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An exponential Diophantine equation related to powers

of two consecutive Fibonacci numbers

By Florian LucA®*" and Roger OYONO***

(Communicated by Shigefumi MORI, M.J.A., April 12, 2011)

Abstract:

Here, we show that there is no integer s > 3 such that the sum of sth powers of

two consecutive Fibonacci numbers is a Fibonacci number.

Key words:

1. Introduction. Let (F,),>, be the
Fibonacci sequence given by Fy =1,F, =1 and
Foo=Fyu+ F, for all m > 1. It is well-known
that Fgl + F%H = Fb,11. Hence, F; +F; | is a
Fibonacci number for all m > 1 when s € {1,2}. In
the paper [4], the following result was proved:

Theorem A. Ifs>1isan integer such that
F; + F; . is a Fibonacci number for all sufficiently

large m, then s € {1,2}.
Note that this doesn’t say much about the
Diophantine equation

(1) Fo+E L =F,

in integers m > 1, n > 1, s > 3. It merely says that
if s >3 is fixed, then there are infinitely many
positive integers m for which F; + F; ., is not a
Fibonacci number. Thus, the main result from [4]
cannot answer to the question of whether the
Diophantine equation (1) has finitely or infinitely
many integer solutions (m,n), even for fixed s > 3.
Let us briefly describe the proof of this result
from [4]. Put a:=(1++5)/2, B:=(1-5)/2.
Then it is known that

a™m — ﬂm
V5
Hence, for fixed s we have that

o (am BTN e 2
F—( N ) = S+ 0u(a0).

(2) F,= holds for all m > 1.
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Fibonacci numbers; Applications of linear forms in logarithms.

The constant implied by the above O depends on s.
Applying the above estimate with m and m + 1 and
adding them up we get

o™ 4 a(m+1)s

Fi+Fs . = = + Oy (am72))
_ ams(l + as) m(s—2)

Comparing the above estimate with F), given by (2)
we get right away that

amsf'n(l + 0[5)

5(s-1)/2 — 1= OS (am(s—2)—n + a_27”)7

and the right-hand side above is of smaller order of
magnitude than o™*~" for large m and n. Hence, the
left hand side must be zero for large m, so we must have
n = ms + t, where t is some fixed integer such that

(3) 1+ =561/t

From here, the authors of [4] proceed to prove that the
above equation (3) has no integer solutions (s, t) with
s > 3 by using linear forms in logarithms and calcu-
lations. We note in passing that there is no need for
linear forms in logarithms in order to solve (3). Indeed,
conjugating it and multiplying the two relations we get

(1+a") 1+ = (=115 (aB) = (-1)" 5"

The left-hand side is positive and smaller than
2(1+ a®) < 2(1 + 2°%). Hence, we get

2(1+2%) > 571

which has no solution for any s > 3 anyway.

Our main result is the following.

Theorem 1. Fgquation (1) has no solutions
(m,n,s) withm > 2 and s > 3.

2. The proof of Theorem 1.

2.1. The plan of attack. Our method is
roughly as follows. We use linear forms in loga-
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rithms together with the observation that F is
smaller by an exponential factor in s than Fj; ; to
deduce some inequality for s versus m and n. When
m is small, say m < 150, we use continued fractions
to lower the bounds and then brute force to cover
the range of the potential solutions. When m > 150,
our bound on s versus m and n says that F, can
be sufficiently well approximated by a™*/5%/% and
similarly F;, ; can be sufficiently well approximat-
ed by al™+Vs/5%/2 A further application of the
linear forms in logarithms together with some
computations finish the job.

Now let’s get to work.

2.2. An inequality for s in terms of m and n.
Observe that when m =1 we have F +F)_ =
2 = Fj for all s > 1, which is why we imposed that
m > 2.

When m = 2, we get that Fj, =1+ F; =1+42°
which has no integer solutions (n,s) with s >3
(see [2] for a list of all solutions to the Diophantine
equation F,, =1+ z° in positive integers (n,s,x)
with s > 2).

From now on, we assume that m > 3. Since
s >3, we get that F, > Fg’ + Ff’, so that n > 10.
Using formula (2), we rewrite equation (1) as

an mn
(@ - Fan=Fi+ o
The right-hand side above is a number in the
interval [F3 —1,F7 +1]. In particular, it is posi-
tive. Dividing both sides of equation (4) by F .,
we get

Fn,\® 2
5 "5 VPR <2< ) < —,
( ) | m+1 | Fm+1 1.59

where we used the fact that F,/F,,+1 < 2/3 for all
m > 2. This last inequality is equivalent to the
inequality 2F,,41 > 3F,,. Replacing the number
F,.1 by F,+ F,_1, the last inequality above is
seen to be equivalent to 2F,, 1> F, =F, 1+
F,,_o, which is equivalent to Fj, 1 > F},_2, which
is true for all m > 2.

