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Abstract: We present in this note an analogue of the Selberg-Weil-Kobayashi local

rigidity Theorem in the setting of exponential Lie groups and substantiate two related

conjectures. We also introduce the notion of stable discrete subgroups of a Lie group G following

the stability of an infinitesimal deformation introduced by T. Kobayashi and S. Nasrin (cf. [11]).

For Heisenberg groups, stable discrete subgroups are either non-abelian or abelian and maximal.

When G is threadlike nilpotent, non-abelian discrete subgroups are stable. One major aftermath

of the notion of stability as reveal some studied cases, is that the related deformation spaces are

Hausdorff spaces and in most of the cases endowed with smooth manifold structures.
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1. Introduction. This note deals with some

topological features of the deformation space of

properly discontinuous actions of a discrete sub-

group on a homogeneous space, namely the stability

and the rigidity. The problem of describing defor-

mations was first advocated by T. Kobayashi for

the general non-Riemannian setting in [6] where he

formalized the study of the deformation of Clifford-

Klein forms from a theoretic point of view, (see [10]

for further perspectives and basic examples).

Since [11], the deformation and the moduli spaces

for abelian discontinuous subgroups have been

recently found explicitly in a number of settings

where the underlying group G is exponential

solvable (cf. [1,2] and [15]).

A classical local rigidity Theorem proved by

A. Selberg and A. Weil for Riemannian symmetric

spaces and generalized later by T. Kobayashi for

non-Riemannian homogeneous spaces asserts that

there are no continuous deformations of cocompact

discontinuous groups for G=H for a linear non-

compact semi-simple Lie group G except for few

cases: G is not locally isomorphic to SL2ðRÞ for H

compact or G0 is not locally isomorphic to SOðn; 1Þ

or SUðn; 1Þ for G ¼ G0 �G0 and H ¼ �G0 (cf. [6]

and [10]).

When G is nilpotent connected and simply

connected, I believe that the local rigidity property

does not hold (cf. Conjecture 3.1). When more

generally G is assumed to be exponential solvable

and H � G a maximal subgroup, we present an

analogue of the Selberg-Weil-Kobayashi Theorem

stating that the local rigidity property holds if

and only if the group is isomorphic to the group

axþ b of affine transformations of the line (cf.

Theorem 3.4). In this context, we do also remove

the assumption on � to be uniform in G=H. Our

proof relies on the fact that any discontinuous

group has a unique syndetic hull in the specific

setting of Theorem 3.4. However, the general case

remains open (see Conjecture 3.2).

We also focus on the notion of stable discon-

tinuous subgroups following Kobayashi-Nasrin

(cf. [11]), for which any associated parameter space

is open independently from the nature of the

subgroup H. We characterize stable discrete sub-

groups for Heisenberg groups and treat the case of

threadlike Lie groups. Clearly, the notion of stabil-

ity has important impact on the local (and global)

geometric features of the related deformations.

We show in many cases that stable discontinuous
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subgroups have Hausdorff deformation spaces,

which are even more endowed with a manifold

structure in most of the cases (Theorems 4.3 and

4.4). Detailed proofs of our results will be published

elsewhere.

2. Preliminaries and notation. We begin

this section with fixing some notation and termi-

nology and recording some basic facts about

deformations. The readers could consult the

references [1,5,6,8–10] and some references therein

for broader information about the subject. Con-

cerning the entire subject, we strongly recommend

the papers [5] and [10].

2.1. Proper and fixed point actions. Let M
be a locally compact space and K a locally compact

topological group. The continuous action of the

group K on M is said to be:

(1) Proper if, for each compact subset S �M
the set KS ¼ fk 2 K : k � S \ S 6¼ ;g is compact.

(2) Fixed point free (or free) if, for each

m 2M , the isotropy group Km ¼ fk 2 K : k �m ¼
mg is trivial.

(3) Properly discontinuous if, K is discrete and

the action of K on M is proper and free.

In the case where M ¼ G=H is a homogeneous

space and K a subgroup of G, then it is well known

that the action of K on M is proper if SHS�1 \K is

compact for any compact set S in G. Likewise the

action of K on M is free if for every g 2 G,

K \ gHg�1 ¼ feg. In this context, the subgroup K

is said to be a discontinuous group for the homoge-

neous space M , if K is a discrete subgroup of G and

K acts properly and freely on M .

