A note on non-Robba p-adic differential equations

By Said Manjra
Department of Mathematics, College of Science, Imam University, P. O. Box: 240337, Riyadh 11322, Saudi Arabia

(Communicated by Masaki Kashiwara, M.J.A., Feb. 14, 2011)

Abstract

Let \mathcal{M} be a differential module, whose coefficients are analytic elements on an open annulus $I\left(\subset \mathbf{R}_{>0}\right)$ in a valued field, complete and algebraically closed of inequal characteristic, and let $R(\mathcal{M}, r)$ be the radius of convergence of its solutions in the neighborhood of the generic point t_{r} of absolute value r, with $r \in I$. Assume that $R(\mathcal{M}, r)<r$ on I and, in the logarithmic coordinates, the function $r \longrightarrow R(\mathcal{M}, r)$ has only one slope on I. In this paper, we prove that for any $r \in I$, all the solutions of \mathcal{M} in the neighborhood of t_{r} are analytic and bounded in the disk $D\left(t_{r}, R(\mathcal{M}, r)^{-}\right)$.

Key words: p-adic differential equations; Frobenius antecedent theorem.

1. Notations and Preliminaries. Let p be a prime number, \mathbf{Q}_{p} the completion of the field of rational numbers for the p-adic absolute value |.|, \mathbf{C}_{p} the completion of the algebraic closure of \mathbf{Q}_{p}, and Ω_{p} a p-adic complete and algebraically closed field containing \mathbf{C}_{p} such that its value group is $\mathbf{R}_{\geq 0}$ and the residue class field is strictly transcendental over $\mathbf{F}_{p^{\infty}}$. For any positive real r, t_{r} will denote a generic point of Ω such that $\left|t_{r}\right|=r$. Let I be a bounded interval in $\mathbf{R}_{>0}$. We denote by $\mathcal{A}(I)$ the ring of analytic functions, on the annuli $\mathcal{C}(I):=\left\{a \in \Omega_{p}| | a \mid \in I\right\}, \quad \mathcal{A}(I)=\left\{\sum_{n \in \mathbf{Z}} a_{n} x^{n} \in\right.$ $\left.\mathbf{C}_{p}[[x, 1 / x]]\left|\lim _{n \rightarrow \mp \infty}\right| a_{n} \mid r^{n}=0, \forall r \in I\right\}, \quad$ and \quad by $\mathcal{H}(I)$ the completion of the ring of rational fractions f of $\mathbf{C}_{p}(x)$ having no pole in $\mathcal{C}(I)$ with respect to the norm $\|f\|_{I}:=\sup _{r \in I}\left|f\left(t_{r}\right)\right|$. It is well known that $\mathcal{H}(I) \subseteq \mathcal{A}(I)$, with equality if I is closed. We define, for any $r \in I$, the absolute value $|\cdot|_{r}$ over $\mathcal{A}(I)$ by $\left|\sum_{n \in \mathbf{Z}} a_{n} x^{n}\right|_{r}=\sup _{n \in \mathbf{Z}}\left|a_{n}\right| r^{n}$.

Let $R(I)$ denotes $\mathcal{A}(I)$ or $\mathcal{H}(I)$. A free $R(I)$ module \mathcal{M} of finite rank μ is said to be $R(I)$ differential module if it is equipped with a $R(I)$ linear map $D: \mathcal{M} \rightarrow \mathcal{M}$ such that $D(a m)=$ $\partial(a) m+a D(m)$ for any $a \in R(I)$ and any $m \in \mathcal{M}$ where $\partial=d / d x$. To each $R(I)$-basis $\left\{e_{i}\right\}_{1 \leq i \leq \mu}$ of \mathcal{M} over $R(I)$ corresponds a matrix $G=\left(G_{i j}\right) \in$

[^0]$M_{\mu}(R(I))$ satisfying $D\left(e_{i}\right)=\sum_{j=1}^{\mu} G_{i j} e_{j}$, called the matrix of ∂ with respect to the $R(I)$-basis $\left\{e_{i}\right\}_{1 \leq i \leq \mu}$ or simply an associated matrix to \mathcal{M}, together with a differential system $\partial X=G X$ where X denotes a column vector $\mu \times 1$ or $\mu \times \mu$ matrix (see $[2,3]$). If $G^{\prime} \in M_{\mu}(R(I))$ is the matrix of ∂ with respect to another $R(I)$-basis $\left\{e_{i}^{\prime}\right\}_{1 \leq i \leq \mu}$ of \mathcal{M} and if $H=$ $\left(H_{i j}\right) \in \mathrm{GL}_{\mu}(R(I))$ is the change of basis matrix defined by $e_{i}^{\prime}=\sum_{i=1}^{\mu} H_{i j} e_{i}$ for all $1 \leq i \leq \mu$, it is known that:

- the matrices G and G^{\prime} are related by the formula $G^{\prime}=H G H^{-1}+\partial(H) H^{-1}$. The matrix $H G H^{-1}+\partial(H) H^{-1}$ is denoted $H[G]$.
- if Y is a solution matrix for the system $\frac{d}{d x} X=$ $G X$ with coefficients in a differential field extension of $R(I)$, then the matrix $H Y$ is a solution matrix for $\frac{d}{d x} X=H[G] X$.
Generic radius of convergence. Let \mathcal{M} be an $R(I)$-differential module of rank $\mu, G=\left(G_{i j}\right) \in$ $\mathrm{M}_{\mu}(R(I))$ an associated matrix to $\mathcal{M},\left(G_{n}\right)_{n}$ a sequence of matrices defined by

$$
G_{0}=\mathbf{I}_{\mu} \quad \text { and } \quad G_{n+1}=\partial\left(G_{n}\right)+G_{n} G,
$$

and $\|G\|_{r}=\max \left|G_{i j}\right|_{r}$ be the norm of G associated to the absolute value $|\cdot|_{r}$. For any $r \in I$, the quantity $R(\mathcal{M}, r)=\min \left(r, \liminf \left\|G_{n}\right\|_{r}^{-1 / n}\right)$ represents the radius of convergence in the generic disc $D\left(t_{r}, r^{-}\right)$of the solution matrix

$$
\mathcal{U}_{G, t_{r}}(x)=\sum_{n \geq 0} \frac{G_{n}\left(t_{r}\right)}{n!}\left(x-t_{r}\right)^{n}
$$

of the system $\frac{d}{d x} X=G X$ with $X\left(t_{r}\right)=\mathbf{I}_{\mu}$. We know that the function $r \rightarrow R(\mathcal{M}, r)$ is independent of the choice of basis and the ring $R(I)$ [3, Proposition 1.3], and the graph of the map $\rho \mapsto \log \circ R(\mathcal{M}, \exp (\rho))$, on any closed subinterval of I, is a concave polygon with rational slopes [5, Theorem 2]. This graph is called the generic polygon of the convergence of \mathcal{M}. The system $\partial X=G X$ is said to have an analytic and bounded solution in the disk $D\left(t_{r}, R(\mathcal{M}, r)^{-}\right)$if

$$
\sup _{n \geq 0}\left\|\frac{G_{n}}{n!}\right\|_{r} R(\mathcal{M}, r)^{n}<\infty
$$

The $R(I)$-differential module \mathcal{M} is said to be nonRobba if $R(\mathcal{M}, r)<r$ for all $r \in I$.

Frobenius. Let $\varphi: \mathcal{C}(I) \rightarrow \mathcal{C}\left(I^{p}\right)$ be the Frobenius ramification $x \mapsto x^{p}$, where I^{p} is the image of I by the map $x \mapsto x^{p}$. A $R\left(I^{p}\right)$-differential module \mathcal{N} is said to be a Frobenius antecedent of an $R(I)$ differential module \mathcal{M} if \mathcal{M} is isomorphic to the inverse image $\varphi^{*} \mathcal{N}$ of \mathcal{N}. In other words, if there exists a matrix $F \in \mathrm{M}_{\mu}\left(R\left(I^{p}\right)\right)$ of the derivation $d / d z$ (where $z=x^{p}$) in some $R\left(I^{p}\right)$-basis of \mathcal{N} such that $p x^{p-1} F\left(x^{p}\right)$ is a matrix of $d / d x$ in some $R(I)$ basis of \mathcal{M}. The existence of such a Frobenius antecedent depends of the values of the function $r \mapsto R(\mathcal{M}, r)$. Recall the Frobenius structure theorem of Christol-Mebkhout [4, Theorem 4.1-4] where $\pi=p^{-1 / p-1}$:

Theorem 1.1. Let h be a positive integer and let \mathcal{M} be a $R(I)$-differential module such that $R(\mathcal{M}, r)>r \pi^{1 / p^{h-1}}$ for all $r \in I$. Then, there exists an $R\left(I^{p^{h}}\right)$-differential module \mathcal{N}_{h} such that $\left(\varphi^{h}\right)^{*} \mathcal{N}_{h} \cong \mathcal{M}$ and $R(\mathcal{M}, r)^{p^{h}}=R\left(\mathcal{N}_{h}, r^{p^{h}}\right)$ for any $r \in I$, and \mathcal{N}_{h} is called a Frobenius antecedent of order h of \mathcal{M}.