We shall use several times a result of Matveev
(see [5] or Theorem 9.4 in [1]), which asserts that
if aq,a9,...,ap are positive real algebraic numbers
in an algebraic number field K of degree D, by,
bo, ..., b, are rational integers, and

b1 b b
A=aojay-opf =1

is not zero, then

[Vol. 87(A),

(6) |A] > exp(—C’k7D(1 +1logB)A, --- Ak)
where
Crp = 1.4 x 30" x k' x D*(1 +log D),
B> max{|b1|, |b2|7 sy |bk7|},

and

A; > max{Dh(«;),|log;|,0.16}, i=1,2,... k.

Here, for an algebraic number 7 we write h(n) for its
logarithmic height whose formula is

d
h(n) := % <log ap + ZlOg(rnaX{|n(i)|7 1})) ,

with d being the degree of 1 over Q and

d
f(X) = a J[(X =) € Z[X]

being the minimal primitive polynomial over the
integers having positive leading coefficient and 7 as
a root.

In a first application of Matveev’s theorem, we
take k:=3, a1 ;= a, ag := \/5, ag = F,11. We also
take by :=n, by := —1, bg := —s. We thus take
(7) Ay =5 VPR 1,

m+1

The absolute value of Ay appears in the left—hand
side of inequality (5). To see that A; # 0, observe
that imposing that A; =0 yields o" = \/EF,SUH,
so o®" € Z, which is false for positive n. Thus,
Ay #£0.

The algebraic number field containing
a,an,a3 is K:=Q(v/5) which is quadratic, so
we can take the degree D := 2. Since the height of
oy satisfies  h(ag) = (loga)/2 = 0.240606. .., it
follows that we can take A; := 0.5 > 2h(«;). Since
the height of a9 satisfies h(ag) = (logh)/2 =
0.804719..., it follows that we can take A :=
1.61. Since the inequality F; < o/~' holds for all
integers ¢ > 1, it follows that h(as) =log Fi11 <
mloga, therefore we can take Aj:=2mloga.

Finally, observe that
0" > F = B By 2 By > (@),
a’fl*? < Fn = F;L + Fil,-‘rl < (‘Fm + Ferl)S = F;;L-&-Z
< a(erl)s'
In particular, n > (m —1)s > 2s, so we can take
B :=mn. It is also the case that

B=n<(m+1)s+1<(m+2)s.
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Applying inequality (6) to get a lower bound for
|A1] and comparing this with inequality (5), we get

exp(—Cs2(1+logn) x 0.5 x 1.61 x 2mloga) < 1.5°°

where
Cso = 1.4 x 305 x 35 x 22 x (1 +log2) < 10"

Hence, we get
log 2
log1.5
x (log 1.5) " 'm(1 + logn)
<2 x 10"”m(1 4+ logn) < 3 x 10mlogn,

5 < + 102 x 0.5 x 1.61 x (2loga)

where we also used the fact that logn > log10 > 2.
Together with the fact that n < (m + 2)s, we get
that

(8) 5 < 3 x 10"”mlog((m + 2)s).

2.3. The case of small m. We next treat the
cases when m € [3,150]. In this case,

5 < 3 x 10M”mlog((m +2)s) < 4.5 x 10" log(152s),
giving s < 1.92 x 10'6. Thus,
n < (m+2)s <1525 < 3 x 10'8.
We next take another look at A; given by
expression (7). Put
't :=nloga — log\/g —slog Fiyi1-

Thus, A; =€ — 1.

Observe that I'y is positive since A; is positive
because the right-hand side of equation (4) is
positive. Thus,

2
O<Ii<e'—1=A; <—,

1.5%
SO
1 1
0<n(—22 ) _4_ Jog V5.
IOg Fm+1 IOg Fm+1
2 2 2
(9)

<— < — < —.
1.5%1og(Fy,e1) 1.5 (1.5ﬁ)n

We now apply the following result due to
Dujella and Pethé [3].

Lemma 2. Let M be a positive integer, let
p/q be a convergent of the continued fraction of the
wrrational vy such that ¢ > 6 M, and let j1 be some real
number. Let e := ||uq|| — M||vql|. If e > 0, then there
s no solution to the inequality

Sums of powers of two Fibonacci numbers 47

O<ny—s+pu<AB™

in positive integers n and s with

log(Ag/e)

<n<M.
logB —

For us, inequality (9) is

O<ny—s+u<AB™,

where
_ loga B log V5
= log Fypy1’ T log Fypyr
A=2, B:=1.0026 < 1.57.

