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Abstract: We give a sufficient condition for the termination of flips. Then we discuss a

semi-stable minimal model program for varieties with (numerically) trivial canonical divisor as

an application. We also treat a slight refinement of dlt blow-ups.
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1. Introduction. In this paper, we give a

sufficient condition for the termination of flips. For

the precise statement, see Theorem 2.3. By using

this criterion: Theorem 2.3, we prove the following

theorem, which is a semi-stable minimal model

program for varieties with trivial canonical divisor.

It was inspired by Yoshinori Gongyo’s paper [12]

and Daisuke Matsushita’s seminar talk on May 21,

2010 in Kyoto.

Theorem 1.1 (Semi-stable minimal model

program for varieties with trivial canonical divi-

sor). Let f : X ! Y be a proper surjective mor-

phism from a smooth quasi-projective variety X to

a smooth quasi-projective curve Y with connected

fibers. Let P 2 Y be a point. Assume that f�P is a

reduced simple normal crossing divisor on X and

f is smooth over Y n P . We further assume that

Kf�1Q � 0 for every Q 2 Y n P . Then there exists a

sequence of flips and divisorial contractions

X ¼ X0 --K X1 --K � � � --K Xk --K � � � --K Xm

over Y such that KXm
�Y 0. We note that Xm has

only Q-factorial terminal singularities. Moreover,

the special fiber S ¼ f�1
m P ¼ f�

mP of fm : Xm ! Y

is Gorenstein, semi divisorial log terminal, and

KS � 0.

For the definition of semi divisorial log termi-

nal, see [6, Definition 1.1]. For the proof of the

termination of 4-dimensional semi-stable log flips,

see [7]. Theorem 1.1 can be applied to semi-stable

degenerations of Abelian varieties, Calabi-Yau

varieties, and so on. From the minimal model

theoretic viewpoint, the following theorem is a

natural formulation of uniruled degenerations of

varieties with numerically trivial canonical divisor

(cf. [18, Theorem 1.1]).

Theorem 1.2 (Semi-stable minimal model

program for varieties with numerically trivial

canonical divisor). Let f : X ! Y be a proper

surjective morphism from a smooth quasi-projective

variety X to a smooth quasi-projective curve Y with

connected fibers. Let P 2 Y be a point. Assume that

f�P is a reduced simple normal crossing divisor on

X and f is smooth over Y n P . We further assume

that Kf�1Q � 0, equivalently, Kf�1Q �Q 0, for every

Q 2 Y n P . Then there exists a sequence of flips and

divisorial contractions

X ¼ X0 --K X1 --K � � � --K Xk --K � � � --K Xm

over Y such that KXm
�Q;Y 0. We note that Xm has

only Q-factorial terminal singularities. Moreover,

the special fiber S ¼ f�1
m P ¼ f�

mP of fm : Xm ! Y

is semi divisorial log terminal and KS �Q 0.

Therefore, if S is reducible, then every irreducible

component of S is uniruled. If S is irreducible, then

S is uniruled if and only if S is not canonical.

In this paper, we prove Theorem 1.1 and

Theorem 1.2 as applications of the following theorem.

Theorem 1.3. Let ðX;�Þ be a Q-factorial

quasi-projective divisorial log terminal pair and let

f : X ! Y be a proper surjective morphism onto

a smooth quasi-projective curve Y with connected

fibers. Assume that ðKX þ�ÞjF �Q 0 for a general

fiber F of f. Then there exists a sequence of flips and

divisorial contractions
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ðX;�Þ ¼ ðX0;�0Þ --K ðX1;�1Þ --K � � �
--K ðXk;�kÞ --K � � � --K ðXm;�mÞ

over Y such that KXm
þ�m �Q;Y 0 where �k is the

pushforward of � on Xk for every k.

Remark 1.4. It is known that ðKX þ
�ÞjF �Q 0 if and only if ðKX þ�ÞjF � 0. See, for

example, [4, Theorem 1] and [12, Theorem 1.2].

We can also prove the following theorem as

an application of Theorem 1.3. We recommend the

reader to compare it with Kodaira’s classification of

elliptic fibrations (cf. [1, V. Examples]).