In particular, if a $R(I)$-differential module \mathcal{M} satisfies $R(\mathcal{M}, r)>r \pi$ for all $r \in I$, it has a Frobenius antecedent.
2. Main theorem. In this section, I denotes an open interval in $\mathbf{R}_{>0}$ and \mathcal{M} a non-Robba $\mathcal{A}(I)$ differential module associated to some matrix $G \in \mathrm{M}_{\mu}(\mathcal{A}(I))$.

Theorem 2.1. Assume that the generic polygon of convergence of \mathcal{M} has only one slope. Then

$$
\sup _{n \geq 0}\left\|\frac{G_{n}}{n!}\right\|_{r} R(\mathcal{M}, r)^{n}<\infty \quad \text { for all } \quad r \in I
$$

The proof of this theorem is based on the following lemmas:

Lemma 2.2. Assume $R(\mathcal{M}, r)>\pi r$ for all $r \in$ I and let \mathcal{N} be a Frobenius antecedent of \mathcal{M}. Let F be an associated matrix to \mathcal{N} and assume there exists a real $r_{0} \in I$ such that $\sup _{n \geq 0}\left\|\frac{F_{n}}{n!}\right\|_{r_{0}^{p}} R\left(\mathcal{N}, r_{0}^{p}\right)^{n}<\infty$. Then $\sup _{n \geq 0}\left\|\frac{G_{n}}{n!}\right\|_{r_{0}} R\left(\mathcal{M}, r_{0}\right)^{n}<\infty$.

Proof. The matrix $\mathcal{V}(z)=\left(\mathcal{V}_{i j}(z)\right)_{i j}=$ $\mathcal{V}_{F, t_{r_{0}}^{p}}(z)=\sum_{n \geq 0} \frac{F_{n}\left(t_{r_{0}}^{p}\right)}{n!}\left(z-t_{r_{0}}^{p}\right)^{n}$ is the solution matrix of the differential system $\frac{d}{d z} V(z)=F(z) V(z)$ in the neighborhood of $t_{r_{0}}^{p}$ with $z=x^{p}$ and $\mathcal{V}\left(t_{r_{0}^{p}}\right)=\mathbf{I}_{\mu}$. The change of variables leads to $\frac{d}{d x} \mathcal{V}\left(x^{p}\right)=$ $p x^{p-1} F\left(x^{p}\right) \mathcal{V}\left(x^{p}\right)$. In addition, since $R\left(\mathcal{M}, r_{0}\right)>\pi r_{0}$, the map $x \mapsto x^{p}$ sends the closed disk $D\left(t_{r_{0}}\right.$, $\left.R\left(\mathcal{M}, r_{0}\right)\right)$ into $D\left(t_{r_{0}}^{p}, R\left(\mathcal{M}, r_{0}\right)^{p}\right)=D\left(t_{r_{0}}^{p}, R\left(\mathcal{N}, r_{0}^{p}\right)\right)$ [1, Lemma 3.1], and $\quad \sup _{n \geq 0}\left\|\frac{F_{n}\left(t_{r_{0}}^{p}\right.}{n!}\right\| \cdot\left|x^{p}-t_{r_{0}}^{p}\right|^{n}=$ $\sup _{n \geq 0}\left(\left\|\frac{F_{n}\left(t_{r_{0}}^{p}\right)}{n!}\right\| \cdot\left|x^{p-1}+x^{p-1} t_{r_{0}}+\ldots+t_{r_{0}}^{p-1}\right|^{n} \cdot\left|x-t_{r_{0}}\right|^{n}\right)<\infty$
for all $x \in D\left(t_{r_{0}}, R\left(\mathcal{M}, r_{0}\right)\right)$. In the neighborhood of $t_{r_{0}}$, the matrix $\mathcal{V}_{F, t_{r_{0}}^{p}}\left(x^{p}\right)$ can be written as $\mathcal{V}\left(x^{p}\right)=$ $\sum_{n \geq 0} B_{n}\left(x-t_{r_{0}}\right)^{n}$ where $B_{n}=\left(B_{n}(i, j)\right)_{i j}$ are $\nu \times \nu$ matrices with entries un Ω. In that case, we have $\lim _{n \rightarrow \infty}\left|B_{n}(i, j)\right| \rho^{n}=0$ for any $\rho<R\left(\mathcal{M}, r_{0}\right)$, and therefore

