ¼ Fð�Þ þ �
Xn�1

i¼1

Z t2

t1

jr?
TMij2dt;

wherer? denotes the normal connection in T?M, so

that, r?
TMi ¼ rTMi � hrTMi; T iT . Here, the first

term of Tðf�;MgÞ expresses the energy of bending,

and the second term that of twisting. We call f�;Mg
a Kirchhoff rod if f�;Mg is a critical point of T

with respect to the variations of unit-speed curves

with adapted orthonormal frames which preserve the

end points �ðt1Þ, �ðt2Þ and the orthonormal frames

ðT ðt1Þ;Mðt1ÞÞ, ðT ðt2Þ;Mðt2ÞÞ at the end points. More

precisely, a Kirchhoff rod is defined to be a solution of

the associated Euler-Lagrange equations:

rT

�
2ðrT Þ2T þ

�
3jrTT j2 � �þ 2G

þ �
Xn�1

i¼1

jr?
TMij2

�
Tð2Þ

� 4�
Xn�1

i¼1

hrTT ;Miir?
TMi

�
¼ 0;

ðr?
TM1; . . . ;r?

TMn�1Þ ¼ ðM1; . . . ;Mn�1Þa;ð3Þ
where � 2 R and a 2 oðn� 1Þ. Here, oðn� 1Þ stands
for the Lie algebra of all skew-symmetric matrices

of size n� 1. For the derivation of the Euler-

Lagrange equation in a general Riemannian mani-

fold, see Section 2 of [10].

Definition 2.2. Let f�;Mg be a unit-speed

curve with adapted orthonormal frame in M. We

call f�;Mg a Kirchhoff rod if there exist � 2 R and

a 2 oðn� 1Þ such that (2) and (3) hold. The matrix

a is uniquely determined, and is called the twist

matrix of f�;Mg.
We note that the matrix a in (3) is independent

of t. Therefore, we see that if f�;Mg is a Kirchhoff

rod, then the integrand of the second term of

Tðf�;MgÞ is independent of t. Physically, this

means that the twist of an elastic rod in equilibrium

is uniformly distributed along the centerline.

Remark 2.3. Let ’ 2 Oðn� 1Þ, where

Oðn� 1Þ stands for the Lie group of all orthogonal

matrices of size n� 1. A straightforward calculation

using (2) and (3) yields that if f�;Mg is a Kirchhoff

rod, then f�;M’g is also a Kirchhoff rod. Note

that if the twist matrix of f�;Mg is a, then that of

f�;M’g is ’�1a’.

We define a Kirchhoff rod centerline as follows:

Definition 2.4. A unit-speed curve � in M
is called a Kirchhoff rod centerline if there exists an

orthonormal frame field M ¼ ðM1;M2; . . . ;Mn�1Þ in
the normal bundle along � such that f�;Mg is a

Kirchhoff rod.

By (1), (2) and (3), we see the following

Proposition 2.5. Let � be an elastica in M.

We take an orthonormal frameM0 ¼ ðM0
1 ; . . . ;M

0
n�1Þ

of the normal vector space at a point �ðt0Þ on the

curve �. Let M ¼ ðM1; . . . ;Mn�1Þ be the parallel

translation of M0 with respect to the normal con-

nection along �. Then f�;Mg is a Kirchhoff rod with

twist matrix 0. Therefore, � is a Kirchhoff rod

centerline. Conversely, if f�;Mg is a Kirchhoff rod

with twist matrix 0, then � is an elastica and M is

parallel with respect to the normal connection.

The above proposition implies that a Kirchhoff

rod centerline is a generalization of an elastica.