2.2. Clifford-Klein forms. For any given

discontinuous subgroup � for the homogeneous

space G=H, the quotient space �nG=H is said to

be a Clifford-Klein form for the homogeneous space

G=H. The following point was emphasized in [7].

Any Clifford-Klein form is endowed with a smooth

manifold structure for which the quotient canonical

surjection � : G=H ! �nG=H turns out to be an

open covering and particularly a local diffeomor-

phism. On the other hand, any Clifford-Klein form

�nG=H inherits any G-invariant geometric struc-

ture (e.g. complex structure, pseudo-Riemannian

structure, conformal structure, symplectic

structure,. . .) on the homogeneous space G=H

through the covering map �.

2.3. Parameter and deformation spaces.

The material dealt with in this subsection comes

from [10]. The reader could also consult the

references [6] and [9] for precise definitions. As in

the first introductory section, we designate by

Homð�; GÞ the set of group homomorphisms from

� to G endowed with the point-wise convergence

topology. The same topology is obtained by taking

generators �1; . . . ; �k of �, then using the injective

map

Homð�; GÞ ! G� � � � �G; ’ 7! ð’ð�1Þ; . . . ; ’ð�kÞÞ

to equip Homð�; GÞ with the relative topology

induced from the direct product G� � � � �G. The

related parameter space Rð�; G;HÞ which consists

of all ’ 2 Homð�; GÞ for which ’ is injective and

’ð�Þ acts properly discontinuously on G=H is

introduced by T. Kobayashi in [6] for general

settings, and stands for an interesting object of

the set Homð�; GÞ. Such a space plays a crucial role

as we will see later.

For ’ 2 Rð�; G;HÞ, the space ’ð�ÞnG=H is a

Clifford-Klein form which is a Hausdorff topological

space and even equipped with a structure of a

smooth manifold for which, the quotient canonical

map is an open covering. Let now ’ 2 Rð�; G;HÞ
and g 2 G, we consider the element ’g of the set

Homð�; GÞ defined by ’gð�Þ ¼ g’ð�Þg�1; � 2 �. It is

then clear that the element ’g 2 Rð�; G;HÞ and

that the map:

’ð�ÞnG=H �! ’gð�ÞnG=H;
’ð�ÞxH 7! ’gð�Þg�1xH

is a natural diffeomorphism. Following [10], we

consider then the orbit space

T ð�; G;HÞ ¼ Rð�; G;HÞ=G

instead of Rð�; G;HÞ in order to avoid the un-

essential part of deformations arising inner auto-

morphisms and to be more precise on parameters.

We call the set T ð�; G;HÞ the deformation space of

the action of � on the homogeneous space G=H.

3. The Selberg-Weil-Kobayashi rigidity

Theorem.

3.1. The terminology of rigidity. We keep

the same notation. A. Weil [14] introduced the

notion of local rigidity of homomorphisms in the

case where the subgroup H is compact. T.

Kobayashi [6] generalized it in the case where H

is not compact. For non-Riemannian setting G=H

with H non-compact, the local rigidity does not

hold in general. In the reductive case, T. Kobayashi
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first proved in [4] that local rigidity may fail even

for irreducible symmetric spaces of high dimen-

sions. For non-compact setting, the local rigidity

does not hold in general in the non-Riemannian case

studied in [1,2,5,10,11]. We briefly recall here some

details. For a comprehensible information, we refer

the readers to the references [1,3–11]. For ’ 2
Rð�; G;HÞ, the discontinuous subgroup ’ð�Þ for

the homogeneous space G=H is said to be locally

rigid (resp. rigid) (cf. [6]) as a discontinuous group

of G=H if the orbit of ’ through the inner conjuga-

tion is open in Rð�; G;HÞ (resp. in Homð�; GÞ).
This means equivalently that any point sufficiently

close to ’ should be conjugate to ’ under an inner

automorphism of G. So, the homomorphisms which

are locally rigid are those which are isolated points

in the deformation space T ð�; G;HÞ. When every

point in Rð�; G;HÞ is locally rigid, the deformation

space turns out to be discrete. If a given ’ 2
Rð�; G;HÞ is not locally rigid, we say that it admits

a continuous deformation.