$$
\begin{align*}
\sup _{n \geq 0}\left|B_{n}(i, j)\right| \rho^{n} & =\sup _{x \in D\left(r_{r}, \rho\right)}\left|\mathcal{V}_{i j}\left(x^{p}\right)\right| \tag{2.1}\\
& \leq \sup _{z \in D\left(t_{r_{0}}^{p}, \rho^{p}\right)}\left|\mathcal{V}_{i j}(z)\right| \\
& =\sup _{n \geq 0}\left\|\frac{F_{n}\left(t_{r_{0}}^{p}\right)}{n!}\right\| \rho^{p n} .
\end{align*}
$$

Since the matrix $\mathcal{V}(z)$ is analytic and bounded in $D\left(t_{r_{0}}^{p}, R\left(\mathcal{N}, r_{0}^{p}\right)^{-}\right)$, there exists a positive constant $C>0$, by [2, Proposition 2.3.3], such that

$$
\begin{equation*}
\sup _{n \geq 0}\left\|\frac{F_{n}\left(t_{r_{0}}^{p}\right)}{n!}\right\| \rho^{p n}<C \tag{2.2}
\end{equation*}
$$

for any $\rho<R\left(\mathcal{M}, r_{0}\right)$ and close to $R\left(\mathcal{M}, r_{0}\right)$. Combining (2.1) and (2.2), and using again [2, Proposition 2.3.3], we find $\sup _{n \geq 0}\left|B_{n}(i, j)\right| R\left(\mathcal{M}, r_{0}\right)^{n}<\infty$ for all $1 \leq$ $i, j \leq \nu$, and therefore, the matrix $\mathcal{V}\left(x^{p}\right)$ is analytic and bounded in the disk $D\left(t_{r_{0}}, R\left(\mathcal{M}, r_{0}\right)^{-}\right)$. In addition, since the matrix $p x^{p-1} F\left(x^{p}\right)$ is associated
to \mathcal{M}, then there exists an invertible matrix $H \in$ $\mathrm{GL}_{\mu}(\mathcal{A}(I))$ (hence H is analytic and bounded in the disk $\left.D\left(t_{r_{0}}, R\left(\mathcal{M}, r_{0}\right)^{-}\right)\right)$such that

$$
G=H\left[p x^{p-1} F\left(x^{p}\right)\right] .
$$

Thus, by [2, Proposition 2.3.2], the matrix $H \mathcal{V}\left(x^{p}\right)$ is a solution to the system $\partial X=G X$ in the neighborhood of $t_{r_{0}}$, and moreover it is analytic and bounded in the disk $D\left(t_{r_{0}}, R\left(\mathcal{M}, r_{0}\right)^{-}\right)$. This means that $\mathcal{U}_{G, t_{r_{0}}}(x)=H \mathcal{V}\left(x^{p}\right) H\left(t_{r_{0}}\right)^{-1}$ is also analytic and bounded in the disk $D\left(t_{r_{0}}, R\left(\mathcal{M}, r_{0}\right)^{-}\right)$.

Lemma 2.3. The set of reals r in I for which

$$
\sup _{n \geq 0}\left\|\frac{G_{n}}{n!}\right\|_{r} R(\mathcal{M}, r)^{n}<\infty
$$