Theorem 1.5 (cf. [18, Theorem 1.1]). Let

f : X ! Y be a proper surjective morphism from

a smooth quasi-projective variety X to a smooth

quasi-projective curve Y with connected fibers. Let

P 2 Y be a point. Assume that Supp f�P is a simple

normal crossing divisor on X and f is smooth over

Y n P . We further assume that Kf�1Q � 0, equiva-

lently, Kf�1Q �Q 0, for every Q 2 Y n P . Then there

exists a sequence of flips and divisorial contractions

X ¼ X0 --K X1 --K � � � --K Xk --K � � � --K Xm

over Y such that Xm has only Q-factorial terminal

singularities and KXm
�Q;Y 0. Let S ¼ Supp f�

mP be

the special fiber of fm : Xm ! Y . If S is reducible,

then every irreducible component of S is uniruled.

If S is irreducible, then S is normal and has only

canonical singularities if and only if S is not

uniruled. We note that KS �Q 0 when S is irredu-

cible and has only canonical singularities.

By combining Theorem 1.3 with

[16, Proposition 2.7], we obtain the following result.

Corollary 1.6. Let f : X ! Y be a projective

surjective morphism from a smooth quasi-projective

variety X onto a smooth quasi-projective curve Y

with connected fibers. Assume that the general fiber F

of f has a good minimal model and �ðF Þ ¼ 0, where

�ðF Þ is the Kodaira dimension of F . Then there exists

a sequence of flips and divisorial contractions

X ¼ X0 --K X1 --K � � � --K Xk --K � � � --K Xm

over Y such that KXm
�Q;Y 0.

Remark 1.7. By [5, Corollaire 3.4], F has a

good minimal model with �ðF Þ ¼ 0 if and only if

��ðF Þ ¼ 0, where ��ðF Þ is the numerical Kodaira

dimension in the sense of Nakayama. See also

[12, Theorem 1.2].

Finally, in Section 4, we treat a slight refine-

ment of dlt blow-ups (cf. Theorem 4.1) as an

application of our criterion for the termination of

flips: Theorem 2.3, which generalizes [14, 17.10

Theorem] and [3, Corollary 1.4.3]. We will use

Theorem 4.1 in the proofs of Theorem 1.2 and

Theorem 1.5.

Notation. Let X be a normal variety and let

D ¼
P

i aiDi be an R-divisor on X, where Di is a

prime divisor and ai 2 R for every i and Di 6¼ Dj for

every i 6¼ j. In this case, D is called R-boudnary if

and only if 0 � ai � 1 for every i.

Let f : X ! Y be a proper morphism of normal

algebraic varieties. Two Q-divisors D1 and D2 on

X are Q-linearly equivalent over Y , denoted by

D1 �Q;Y D2, if their difference is a Q-linear combi-

nation of principal divisors and a Q-Cartier divisor

pulled back from Y .

Let X be a normal variety and let � be an R-

divisor on X such that KX þ� is R-Cartier. Let E

be a divisor over X. Then the discrepancy coef-

ficient of E with respect to ðX;�Þ is denoted by

aðE;X;�Þ.
We work over C, the complex number field,

throughout this paper. We freely use the standard

terminology on the log minimal model program in

[3] and [15].

2. Easy termination lemma. In this sec-

tion, we give a sufficient condition for the termi-

nation of flips. First, let us recall the definitions of

movable divisors and the movable cone.

Definition 2.1 (Movable divisors and mova-

ble cone). Let f : X ! Y be a projective mor-

phism of normal algebraic varieties. A Cartier

divisor D on X is called f-movable if f�OXðDÞ 6¼ 0

and if the cokernel of the natural homomorphism

f�f�OXðDÞ ! OXðDÞ has a support of codimension

� 2.

Let M be an R-Cartier R-divisor on X. Then

M is called f-movable if and only if M ¼
P

i aiDi

where ai is a positive real number and Di is an

f-movable Cartier divisor for every i.

We define MovðX=Y Þ as the closed convex cone

in N1ðX=Y Þ, which is called the movable cone of

f : X ! Y , generated by the classes of f-movable

Cartier divisors.

Let us recall the minimal model program

with scaling (cf. [3, 3.10], [2, Definition 3.2], and

[9, Theorem 18.9]).

2.2 (Minimal model program with scaling).

Let ðX;�Þ be a Q-factorial dlt pair such that �
is an R-divisor and let f : X ! Y be a projective
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surjective morphism between quasi-projective vari-

eties. Let H be an effective R-divisor on X such

that ðX;�þHÞ is divisorial log terminal, KX þ
�þH is f-nef, and the relative augmented base

locus BþðH=Y Þ (cf. [3, Definition 3.5.1]) contains

no lc centers of ðX;�Þ. We run the ðKX þ�Þ-
minimal model program with scaling of H over Y .