We take M := 3 x 10'8. For each of our numbers m,
we take q := qg9 to be the denominator of the 99th
convergent to 7. Note that ¢ depends on m. The
minimal value of ¢ for m € [3,150] exceeds the
number 10* > 6M. Thus, we may apply Lemma, 2
for each such g, v and pu. The maximal value of
M]||gy|| computed is smaller than 1072%, whereas
the minimal value of ||gu|| is > 1.1 x 107!, Thus,
we can take € := ||qu|| — M||qv|| > 10717 Also, the
maximal value of ¢ is <2 x 1052, Hence, by
Lemma 2, all solutions (n,s) of inequality (9)
have

log(2 x (2 x 1052) x 10'7)
log(1.0026)

_ log(Ag/e)
log B
< 71000.

Next, since (m — 1)s < n, we have
s<n/(m—1) <71000/(m — 1).

A computer search with Mathematica revealed
in less than one hour that there are no solu-
tions to the equation (1) in the range m €
[3,150], n € [10,71000] and s € [3,71000/(m — 1)].
This completes the analysis in the case m €
[3,150].

2.4. An upper bound on s in terms of m.
From now on, we assume that m > 151. Recall that,

by (8), we have
(10) 5 < 3 x 10"”mlog((m + 2)s).

Next we give an upper bound on s depending only
on m. If

(11)

then we are through. Otherwise, that is if m +
2 < s, we then have

s<m+2,
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5 < 3 x 10"”%mlog(s?) = 6 x 10?mlogs,

which can be rewritten as

(12) <6 x 10"”%m.

log s

Since the function z — x/logx is increasing for all
T > e, it is easy to check that the inequality

T

<A yields x < 2AlogA,

logx
whenever A > 3. Indeed, for if not, then we would

have that x > 2Alog A > e, therefore

x 2Alog A N
log(2Alog A) ’

log x

where the last inequality follows because 2log A <
A holds for all A > 3. This is a contradiction.
Taking A := 6 x 10'2m in the above argument, we
get that inequality (12) implies that
5 < 2(6 x 10"%m)log(6 x 10'2m)

=12 x 10"m(log(6 x 10'?) + logm)

< 12 x 10"m(30 + logm)

<12 x 10"%m x (7logm)
(13) < 10"mlogm.
In the above inequalities, we used the fact that
logm > log151 > 5. From (11) and (13), we con-
clude that the inequality

(14) 5 < 10Mmlogm

holds for all m > 151.
2.5. An absolute upper bound on s.
look at the element

Let us

S

xXr = .
a?m

From the above inequality (14), it follows that
10%mlogm 1
(15) r < — D08 —,

a?m a™

where the last inequality holds for all m > 80. In
particular, z < o' < 10731, We now write

FS _ O[ms 1 (_1)m S
m 5s/2 o a2m ’

. a(m+1)5 (_1)m+1 s
m+l 55/2 1- :

a2(m+1)
If m is odd, then
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(_1)771 S 1 s -
1< ({1- 5 = 1+T <e’
am o

<142z

because z < 1073! is very small, while if m is even,
then

(_1)771 s 1 L
1>|1—-——] =exp(log{l—-———]s|>e o
a™m a“m

> 1 -2z,

again because r < 1073! is very small. The same
inequalities are true if we replace m by m + 1. Thus,

we have that
2xa(m+1)s
<=

(16) max{
We now return to our equation (1) and rewrite it as

- ams
m 5s/2

(m+1)s
s «

m+1 55/2

)

a — ﬁn . . ams a(m+1)s
512 Fu=Fy 4 By = 5s/2 ' B/
. ams . a(erl)s
(m- )+ (B - S ).
or
an ams s
ﬁn . ams . a(m+l)s
=lgET <Fm—m> T\ e — 5
1 o™ ‘ a(m-‘rl)s
i L ey Rl L oy
1 (1 + o)

Thus, dividing both sides by a(™+Vs/5%2 we
conclude that
(17) |an—(7n+1)s5(s—1)/2 _ (1 +a—s)|

55/2 1 5z

< ant(m+1)s + 21’(1 +a ) < 2am + 7
3

am

)

where we used the fact that

52 _ (V5 1
a(m+l)s = | 152 < 5’

and a® > o > 4, as well as inequality (15). Hence,
we conclude that

n>(m—1)s>m,

1 3 4
(18) |an7(m+1)85(371)/2 1l < — 4+ < —,

e’ s Ol777, o
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where we put ¢ := min{m, s}. We now set

(19) Ay = o= (mH)ss(s=1)/2 _ 1

and observe that Ay # 0. Indeed, for if Ay =0, then
a?m+h)s=n) — 55=1 ¢ 7, which is possible only when
(m + 1)s = n. But if this were so, then we would get
0=Ay=56"1/2_1 which leads to the conclusion
that s = 1, which is not possible. Hence, Ay # 0. Next,
let us notice that since s > 3 and m > 151, we have that

1

1
(20) |A2|§$+m<§,

so that o~ (mHs5(=D/2 ¢ [1/2,2]. In particular,

1 —1)logh
(s —1)log log2
log o 2
logh
1.7s;
<S(210go¢> < S;
1 —1)logh
((8 ) log 10g2)

log o 2
> 1.6s — 4.

