A note on non-Robba *p*-adic differential equations

By Said MANJRA

Department of Mathematics, College of Science, Imam University, P. O. Box: 240337, Riyadh 11322, Saudi Arabia

(Communicated by Masaki KASHIWARA, M.J.A., Feb. 14, 2011)

Abstract: Let \mathcal{M} be a differential module, whose coefficients are analytic elements on an open annulus $I \ (\subset \mathbf{R}_{>0})$ in a valued field, complete and algebraically closed of inequal characteristic, and let $R(\mathcal{M}, r)$ be the radius of convergence of its solutions in the neighborhood of the generic point t_r of absolute value r, with $r \in I$. Assume that $R(\mathcal{M}, r) < r$ on I and, in the logarithmic coordinates, the function $r \longrightarrow R(\mathcal{M}, r)$ has only one slope on I. In this paper, we prove that for any $r \in I$, all the solutions of \mathcal{M} in the neighborhood of t_r are analytic and bounded in the disk $D(t_r, R(\mathcal{M}, r)^-)$.

Key words: *p*-adic differential equations; Frobenius antecedent theorem.

1. Notations and Preliminaries. Let p be a prime number, \mathbf{Q}_p the completion of the field of rational numbers for the p-adic absolute value |.|, \mathbf{C}_p the completion of the algebraic closure of \mathbf{Q}_p , and Ω_p a p-adic complete and algebraically closed field containing \mathbf{C}_p such that its value group is $\mathbf{R}_{\geq 0}$ and the residue class field is strictly transcendental over $\mathbf{F}_{p^{\infty}}$. For any positive real r, t_r will denote a generic point of Ω such that $|t_r| = r$. Let Ibe a bounded interval in $\mathbf{R}_{>0}$. We denote by $\mathcal{A}(I)$ the ring of analytic functions, on the annuli

$$\mathcal{C}(I) := \{ a \in \Omega_p \mid |a| \in I \}, \qquad \mathcal{A}(I) = \left\{ \sum_{n \in \mathbf{Z}} a_n x^n \in \mathbf{C}_p[[x, 1/x]] \mid \lim_{n \to \mp \infty} |a_n| r^n = 0, \forall r \in I \right\}, \quad \text{and} \quad \text{by}$$

 $\mathcal{H}(I)$ the completion of the ring of rational fractions f of $\mathbf{C}_p(x)$ having no pole in $\mathcal{C}(I)$ with respect to the norm $||f||_I := \sup_{r \in I} |f(t_r)|$. It is well known that $\mathcal{H}(I) \subseteq \mathcal{A}(I)$, with equality if I is closed. We define, for any $r \in I$, the absolute value $|.|_r$ over $\mathcal{A}(I)$ by

$$\left|\sum_{n\in\mathbf{Z}}a_nx^n\right|_r = \sup_{n\in\mathbf{Z}}|a_n|r^n.$$

Let R(I) denotes $\mathcal{A}(I)$ or $\mathcal{H}(I)$. A free R(I)module \mathcal{M} of finite rank μ is said to be R(I)differential module if it is equipped with a R(I)linear map $D: \mathcal{M} \to \mathcal{M}$ such that D(am) = $\partial(a)m + aD(m)$ for any $a \in R(I)$ and any $m \in \mathcal{M}$ where $\partial = d/dx$. To each R(I)-basis $\{e_i\}_{1 \leq i \leq \mu}$ of \mathcal{M} over R(I) corresponds a matrix $G = (G_{ij}) \in$

$$M_{\mu}(R(I))$$
 satisfying $D(e_i) = \sum_{j=1}^{\mu} G_{ij}e_j$, called the

matrix of ∂ with respect to the R(I)-basis $\{e_i\}_{1 \le i \le \mu}$ or simply an associated matrix to \mathcal{M} , together with a differential system $\partial X = GX$ where X denotes a column vector $\mu \times 1$ or $\mu \times \mu$ matrix (see [2,3]). If $G' \in M_{\mu}(R(I))$ is the matrix of ∂ with respect to another R(I)-basis $\{e'_i\}_{1 \le i \le \mu}$ of \mathcal{M} and if H = $(H_{ij}) \in \operatorname{GL}_{\mu}(R(I))$ is the change of basis matrix defined by $e'_i = \sum_{i=1}^{\mu} H_{ij}e_i$ for all $1 \le i \le \mu$, it is

known that:

- the matrices G and G' are related by the formula $G' = HGH^{-1} + \partial(H)H^{-1}$. The matrix $HGH^{-1} + \partial(H)H^{-1}$ is denoted H[G].
- if Y is a solution matrix for the system $\frac{d}{dx}X = GX$ with coefficients in a differential field extension of R(I), then the matrix HY is a solution matrix for $\frac{d}{dx}X = H[G]X$.

Generic radius of convergence. Let \mathcal{M} be an R(I)-differential module of rank μ , $G = (G_{ij}) \in$ $M_{\mu}(R(I))$ an associated matrix to \mathcal{M} , $(G_n)_n$ a sequence of matrices defined by

$$G_0 = \mathbf{I}_{\mu}$$
 and $G_{n+1} = \partial(G_n) + G_n G$,

and $||G||_r = \max_{ij} |G_{ij}|_r$ be the norm of G associated to the absolute value $|.|_r$. For any $r \in I$, the quantity $R(\mathcal{M}, r) = \min(r, \liminf_{n \to \infty} ||G_n||_r^{-1/n})$ represents the radius of convergence in the generic disc $D(t_r, r^-)$ of the solution matrix

²⁰¹⁰ Mathematics Subject Classification. Primary 12H25.

No. 3]

$$\mathcal{U}_{G,t_r}(x) = \sum_{n \ge 0} \frac{G_n(t_r)}{n!} (x - t_r)^n$$

of the system $\frac{d}{dx}X = GX$ with $X(t_r) = \mathbf{I}_{\mu}$. We know that the function $r \to R(\mathcal{M}, r)$ is independent of the choice of basis and the ring R(I) [3, Proposition 1.3], and the graph of the map $\rho \mapsto \log \circ R(\mathcal{M}, \exp(\rho))$, on any closed subinterval of I, is a concave polygon with rational slopes [5, Theorem 2]. This graph is called the generic polygon of the convergence of \mathcal{M} . The system $\partial X = GX$ is said to have an analytic and bounded solution in the disk $D(t_r, R(\mathcal{M}, r)^-)$ if

$$\sup_{n\geq 0} \left\| \frac{G_n}{n!} \right\|_r R(\mathcal{M}, r)^n < \infty.$$

The R(I)-differential module \mathcal{M} is said to be non-Robba if $R(\mathcal{M}, r) < r$ for all $r \in I$.

Frobenius. Let $\varphi : \mathcal{C}(I) \to \mathcal{C}(I^p)$ be the Frobenius ramification $x \mapsto x^p$, where I^p is the image of I by the map $x \mapsto x^p$. A $R(I^p)$ -differential module \mathcal{N} is said to be a Frobenius antecedent of an R(I)-differential module \mathcal{M} if \mathcal{M} is isomorphic to the inverse image $\varphi^* \mathcal{N}$ of \mathcal{N} . In other words, if there exists a matrix $F \in M_\mu(R(I^p))$ of the derivation d/dz (where $z = x^p$) in some $R(I^p)$ -basis of \mathcal{N} such that $px^{p-1}F(x^p)$ is a matrix of d/dx in some R(I)-basis of \mathcal{M} . The existence of such a Frobenius antecedent depends of the values of the function $r \mapsto R(\mathcal{M}, r)$. Recall the Frobenius structure theorem of Christol-Mebkhout [4, Theorem 4.1-4] where $\pi = p^{-1/p-1}$:

Theorem 1.1. Let h be a positive integer and let \mathcal{M} be a R(I)-differential module such that $R(\mathcal{M},r) > r\pi^{1/p^{h-1}}$ for all $r \in I$. Then, there exists an $R(I^{p^h})$ -differential module \mathcal{N}_h such that $(\varphi^h)^*\mathcal{N}_h \cong \mathcal{M}$ and $R(\mathcal{M},r)^{p^h} = R(\mathcal{N}_h,r^{p^h})$ for any $r \in I$, and \mathcal{N}_h is called a Frobenius antecedent of order h of \mathcal{M} .