We obtain a sequence of divisorial contractions

and flips

ðX;�Þ ¼ ðX0;�0Þ --K ðX1;�1Þ --K � � �
--K ðXk;�kÞ --K � � �

over Y . We note that

�i ¼ infft 2 R j KXi
þ�i þ tHi is nef over Y g;

where Hi (resp. �i) is the pushforward of H (resp.

�) on Xi for every i. By the definition, 0 � �i � 1
and �i 2 R for every i and

�0 � �1 � � � � � �k � � � � :

We also note that the relative augmented base locus

BþðHi=Y Þ contains no lc centers of ðXi;�iÞ for

every i (cf. [3, Lemma 3.10.11]).

The following theorem is the main result of this

section.

Theorem 2.3 (Easy termination lemma).

Under the same notation as in 2.2, we assume that

H is big over Y , every step of the ðKX þ�Þ-minimal

model program is a flip, and KX þ� =2 MovðX=Y Þ.
Then it terminates after finitely many steps.

Proof. We assume that the sequence does not

terminate. First we assume that

� ¼ lim
i!1

�i > 0:

In this case, the sequence of flips we consider is a

sequence of ðKX þ�þ 1
2 �HÞ-flips. We note that

there exists an effective R-divisor B on X such that

�þ 1
2 �H �R B, ðX;BÞ is klt, KX þBþ ð1� 1

2 �ÞH
is f-nef, ðX;Bþ ð1� 1

2 �ÞHÞ is klt, and B is big

over Y (cf. [3, Lemma 3.7.3] and [12, Lemma 5.1]).

Therefore there are no infinite sequences of flips

by [3, Corollary 1.4.2]. It is a contradiction. Thus

we can assume that � ¼ 0. Under the assumption

that � ¼ 0, we will show that KX þ� 2 MovðX=Y Þ.
Let Gi be a relative ample Q-divisor on Xi such that

GiX ! 0 in N1ðX=Y Þ for i ! 1 where GiX is the

strict transform of Gi on X. We note that KXi
þ

�i þ �iHi þGi is ample over Y for every i. There-

fore the strict transform KX þ�þ �iH þGiX is

movable on X for every i. Thus KX þ� is a limit

of movable R-divisors in N1ðX=Y Þ. So KX þ� 2
MovðX=Y Þ. It is a contradiction. Therefore the

sequence of flips terminates after finitely many

steps. �

3. Proofs. In this section, we will prove

various results stated in Section 1 as applications

of Theorem 2.3.

Proof of Theorem 1.3. Before we run the

minimal model program with scaling, we note the

following easy observation.

Step 1 (cf. [10, Proposition 4.2]). Let m be a

positive integer such thatmðKX þ�Þ is Cartier and
mðKX þ�ÞjF � 0 where F is the generic fiber of f .

Then we have a natural injection

0 ! f�f�OXðmðKX þ�ÞÞ ! OXðmðKX þ�ÞÞ

because f�OXðmðKX þ�ÞÞ is torsion-free and Y is a

smooth curve. Therefore, there is a Q-divisor D on

Y and an effective Q-divisor B on X such that B is

vertical with respect to f ,

KX þ� �Q f�Dþ B;

and SuppB does not contain any fibers of f .

We note that KX þ� is f-nef if and only if

B ¼ 0, equivalently, KX þ� �Q;Y 0 (cf. [1, III.

(8.2) Lemma]).

Step 2. We take an effective Q-Cartier Q-

divisor H on X such thatH is big, ðX;�þHÞ is dlt,
KX þ�þH is nef over Y , and BþðH=Y Þ contains
no lc centers of ðX;�Þ. We run the ðKX þ�Þ-
minimal model program with scaling of H over Y as

in 2.2. Since divisorial contractions can occur only

finitely many times, we can assume that every step

is a flip. Since B 6�Q;Y 0, we can find an irreducible

component E of SuppB such that

B � An�2 � E < 0;

where n ¼ dimX and A is an f-ample Cartier

divisor on X. This is essentially Zariski’s lemma

(cf. [1, III. (8.2) Lemma]). Thus

ðKX þ�Þ � An�2 � E < 0:

Assume that KX þ� 2 MovðX=Y Þ. Then

ðKX þ�Þ � An�2 � E � 0:

Therefore, KX þ� =2 MovðX=Y Þ. Thus the ðKX þ
�Þ-minimal model program terminates by

Theorem 2.3.