3. Helices. In this section, we recapitulate

the Frenet frame and Frenet curvatures of a curve

in a space form and define a helix.
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Let M ¼ Rn, Sn, Hn, and let d be an integer

satisfying 2 � d � n. A unit-speed curve � in M
is called a Frenet curve of osculating rank d if

T , rTT ; . . . ; ðrT Þd�1T are linearly independent

for each t, and T , rTT ; . . . ; ðrT Þd�1T , ðrT ÞdT are

linearly dependent for each t. For a Frenet curve

� of osculating rank d, let ðN0; N1; . . . ; Nd�1Þ be the

orthonormal d-frame along � obtained by applying

the Gram-Schmidt orthogonalization to ðT ;rTT ;

ðrT Þ2T; . . . ; ðrT Þd�1T Þ, and let �1ðtÞ; . . . ; �d�1ðtÞ
be the functions defined by �i ¼ hrTNi�1; Nii, i ¼
1; . . . ; d� 1. Then �1; . . . ; �d�1 are positive functions

and the following Frenet formula holds:

ðrTN0; . . . ;rTNd�1Þ ¼ ðN0; . . . ; Nd�1Þf;ð4Þ

where

f ¼

0 ��1 0�1 0 ��2
�2 0 . .

.

. .
. . .

. . .
.

. .
.

0 ��d�1

0 �d�1 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

The orthonormal d-frame ðN0; . . . ; Nd�1Þ is called

the Frenet d-frame along �, and the function �i is

called the i-th Frenet curvature of �.

By a similar argument to that in the case of R3

[4], we can check the following holds. Given arbitra-

ry d� 1 positive functions �1; . . . ; �d�1, there exists

a curve � of osculating rank d whose i-th Frenet

curvature coincides with �i for i ¼ 1; . . . ; d� 1. Such

� is uniquely determined up to isometries of M. We

can also check that a Frenet curve of osculating rank

d lies in a d-dimensional totally geodesic submani-

fold of M, and does not lie in any ðd� 1Þ-dimen-

sional totally geodesic submanifold of M.

A Frenet curve � of osculating rank d is called a

helix of order d if all the Frenet curvatures �1; . . . ; �d�1

are constant functions. Also, a unit-speed curve � is

called a helix if � is a helix of order d for some d.

4. Main theorem. In this section, we ex-

press the Euler-Lagrange equation (2) in terms of

the Frenet frame, and state the main theorem.

Let M ¼ Rn, Sn, Hn, where n � 4. Let f�;Mg
be a unit-speed curve with adapted orthonormal

frame in M defined on I ¼ ½t1; t2�. Suppose that �

is a Frenet curve of osculating rank n, and let

ðN0; . . . ; Nn�1Þ denote the Frenet n-frame along �,

and �1; . . . ; �n�1 the Frenet curvatures of �. We fix

t0 2 I. By Remark 2.3, we may assume, without loss

of generality, that Mðt0Þ ¼ ðN1ðt0Þ; . . . ; Nn�1ðt0ÞÞ.
Suppose that (3) holds for some a 2 oðn� 1Þ. It

follows from (4) that

rT

�
2ðrT Þ2T þ

�
3jrTT j2 � �þ 2G

þ �
Xn�1

i¼1

jr?
TMij2

�
T

�

¼
"
2�001 þ ð�1Þ3 þ ��þ 2Gþ �

Xn�1

i;j¼1

ðajiÞ2
 !

�1

� 2�1ð�2Þ2
#
N1 þ ð4�01�2 þ 2�1�

0
2ÞN2

þ 2�1�2�3N3;

where 0 denotes the differentiation with respect to t,

and aji the ðj; iÞ-component of a.