In particular, if a R(I)-differential module \mathcal{M} satisfies $R(\mathcal{M}, r) > r\pi$ for all $r \in I$, it has a Frobenius antecedent.

2. Main theorem. In this section, I denotes an open interval in $\mathbf{R}_{>0}$ and \mathcal{M} a non-Robba $\mathcal{A}(I)$ differential module associated to some matrix $G \in \mathcal{M}_{\mu}(\mathcal{A}(I)).$

Theorem 2.1. Assume that the generic polygon of convergence of \mathcal{M} has only one slope. Then

$$\sup_{n\geq 0} \left\| \frac{G_n}{n!} \right\|_r R(\mathcal{M}, r)^n < \infty \quad for \ all \quad r \in I.$$

The proof of this theorem is based on the following lemmas:

Lemma 2.2. Assume $R(\mathcal{M}, r) > \pi r$ for all $r \in I$ and let \mathcal{N} be a Frobenius antecedent of \mathcal{M} . Let F be an associated matrix to \mathcal{N} and assume there exists a real $r_0 \in I$ such that $\sup_{n\geq 0} \left\|\frac{F_n}{n!}\right\|_{r_0} R(\mathcal{N}, r_0^p)^n < \infty$. Then $\sup_{n\geq 0} \left\|\frac{G_n}{n!}\right\|_{r_0} R(\mathcal{M}, r_0)^n < \infty$. Proof. The matrix $\mathcal{V}(z) = (\mathcal{V}_{ij}(z))_{ij} = \mathcal{V}_{\mathcal{D}, \mathcal{U}}(z) = \sum_{n\geq 0} \frac{F_n(t_{r_0}^p)}{n!} (z - t_{r_0}^p)^n$ is the solution matrix.

 $\mathcal{V}_{F,t_{r_{0}}^{p}}(z) = \sum_{n \ge 0} \frac{F_{n}(t_{r_{0}}^{p})}{n!} (z - t_{r_{0}}^{p})^{n} \text{ is the solution matrix}$

of the differential system $\frac{d}{dz}V(z) = F(z)V(z)$ in the neighborhood of $t_{r_0}^p$ with $z = x^p$ and $\mathcal{V}(t_{r_0}^p) = \mathbf{I}_{\mu}$. The change of variables leads to $\frac{d}{dx}\mathcal{V}(x^p) = px^{p-1}F(x^p)\mathcal{V}(x^p)$. In addition, since $R(\mathcal{M}, r_0) > \pi r_0$, the map $x \mapsto x^p$ sends the closed disk $D(t_{r_0}, R(\mathcal{M}, r_0))$ into $D(t_{r_0}^p, R(\mathcal{M}, r_0)^p) = D(t_{r_0}^p, R(\mathcal{N}, r_0^p))$ [1, Lemma 3.1], and $\sup_{n\geq 0} \left\| \frac{F_n(t_{r_0}^p)}{n!} \right\| . |x^p - t_{r_0}^p|^n = \sup_{n\geq 0} \left(\left\| \frac{F_n(t_{r_0}^p)}{n!} \right\| . |x^{p-1} + x^{p-1}t_{r_0} + \ldots + t_{r_0}^{p-1}|^n . |x - t_{r_0}|^n \right) < \infty$