Step 3. On the output Xm of the minimal

model program, KXm
þ�m �Q;Y Bm where Bm is

No. 3] Semi-stable MMP 27



the pushforward of B on Xm. Since Bm is nef over Y ,

Bm �Q;Y 0 (cf. [1, III. (8.2) Lemma]). Therefore,

KXm
þ�m �Q;Y 0.

We complete the proof of Theorem 1.3. �

Remark 3.1. Let f : ðX;�Þ ! Y be a

projective dlt morphism from a Q-factorial dlt

pair ðX;�Þ (cf. [15, Definition 7.1]). Assume that

KX þ� is f-nef over a non-empty Zariski open

set U � Y . Then the special termination (see,

for example, [8, Theorem 4.2.1]) implies that any

sequence of flips in the ðKX þ�Þ-minimal model

program over Y must terminate. We note that the

special termination has been proved only in dimen-

sion � 4 (see, for example, [8, Theorem 4.2.1]).

Let us prove Theorems 1.1, 1.2, 1.5, and

Corollary 1.6.

Proof of Theorem 1.1. By the assumptions,

f : X ! Y is a dlt morphism (cf. [15, Definition 7.1]).

By applying Theorem 1.3, we obtain a relative

minimal model fm : Xm ! Y of f : X ! Y . We see

that fm : Xm ! Y is automatically a dlt morphism.

We note that Xm is Q-factorial and has only

terminal singularities. By adjunction,

ðKXm
þ SÞjS ¼ KS

and S is semi divisorial log terminal because

ðXm; SÞ is dlt (cf. [6, Remark 1.2 (3)]). By consid-

ering the following natural injection

0 ! f�f�OXm
ðKXm

Þ ! OXm
ðKXm

Þ;

which is also surjective outside the special fiber S,

as in Step 1 in the proof of Theorem 1.3, we obtain

KXm
� 0 because KXm

is nef over Y . In particular,

KS � 0 by adjunction. �

Proof of Theorem 1.2. The proof of

Theorem 1.1 works in this setting. If S is reducible,

semi divisorial log terminal, and KS �Q 0, then we

will show that every irreducible component of S is

uniruled. Let S0 be an irreducible component of S.

ThenKS0
þ� �Q 0 with an effectiveQ-divisor � 6¼ 0

because S is connected. Therefore, S0 is uniruled by

[17,Corollary 2]. From now on, we assume that S

is irreducible. If S has only canonical singularities,

then S is not uniruled because KS �Q 0. If S is not

canonical, then we take a dlt blow-up (cf. Theorem 4.1)

and obtain a birational morphism ’ : T ! S from a

normal projective variety T such that KT ¼ ’�KS �
E where E is effective and E 6¼ 0. Therefore, KT �Q

�E 6¼ 0. Thus T is uniruled by [17,Corollary 2]. It

implies that S is uniruled. �

Proof of Theorem 1.5. The former part

follows from Theorem 1.3. We will check the latter

part. We assume that S is reducible. Let E be any

irreducible component of S, and let " be a sufficiently

small positive rational number. Apply Theorem 1.3 to

ðX; "EÞ over Y . Then it is easy to see that the divisor

E must be contracted in this minimal model program.

Therefore E is uniruled by [13, Proposition 5-1-8].

From now on, we assume that S is irreducible. It is

sufficient to see that S is uniruled when S is not

canonical. First we assume that S is normal. Then we

take a dlt blow-up ’ : T ! S (cf. Theorem 4.1). We

can write KT ¼ ’�KS � E such that E 6¼ 0 is effec-

tive. Therefore, T is uniruled by [17,Corollary 2]

because KT �Q �E 6¼ 0. Thus S is uniruled. Next we

assume that S is not normal. Let � : S� ! S be the

normalization. Then

KS� þ� ¼ ��KS �Q 0

such that � is effective and � 6¼ 0. We note that S is

Cohen–Macaulay since X is Cohen–Macaulay and S

is Q-Cartier (cf. [15, Corollary 5.25]). Therefore, S�

is uniruled by [17, Corollary 2]. Thus S is uniruled.

Anyway, S is not uniruled if and only if S has only

canonical singularities. �

Proof of Corollary 1.6. Let H be a general

effective f-big divisor on X such that KX þH is f-nef

and ðX;HÞ is dlt. We run the minimal model program

with scaling ofH over Y . Then, by [16,Proposition 2.7],

we can assume that the general fiber of f : X ! Y is

a good minimal model. By Theorem 1.3, this minimal

model program terminates after finitely many steps.�

4. Dlt blow-ups. In this section, we will

give a slight refinement of [14, 17.10 Theorem] and

[3, Corollary 1.4.3] as an application of Theorem 2.3.