is dense in I.
Proof. Let J be a closed subinterval of I not reduced to a point and let ρ be a real number in the interior of J. Then, by hypothesis, $R(\mathcal{M}, \rho) / \rho<1$ and therefore there exists an integer h such that $\pi^{1 / p^{h-1}}<R(\mathcal{M}, \rho) / \rho<\pi^{1 / p^{h}}$. Since the function $r \mapsto$ $R(\mathcal{M}, r)$ is continuous on J, there exists an open subinterval $J^{\prime} \subset J$ containing ρ such that $\pi^{1 / p^{h-1}} r<$ $R(\mathcal{M}, r)<\pi^{1 / p^{h}} r$ for all $r \in J^{\prime}$.
There are two cases to consider:
Case 1: $h \leq 0$.
Let $\dot{\mathcal{H}}\left(J^{\prime}\right)$ be the quotient field of $\mathcal{H}\left(J^{\prime}\right)$. By cyclic vector lemma, we can associate $\dot{\mathcal{H}}\left(J^{\prime}\right) \otimes \mathcal{M}$ to a differential equation $\Delta(\dot{\mathcal{H}}(J) \otimes \mathcal{M})=\partial^{\mu}+$ $q_{1}(x) \partial^{\mu-1}+\cdots+q_{\mu}(x)$, where $q_{i} \in \dot{\mathcal{H}}\left(J^{\prime}\right)$ for $i=$ $1, \ldots, \mu$. Now pick a nonempty subinterval $J^{\prime \prime}$ of J^{\prime} such that $q_{i} \in \mathcal{H}\left(J^{\prime \prime}\right)$ for $i=1, \ldots, \mu$, and let r_{0} be a real number in the interval $J^{\prime \prime}$ and $\lambda\left(r_{0}\right)$ be the maximum of the p-adic absolute values of the roots of the polynomial $\Delta(\dot{\mathcal{H}}(J) \otimes \mathcal{M})=\lambda^{\mu}+$ $q_{1}\left(t_{r_{0}}\right) \lambda^{\mu-1}+\cdots+q_{\mu}\left(t_{r_{0}}\right) . \quad$ Since $\quad R\left(\mathcal{M}, r_{0}\right)=$ $R\left(\dot{\mathcal{H}}(J) \otimes \mathcal{M}, r_{0}\right)<\pi^{1 / p^{h}} r_{0}<\pi r_{0}, \quad$ by virtue of $\left[6\right.$, Theorem 3.1], we have $\log \left(R\left(\mathcal{M}, r_{0}\right)\right)=\frac{1}{p-1}+$ $\log \left(\lambda\left(r_{0}\right)\right)$ and all the solutions u_{1}, \ldots, u_{μ} of $\Delta(\dot{\mathcal{H}}(J) \otimes \mathcal{M})$ in the neighborhood of $t_{r_{0}}$ are analytic and bounded in the disk $D\left(t_{r_{0}}, R\left(\mathcal{M}, r_{0}\right)^{-}\right)$. Now let W be the wronskian matrix of $\left(u_{1}, \ldots, u_{\mu}\right)$. Then, W is a solution of the system $\partial X=A_{\Delta(\dot{\mathcal{H}}(J) \otimes \mathcal{M})} X$ where

$$
A_{\Delta(\dot{\mathcal{H}}(J) \otimes \mathcal{M})}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & & 1 \\
-q_{\mu} & -q_{\mu-1} & -q_{\mu-2} & \ldots & -q_{1}
\end{array}\right]
$$

Moreover, by [2, Proposition 2.3.2], the matrix W is analytic and bounded in the disk $D\left(t_{r_{0}}, R\left(\mathcal{M}, r_{0}\right)^{-}\right)$. Since G and $A_{\Delta(\dot{\mathcal{H}}(J) \otimes \mathcal{M})}$ are associated to $\mathcal{H}\left(J^{\prime \prime}\right) \otimes$ \mathcal{M}, there exists a matrix $H \in \mathrm{GL}_{\mu}\left(\mathcal{H}\left(J^{\prime \prime}\right)\right)$ such that $G=H\left[A_{\Delta(\dot{\mathcal{H}}(J) \otimes \mathcal{M})}\right]$. Since $R\left(\mathcal{M}, r_{0}\right)<r_{0}$, the matrix H is analytic and bounded in the disk $D\left(t_{r_{0}}, R\left(\mathcal{M}, r_{0}\right)^{-}\right)$. Hence, by [2, Proposition 2.3.2], the matrix $\mathcal{U}_{G, t_{r_{0}}}(x)=H W H\left(t_{r_{0}}\right)^{-1}$ is also analytic and bounded in the disk $D\left(t_{r_{0}}, R\left(\mathcal{M}, r_{0}\right)\right)$. This ends the proof of the lemma in this case.

Case 2: $\boldsymbol{h}>\mathbf{0}$.

Applying Theorem 1.1 to $\mathcal{H}\left(J^{\prime}\right) \otimes \mathcal{M}$, there exists a $\mathcal{H}\left(J^{\prime p^{h}}\right)$-differential module \mathcal{N}_{h} which is a Frobenius antecedent of order h of $\mathcal{H}\left(J^{\prime}\right) \otimes \mathcal{M}$. Moreover, $R\left(\mathcal{N}_{h}, \rho\right)<\pi \rho$ for all $\rho \in J^{\prime p^{h}}$. Let ${ }^{h} F$ be an associated matrix of \mathcal{N}_{h}. Then, by case 1 , there exists $r_{0} \in$ J^{\prime} such that ${ }^{h} F$ is analytic and bounded in the disk $D\left(t_{r_{0}}^{p^{h}}, R\left(\mathcal{N}_{h}, r_{0}^{p^{h}}\right)\right)$. The proof of the lemma in this case can be concluded by iteration of Lemma 2.2.