for all $x \in D(t_{r_0}, R(\mathcal{M}, r_0))$. In the neighborhood of t_{r_0} , the matrix $\mathcal{V}_{F, t_{r_0}^p}(x^p)$ can be written as $\mathcal{V}(x^p) = \sum_{n \ge 0} B_n (x - t_{r_0})^n$ where $B_n = (B_n(i, j))_{ij}$ are $\nu \times \nu$ matrices with entries un Ω . In that case, we have $\lim_{n \to \infty} |B_n(i, j)| \rho^n = 0$ for any $\rho < R(\mathcal{M}, r_0)$, and therefore

$$(2.1) \qquad \sup_{n\geq 0} |B_n(i,j)|\rho^n = \sup_{x\in D(t_{r_0},\rho)} |\mathcal{V}_{ij}(x^p)|$$
$$\leq \sup_{z\in D(t_{r_0}^p,\rho^p)} |\mathcal{V}_{ij}(z)|$$
$$= \sup_{n\geq 0} \left\| \frac{F_n(t_{r_0}^p)}{n!} \right\| \rho^{pn}.$$

Since the matrix $\mathcal{V}(z)$ is analytic and bounded in $D(t_{r_0}^p, R(\mathcal{N}, r_0^p)^-)$, there exists a positive constant C > 0, by [2, Proposition 2.3.3], such that

(2.2)
$$\sup_{n \ge 0} \left\| \frac{F_n(t_{r_0}^p)}{n!} \right\| \rho^{pn} < C$$

for any $\rho < R(\mathcal{M}, r_0)$ and close to $R(\mathcal{M}, r_0)$. Combining (2.1) and (2.2), and using again [2, Proposition 2.3.3], we find $\sup_{n\geq 0} |B_n(i,j)| R(\mathcal{M}, r_0)^n < \infty$ for all $1 \leq i, j \leq \nu$, and therefore, the matrix $\mathcal{V}(x^p)$ is analytic and bounded in the disk $D(t_{r_0}, R(\mathcal{M}, r_0)^-)$. In addition, since the matrix $px^{p-1}F(x^p)$ is associated to \mathcal{M} , then there exists an invertible matrix $H \in \operatorname{GL}_{\mu}(\mathcal{A}(I))$ (hence H is analytic and bounded in the disk $D(t_{r_0}, R(\mathcal{M}, r_0)^-)$) such that

$$G = H[px^{p-1}F(x^p)].$$

Thus, by [2, Proposition 2.3.2], the matrix $H\mathcal{V}(x^p)$ is a solution to the system $\partial X = GX$ in the neighborhood of t_{r_0} , and moreover it is analytic and bounded in the disk $D(t_{r_0}, R(\mathcal{M}, r_0)^-)$. This means that $\mathcal{U}_{G,t_{r_0}}(x) = H\mathcal{V}(x^p)H(t_{r_0})^{-1}$ is also analytic and bounded in the disk $D(t_{r_0}, R(\mathcal{M}, r_0)^-)$.

Lemma 2.3. The set of reals r in I for which

$$\sup_{n\geq 0} \left\| \frac{G_n}{n!} \right\|_r R(\mathcal{M}, r)^n < \infty$$

is dense in I.

Proof. Let J be a closed subinterval of I not reduced to a point and let ρ be a real number in the interior of J. Then, by hypothesis, $R(\mathcal{M}, \rho)/\rho < 1$ and therefore there exists an integer h such that $\pi^{1/p^{h-1}} < R(\mathcal{M}, \rho)/\rho < \pi^{1/p^h}$. Since the function $r \mapsto$ $R(\mathcal{M}, r)$ is continuous on J, there exists an open subinterval $J' \subset J$ containing ρ such that $\pi^{1/p^{h-1}}r < R(\mathcal{M}, r) < \pi^{1/p^h}r$ for all $r \in J'$.

There are two cases to consider:

Case 1: $h \leq 0$.