See also [9, §10].

Theorem 4.1 (Dlt blow-ups). Let X be a

normal quasi-projective variety and let � be an

R-boundary divisor on X such that KX þ� is

R-Cartier. Let f : W ! X be a resolution such that

ExcðfÞ [ Supp f�1
� � is a simple normal crossing

divisor on W where ExcðfÞ is the exceptional locus

of f. Let E be a subset of the f-exceptional divisors

fEig with the following properties:

. If aðEi;X;�Þ � �1, then Ei 2 E.

. If Ei 2 E, then aðEi;X;�Þ � 0.
Then there is a factorization

f : W --K
h

Z �!g X

with the following properties:
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(a) h is a local isomorphism at every generic

point of Ei 2 E,
(b) h contracts every exceptional divisor not in E,
(c) we have

h� KW þ f�1
� �þ

X
ai��1

�aiEi þ
X
ai<�1

Ei

 !

¼ KZ þ g�1
� �

þ
X

Ei2E; ai��1

�aih�Ei þ
X
ai<�1

h�Ei

¼ g�ðKX þ�Þ þ
X
ai<�1

ðai þ 1Þh�Ei;

where ai ¼ aðEi;X;�Þ, and
(d) the pair

Z; g�1
� �þ

X
Ei2E; ai��1

�aih�Ei þ
X
ai<�1

h�Ei

 !

is a Q-factorial dlt pair.

In particular, if ðX;�Þ is log canonical, then

Z; g�1
� �þ

X
Ei2E;ai��1

�aih�Ei

 !

is dlt and

KZ þ g�1
� �þ

X
Ei2E;ai��1

�aih�Ei ¼ g�ðKX þ�Þ:

Proof. For a small " > 0, we put

dðEiÞ ¼
1

�aðEi;X;�Þ
maxf�aðEi;X;�Þ þ "; 0g

8<
:

if

aðEi;X;�Þ < �1

Ei 2 E; aðEi;X;�Þ � �1

Ei =2 E:

8><
>:

We take a general effective Cartier divisor H on

Z such that ðW; f�1
� �þ

P
dðEiÞEi þHÞ is dlt and

that KW þ f�1
� �þ

P
dðEiÞEi þH is f-nef. We run

the ðKW þ f�1
� �þ

P
dðEiÞEiÞ-minimal model pro-

gram with scaling of H over X. We note that

KW þ f�1
� �þ

X
dðEiÞEi

¼ f�ðKX þ�Þ
þ
X
Ei=2E

ðdðEiÞ þ aiÞEi þ
X
ai<�1

ð1þ aiÞEi:

Since divisorial contractions can occur finitely

many times, we can assume that every step of the

minimal model program is a flip. We put

E ¼
X
Ei=2E

ðdðEiÞ þ aiÞEi þ
X
ai<�1

ð1þ aiÞEi:

Then E is exceptional over X. We assume thatP
Ei=2EðdðEiÞ þ aiÞEi 6¼ 0. Then E =2 MovðW=XÞ by

Lemma 4.2 below. Therefore, any sequence of flips

terminates after finitely many steps by Theorem 2.3.

However, E can not become nef overX by flips since

�E is not effective. It is a contradiction. Therefore,P
Ei=2EðdðEiÞ þ aiÞEi ¼ 0. It completes the proof. �

The lemma below is a variant of the well-

known negativity lemma.

Lemma 4.2. Let f : X ! Y be a birational

morphism from a normal Q-factorial algebraic

variety X. Let E be an R-divisor on X such that

SuppE is f-exceptional and E 2 MovðX=Y Þ. Then
�E is effective.

Proof. We write E ¼ Eþ � E� such that Eþ
and E� have no common irreducible components

and that Eþ � 0 and E� � 0. We assume that

Eþ 6¼ 0. Let A (resp. H) be an ample Cartier divisor

on Y (resp. X). Then we can find an irreducible

component E0 of Eþ such that

E0 � ðf�AÞk �Hn�k�2 � E < 0

where dimX ¼ n and codimY fðEþÞ ¼ k. On the

other hand,

E0 � ðf�AÞk �Hn�k�2 � E � 0

if E 2 MovðX=Y Þ. It is a contradiction. Therefore,

�E is effective. �
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