To calculate rT ½
Pn�1

i¼1 hrTT ;Miir?
TMi�, we

also use a r?-parallel frame along �. Let P ¼
ðP1; P2; . . . ; Pn�1Þ denote the parallel translation of

ðN1ðt0Þ; . . . ; Nn�1ðt0ÞÞ with respect to the normal

connection r? along �. Let wi ¼ hrTT ;Mii and

ki ¼ hrTT ; Pii, i ¼ 1; 2; . . . ; n� 1. Then

ðrTT ;rTM1; . . . ;rTMn�1Þ

¼ ðT;M1; . . . ;Mn�1Þ
0 �tw

w a

� �
;

ðrTT ;rTP1; . . . ;rTPn�1Þ

¼ ðT; P1; . . . ; Pn�1Þ
0 �tk

k 0

� �
;

where w ¼ tðw1; . . . ; wn�1Þ and k ¼ tðk1; . . . ; kn�1Þ.
The orthonormal frames ðT;M1; . . . ;Mn�1Þ and

ðT;N1; . . . ; Nn�1Þ are expressed as

ðT;M1; . . . ;Mn�1Þ

¼ ðT; P1; . . . ; Pn�1Þ
1 0

0 �

� �
;

ðT;N1; . . . ; Nn�1Þ

¼ ðT; P1; . . . ; Pn�1Þ
1 0

0  

� �
;

for some �;  : I ! Oðn� 1Þ. A straightforward

calculation yields

w ¼ t�k ¼ ��1k; a ¼ ��1�0;
tð�1; 0; . . . ; 0Þ ¼ t k ¼  �1k; b ¼  �1 0;

ð5Þ

where b : I ! oðn� 1Þ is defined by
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b ¼

0 ��2 0�2 0 ��3
�3 0 . .

.

. .
. . .

. . .
.

. .
.

0 ��n�1

0 �n�1 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

Therefore, �,  are the solutions of the following

initial value problems, respectively:

�0ðtÞ ¼ �ðtÞa; �ðt0Þ ¼ e;ð6Þ
 0ðtÞ ¼  ðtÞbðtÞ;  ðt0Þ ¼ e;ð7Þ

where e stands for the identity matrix of size n� 1.
The solution of (6) is explicitly expressed as �ðtÞ ¼
exp½ðt� t0Þa�. By using (5), we see

rT

Xn�1

i¼1

hrTT ;Miir?
TMi

" #

¼ rT ½ðP1; . . . ; Pn�1Þak� ¼ ðP1; . . . ; Pn�1Þak0

¼ ðN1; . . . ; Nn�1Þ �1a 

�01
�1�2

0

..

.

0

0
BBBBBBB@

1
CCCCCCCA
:

Therefore, (2) is expressed in terms of the Frenet

frame as follows:"
2�001 þ ð�1Þ3 þ ��þ 2Gþ �

Xn�1

i;j¼1

ðajiÞ2
 !

�1

� 2�1ð�2Þ2
#
N1 þ ð4�01�2 þ 2�1�

0
2ÞN2

þ 2�1�2�3N3

� 4�ðN1; . . . ; Nn�1Þ �1a 

�01
�1�2

0

..

.

0

0
BBBBBB@

1
CCCCCCA

¼ 0:

ð8Þ

Before stating the main theorem, we describe

the case where n ¼ 2; 3. First, let n ¼ 3. Then since

Oð2Þ is commutative,  �1a ¼ a holds, and the

equation (8) reduces toh
2�001 þ ð�1Þ3 þ ð��þ 2Gþ 2�ða21Þ2Þ�1

� 2�1�2ð�2 � 2�a21Þ
i
N1ð9Þ

þ ð4�01�2 þ 2�1�
0
2 � 4�a21�

0
1ÞN2 ¼ 0:

It is known that all the solutions �1; �2 of (9) are

explicitly expressed by Jacobi sn function. Moreover,

� themselves are explicitly expressed by Jacobi sn

function and the elliptic integrals in terms of cylin-

drical coordinates, and various properties of Kirchhoff

rods are investigated ([6,10,11,19,21], etc.). Next let

n ¼ 2. Then for any unit-speed curve f�;M1g with

adapted orthonormal frame, r?
TM1 ¼ 0 holds. Thus

(3) is satisfied for a ¼ 0. Therefore, Proposition 2.5

yields that f�;M1g is a Kirchhoff rod if and only if � is

an elastica. The equation (8) reduces to

2�001 þ ð�1Þ3 þ ð��þ 2GÞ�1
h i

N1 ¼ 0:ð10Þ

The solutions �1 of (10) are also explicitly expressed

by Jacobi sn function, and elasticae in M ¼ R2, S2,

H2 are extensively studied ([3,7,15,16,20], etc.).