(m+1)s—n<

(m+1)s—n>
(21)

It follows from (21) that (m+1)s —n > 1.6s—4 >0
because s > 3. We lower bound the left-hand side of
inequality (18) using again Matveev’s theorem. We take
k=2 04 :=a,as := 5. We also take the exponents
by :==n— (m+1)s and by := s — 1. As in the previous
application of Matveev’s result, we can take D := 2,
A; :=0.5, 45 := 1.61. Also, we can take B :=1.7s >
max{|bi|, |b2]} by inequality (21). We thus get that
exp(—Cl2(1 +log(1.75)) x 0.5 x 1.61) < %,

where

Con = 1.4 x 30° x 25 x 22 x (1 +1log2) < 5.3 x 10°.

This leads to
log4

(< +5.3 %10 x 0.5 x 1.61 x (loga) ™"

log o
X (14 log(1.7s))
<9x10°(1.6 +logs) <9 x 2.6 x 10°log s
< 3 x 10" 1ogs.
Here, we used the fact that 1+ log(1.7) < 1.6.
If / = s, we then get that s < 3 x 10 log s, so

s < 102,
If £ = m, then using also (14), we get that
m < 3 x 10" logs < 3 x 10'°log(10"*mlogm).
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The last inequality above leads to m < 2 x 102, so,
by (14) once again, we get that

5 < 10M x (2 x 10')log(2 x 10'?) < 6 x 10*".
So, at any rate, we have that

(22) 5 < 6x 107,

2.6. A better upper bound on s. Next, we
take I'y := (s — 1) log /5 — ((m + 1)s — n)log a. Ob-
serve that Ay = e — 1, where Aj is given by (19).
Since |Ag| < 1/2 (see inequality (20)), we have that
e < 2. Hence,

6

2
Ty < e®le™ — 1] < 20As) < =+ —.
[0 (0%

This leads to

1 2 6
(23) < (s—1)loga <;+J>

Note first that o™ > a'®! > 3 x 10*! > 10%s by esti-
mate (22).

Assume next that s > 100. Then «o® > 1000s.
Hence, we get that

logv/5 (m+1)s—n
s—1

log «

1 2 N 6 - 8
(s—1Dloga \a* am s(s —1)1000log o

1
(24) <—.
60(s — 1)
Estimates (23) and (24) lead to
(25) logvs (m+1)s—n 1
log o s—1 60(s — 1)2 ’

By a criterion of Legendre, inequality (25) implies
that the rational number ((m +1)s —n)/(s — 1) is a
convergent to 7 := (logv/5)/(loga). Let [ag,a, as,
as,aq,...]=1[1,1,2,19,2,9,...] be the continued
fraction of ~, and let pi/qp be its kth convergent.
Assume that ((m+ 1)s —n)/(s — 1) = p;/q: for some
t. Then s — 1 = dg; for some positive integer d, which
in fact is the greatest common divisor of (m + 1)s —
n and s —1. We have the inequality ¢54 > 1.4 %
102 > s —1. Thus, t€{0,...,53}. Furthermore,
ap <29 for all k=0,1,...,53. From the known
properties of continued fractions, we have that

_mADs—nf | op 1
s—1 q: (a; +2)q¢
d? 1

Z 2 Z 2 )
3l(s—1) 31(s—1)
which contradicts inequality (25). Hence, s < 100.
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2.7. The final step. To finish, we go back to
inequality (17) and rewrite it as

nf(m+1)85(571)/2 1 —s\—1 1] <
« ( + « ) | O[m(l + Oéis)

3

am’
Recall that s € [3,100] and

1.6s—4 < (m+1)s—n < 1.7s.

Put ¢ := (m + 1)s — n. We computed all the num-
bers |a'56~D/2(1 4 a~%)7" — 1] for all s € [3,100]
and all ¢ € [|1.6s — 4], [1.7s]]. None of them ended
up being zero, since if it were we would get the
Diophantine equation o® +1 = 56-1/2¢5~ which
has no integer solution (s,t) with s >3 by the
arguments from the beginning. The smallest of
these numbers is > 3/10%. Thus, 3/10% < 3/a™, or
a™ < 103, so m < 15, which is false.

The theorem is therefore proved.
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