Proof of Theorem 2.1. By hypothesis, the generic polygon of convergence of \mathcal{M} has only one slope. This slope is a rational number by [5, Theorem 2]. Thus, we may assume there exist $\alpha \in \mathbf{C}_{p}$ and $\beta \in \mathbf{Q}$ such that $R(\mathcal{M}, r)=|\alpha| r^{\beta}$ for all $r \in I$.
Let now r be a real in the interior of I. Then, by Lemma 2.3, there exist two reals $r_{1}, r_{2} \in I$ such that $r_{1}<r<r_{2}$ with $\sup _{n \geq 0}\left\|\frac{G_{n}}{n!}\right\|_{r_{1}} R\left(\mathcal{M}, r_{1}\right)^{n}<\infty$ and $\sup _{n \geq 0}\left\|\frac{G_{n}}{n!}\right\|_{r_{2}} R\left(\mathcal{M}, r_{2}\right)^{n}<\infty$, which are equivalent to $\sup _{n \geq 0}\left\|\frac{G_{n}}{n!} \alpha^{n} x^{n \beta}\right\|_{r_{1}}<\infty$ and $\sup _{n \geq 0}\left\|\frac{G_{n}}{n!} \alpha^{n} x^{n \beta}\right\|_{r_{2}}<\infty$. Since all the matrices $\alpha^{n} x^{n \beta} G_{n}$ have all their entries in $\mathcal{H}\left[r_{1}, r_{2}\right]$, and for any element $f \in \mathcal{H}\left(\left[r_{1}, r_{2}\right]\right)$, we have $|f|_{r} \leq$ $\max \left(|f|_{r_{1}},|f|_{r_{2}}\right)$, then for any integer $n \geq 0$, we have

$$
\begin{aligned}
& \left\|\frac{G_{n}}{n!}\right\|_{r} R(\mathcal{M}, r)^{n} \leq\left\|\frac{G_{n}}{n!} \alpha^{n} x^{n \beta}\right\|_{r} \\
& \quad \leq \max \left(\left\|\frac{G_{n}}{n!} \alpha^{n} x^{n \beta}\right\|_{r_{1}},\left\|\frac{G_{n}}{n!} \alpha^{n} x^{n \beta}\right\|_{r_{2}}\right) \\
& \quad \leq \max \left(\sup _{n \geq 0}\left\|\frac{G_{n}}{n!} \alpha^{n} x^{n \beta}\right\|_{r_{1}}, \sup _{n \geq 0}\left\|\frac{G_{n}}{n!} \alpha^{n} x^{n \beta}\right\|_{r_{2}}\right) .
\end{aligned}
$$

Hence, for

$$
\begin{aligned}
& \sup _{n \geq 0}\left\|\frac{G_{n}}{n!}\right\|_{r} R(\mathcal{M}, r)^{n} \\
& \quad \leq \max \left(\sup _{n \geq 0}\left\|\frac{G_{n}}{n!} \alpha^{n} x^{n \beta}\right\|_{r_{1}}, \sup _{n \geq 0}\left\|\frac{G_{n}}{n!} \alpha^{n} x^{n \beta}\right\|_{r_{2}}\right) \\
& \quad<\infty
\end{aligned}
$$

References

[1] F. Baldassarri and B. Chiarellotto, On Christol's theorem. A generalization to systems of PDE's with logarithmic singularities depending upon parameters, in p-adic methods in number theory and algebraic geometry, Contemp. Math. 133 (1992), 1-24.
[2] G. Christol, Modules différentiels et équations différentielles p-adiques, Queen's Papers in Pure and Applied Mathematics, 66, Queen's Univ., Kingston, ON, 1983.
[3] G. Christol and B. Dwork, Modules différentiels sur des couronnes, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 3, 663-701.
[4] G. Christol and Z. Mebkhout, Sur le théorème de l'indice des équations différentielles p-adiques. III, Ann. of Math. (2) 151 (2000), no. 2, 385457.
[5] E. Pons, Polygone de convergence d'un module différentiel p-adique, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 1, 77-80.
[6] P. T. Young, Radii of convergence and index for p adic differential operators, Trans. Amer. Math. Soc. 333 (1992), no. 2, 769-785.

[^0]: 2010 Mathematics Subject Classification. Primary 12H25.