Let $\mathcal{H}(J')$ be the quotient field of $\mathcal{H}(J')$. By cyclic vector lemma, we can associate $\mathcal{H}(J') \otimes \mathcal{M}$ to a differential equation $\Delta(\mathcal{H}(J) \otimes \mathcal{M}) = \partial^{\mu} +$ $q_1(x)\partial^{\mu-1} + \cdots + q_\mu(x)$, where $q_i \in \dot{\mathcal{H}}(J')$ for i = $1, \ldots, \mu$. Now pick a nonempty subinterval J'' of J'such that $q_i \in \mathcal{H}(J'')$ for $i = 1, \ldots, \mu$, and let r_0 be a real number in the interval J'' and $\lambda(r_0)$ be the maximum of the *p*-adic absolute values of the roots of the polynomial $\Delta(\mathcal{H}(J) \otimes \mathcal{M}) = \lambda^{\mu} +$ $q_1(t_{r_0})\lambda^{\mu-1} + \cdots + q_\mu(t_{r_0}).$ Since $R(\mathcal{M}, r_0) =$ $R(\dot{\mathcal{H}}(J)\otimes\mathcal{M},r_0)<\pi^{1/p^h}r_0<\pi r_0,$ by virtue of [6, Theorem 3.1], we have $\log(R(\mathcal{M}, r_0)) = \frac{1}{n-1} +$ $\log(\lambda(r_0))$ and all the solutions u_1, \ldots, u_{μ} of $\Delta(\mathcal{H}(J)\otimes\mathcal{M})$ in the neighborhood of t_{r_0} are analytic and bounded in the disk $D(t_{r_0}, R(\mathcal{M}, r_0)^-)$. Now let W be the wronskian matrix of (u_1, \ldots, u_μ) . Then, W is a solution of the system $\partial X = A_{\Delta(\mathcal{H}(J)\otimes\mathcal{M})}X$ where

$$A_{\Delta(\dot{\mathcal{H}}(J)\otimes\mathcal{M})} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & & 1 \\ -q_{\mu} & -q_{\mu-1} & -q_{\mu-2} & \dots & -q_1 \end{bmatrix}.$$

Moreover, by [2, Proposition 2.3.2], the matrix W is analytic and bounded in the disk $D(t_{r_0}, R(\mathcal{M}, r_0)^-)$. Since G and $A_{\Delta(\dot{\mathcal{H}}(J)\otimes\mathcal{M})}$ are associated to $\mathcal{H}(J'')\otimes\mathcal{M}$, there exists a matrix $H \in \operatorname{GL}_{\mu}(\mathcal{H}(J''))$ such that $G = H[A_{\Delta(\dot{\mathcal{H}}(J)\otimes\mathcal{M})}]$. Since $R(\mathcal{M}, r_0) < r_0$, the matrix H is analytic and bounded in the disk $D(t_{r_0}, R(\mathcal{M}, r_0)^-)$. Hence, by [2, Proposition 2.3.2], the matrix $\mathcal{U}_{G,t_{r_0}}(x) = HWH(t_{r_0})^{-1}$ is also analytic and bounded in the disk $D(t_{r_0}, R(\mathcal{M}, r_0))$. This ends the proof of the lemma in this case.

Case 2: h > 0.

Applying Theorem 1.1 to $\mathcal{H}(J') \otimes \mathcal{M}$, there exists a $\mathcal{H}(J'^{p^h})$ -differential module \mathcal{N}_h which is a Frobenius antecedent of order h of $\mathcal{H}(J') \otimes \mathcal{M}$. Moreover, $R(\mathcal{N}_h, \rho) < \pi \rho$ for all $\rho \in J'^{p^h}$. Let hF be an associated matrix of \mathcal{N}_h . Then, by case 1, there exists $r_0 \in J'$ such that hF is analytic and bounded in the disk $D(t_{r_0}^{p^h}, R(\mathcal{N}_h, r_0^{p^h}))$. The proof of the lemma in this case can be concluded by iteration of Lemma 2.2. \Box

Proof of Theorem 2.1. By hypothesis, the generic polygon of convergence of \mathcal{M} has only one slope. This slope is a rational number by [5, Theorem 2]. Thus, we may assume there exist $\alpha \in \mathbf{C}_p$ and $\beta \in \mathbf{Q}$ such that $R(\mathcal{M}, r) = |\alpha| r^{\beta}$ for all $r \in I$.