We return now to the case of n � 4. In this

case, it seems to be difficult to obtain the explicit

expressions of all the solutions of (8). But, we can

construct some examples of Kirchhoff rod center-

lines. The following main theorem holds.

Theorem 4.1. Let � be any helix in M ¼
Rn; Sn;Hn, where n � 2. Then � is a Kirchhoff rod

centerline.

Proof. First, we consider the case where � is

a helix of order n. Let ðN0; . . . ; Nn�1Þ denote the

Frenet n-frame, and �1; . . . ; �n�1 ð> 0Þ the Frenet

curvatures of �. We fix a point t0, and let P ,  , b be

as above, and let M ¼ P exp½ðt� t0Þa�, where a 2
oðn� 1Þ. Then (3) holds. Also, since b is a constant

matrix, the solution  of (7) is explicitly expressed

as  ¼ exp½ðt� t0Þb�.
Let n � 4. We seek for a and � satisfying (8). If

we assume ½a; b� ¼ 0, then  �1a ¼ a holds, and

hence the equation (8) reduces to the following:

ð�1Þ2 � �þ 2Gþ �
Xn�1

i;j¼1

ðajiÞ2

� 2ð�2Þ2 � 4�a12�2 ¼ 0;

ð11Þ

�3 � 2�a32 ¼ 0;ð12Þ
a42 ¼ a52 ¼ � � � ¼ an�1

2 ¼ 0:ð13Þ
And so we set

a ¼
1

2�
b;

� ¼ ð�1Þ2 þ
1

2�

Xn�1

i¼2

ð�iÞ2 þ 2G:
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Then we see that ½a; b� ¼ 0, and (11), (12) and (13)

hold. Thus f�;Mg is a Kirchhoff rod, and so � is a

Kirchhoff rod centerline.

Next let n ¼ 3. In this case, it immediately

follows that there exists � 2 R satisfying (9). Thus

f�;Mg is a Kirchhoff rod, and hence � is a Kirchhoff

rod centerline. In the case of n ¼ 2, by setting � ¼
�21 þ 2G, the equation (10) is satisfied, and hence �

is a Kirchhoff rod centerline.

We consider the case where � is a helix of order

2 � d � n� 1. Then � lies in a d-dimensional totally

geodesic submanifold N of M. By an argument

similar to the above, we see that there exists

an orthonormal ðd� 1Þ-frame field ðM1; . . . ;Md�1Þ
along � such that f�; ðM1; . . . ;Md�1Þg is a Kirchhoff

rod in N . Since N is a totally geodesic submanifold,

we can take an orthonormal ðn� dÞ-frame field

ðMd; . . . ;Mn�1Þ along � such that rTMd ¼ � � � ¼
rTMn�1 ¼ 0 and ðMdðtÞ; . . . ;Mn�1ðtÞÞ is an ortho-

normal basis of the normal vector space T?
�ðtÞN for

each t. Then we can check that f�; ðM1; . . . ;Md�1;

Md; . . . ;Mn�1Þg is a Kirchhoff rod in M. Hence � is

a Kirchhoff rod centerline in M. �

For arbitrary positive numbers �1; . . . ; �n�1,

there exists a helix � of order n whose i-th Frenet

curvature coincides with �i for i ¼ 1; . . . ; n� 1.

Since � does not lie in any ðn� 1Þ-dimensional

totally geodesic submanifold of M, we obtain

Corollary 4.2. There exists a Kirchhoff rod

centerline in M ¼ Rn; Sn;Hn, n � 2 which does not

lie in any ðn� 1Þ-dimensional totally geodesic sub-

manifold of M.
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