Let now r be a real in the interior of I. Then, by Lemma 2.3, there exist two reals $r_1, r_2 \in I$ such that $r_1 < r < r_2$ with $\sup_{n\geq 0} \left\|\frac{G_n}{n!}\right\|_{r_1} R(\mathcal{M}, r_1)^n < \infty$ and $\sup_{n\geq 0} \left\|\frac{G_n}{n!}\right\|_{r_2} R(\mathcal{M}, r_2)^n < \infty$, which are equivalent to $\sup_{n\geq 0} \left\|\frac{G_n}{n!}\right\|_{r_1} \alpha^n x^{n\beta} \|_{r_1} < \infty$ and

to $\sup_{n\geq 0} \|\frac{G_n}{n!}\|_{r_2} \mathcal{A}(r,r,r_2) < \infty$, which drop equivalent to $\sup_{n\geq 0} \|\frac{G_n}{n!} \alpha^n x^{n\beta}\|_{r_1} < \infty$ and $\sup_{n\geq 0} \|\frac{G_n}{n!} \alpha^n x^{n\beta}\|_{r_2} < \infty$. Since all the matrices $\alpha^n x^{n\beta} G_n$ have all their entries in $\mathcal{H}[r_1, r_2]$, and for any element $f \in \mathcal{H}([r_1, r_2])$, we have $|f|_r \leq \max(|f|_{r_1}, |f|_{r_2})$, then for any integer $n \geq 0$, we have

$$\begin{split} \left\|\frac{G_n}{n!}\right\|_r R(\mathcal{M}, r)^n &\leq \left\|\frac{G_n}{n!} \alpha^n x^{n\beta}\right\|_r \\ &\leq \max\left(\left\|\frac{G_n}{n!} \alpha^n x^{n\beta}\right\|_{r_1}, \left\|\frac{G_n}{n!} \alpha^n x^{n\beta}\right\|_{r_2}\right) \\ &\leq \max\left(\sup_{n\geq 0} \left\|\frac{G_n}{n!} \alpha^n x^{n\beta}\right\|_{r_1}, \sup_{n\geq 0} \left\|\frac{G_n}{n!} \alpha^n x^{n\beta}\right\|_{r_2}\right). \end{split}$$

Hence, for

$$\begin{split} \sup_{n\geq 0} & \left\| \frac{G_n}{n!} \right\|_r R(\mathcal{M}, r)^n \\ &\leq \max\left(\sup_{n\geq 0} \left\| \frac{G_n}{n!} \alpha^n x^{n\beta} \right\|_{r_1}, \sup_{n\geq 0} \left\| \frac{G_n}{n!} \alpha^n x^{n\beta} \right\|_{r_2} \right) \\ &< \infty. \end{split}$$

References

- F. Baldassarri and B. Chiarellotto, On Christol's theorem. A generalization to systems of PDE's with logarithmic singularities depending upon parameters, in *p*-adic methods in number theory and algebraic geometry, Contemp. Math. 133 (1992), 1–24.
- [2] G. Christol, Modules différentiels et équations différentielles p-adiques, Queen's Papers in Pure and Applied Mathematics, 66, Queen's Univ., Kingston, ON, 1983.
- [3] G. Christol and B. Dwork, Modules différentiels sur des couronnes, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 3, 663–701.
- [4] G. Christol and Z. Mebkhout, Sur le théorème de l'indice des équations différentielles *p*-adiques. III, Ann. of Math. (2) **151** (2000), no. 2, 385– 457.
- [5] E. Pons, Polygone de convergence d'un module différentiel *p*-adique, C. R. Acad. Sci. Paris Sér. I Math. **327** (1998), no. 1, 77–80.
- P. T. Young, Radii of convergence and index for padic differential operators, Trans. Amer. Math. Soc. 333 (1992), no. 2, 769–785.