Once specified the setting where G is a

nilpotent connected and simply connected, I believe

that the following conjecture holds:

Conjecture 3.1. Let G be a connected sim-

ply connected nilpotent Lie group, H a connected

subgroup of G and � a non-trivial discontinuous

subgroup for G=H. Then, the local rigidity property

fails to hold.

Remark 3.1. Provided that � is abelian,

Conjecture 3.1 holds. Indeed, let l; h and g designate

the Lie algebras of the syndetic hull of �, H and G.

Then Rð�; G;HÞ is homeomorphic to

Rðl; g; hÞ :¼ f 2 Homðl; gÞ : dim ðlÞ ¼ dim l

and expð ðlÞÞ acts properly on G=Hg

as originated in [11] and proved in [1]. Let ’ 2
Rðl; g; hÞ and L’ ¼ R>0 � ’. Clearly, L’ � Rðl; g; hÞ
and G �  \ L’ ¼ f g for any  2 L’, as G acts

unipotently on Homðl; gÞ. The projection

� : L’ ! R>0 � ½G � ’� � T ðl; g; hÞ

is bijective, continuous and open and therefore

bicontinuous. This means that G � ’ can not be open

in R>0 � ½G � ’�.
We now pay attention to the general context

where G is connected and solvable.

3.2. The Selberg-Weil-Kobayashi rigidity

Theorem. We first record the following the

result:

Theorem 3.2 (Local rigidity Theorem:

Selberg and Weil [14]). Let G be a non-compact

linear simple Lie group and H its maximal compact

subgroup, then the following assertions are equiv-

alent:

(1) There exists a uniform lattice ’ : �! G such

that ’ 2 Rð�; G;HÞ admits continuous defor-

mations.

(2) G is locally isomorphic to SL2ðRÞ.
For broader information, the author could also

consult the references [12] and [13]. A parallel

upshot to encompass the non-Riemannian setup is

as follows:

Theorem 3.3 (Local rigidity Theorem: T.

Kobayashi [9]). We keep the same assumptions

as in Theorem 3.2 and let ðG0; H 0Þ :¼ ðG�G;�GÞ,
where �G denotes the diagonal group. Then the

following assertions are equivalent:

(1) There exists a uniform lattice ’ : �! G such

that ’� 1 2 Rð�; G0; H 0Þ admits continuous

deformations.

(2) G is locally isomorphic to SOðn; 1Þ or SUðn; 1Þ.
(3) G does not have Kazhdan’s property (T).

Note that Theorem 3.2 was formulated so that

these two rigidity Theorems can be compared. As

such, the result of Theorem 3.3 produces some

irreducible non-Riemannian symmetric spaces of

arbitrarily high dimension endowed with a uniform

lattice for which the local rigidity does not hold. For

the Riemannian case, this is very rare.

We are concerned with an analogue of

Theorems 3.2 and Theorem 3.3 in the context of a

real solvable Lie group G.

Let g ¼ R-spanðX; Y Þ be the Lie algebra of the

axþ b group with the Lie bracket ½X; Y � ¼ Y . For

h ¼ RX and � any discontinuous subgroup for

expðgÞ= expðhÞ, the local rigidity property holds.

Indeed, if � is non-trivial, it is isomorphic to

expðZY Þ. The corresponding parameter space is

then homeomorphic to R�Y . For ’ ¼ aY 2
Rð�; G;HÞ with a 2 R�, we have

G � ’ ¼ faebY ; b 2 Rg:

This means that Rð�; G;HÞ only admits two open

orbits.

For the general exponential case, we prove the

following:

Theorem 3.4 (The analogue of Selberg-Weil-

Kobayashi rigidity Theorem). Let G be an expo-

nential Lie group, H a non-normal connected
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maximal subgroup of G and � a discontinuous

subgroup for G=H. Then, the following conditions

are equivalent:

i) G is isomorphic to the axþ b group.

ii) Every homomorphism in Rð�; G;HÞ is locally

rigid.

iii) Some homomorphism in Rð�; G;HÞ is locally

rigid.

One major ingredient to prove this result,

is that any discrete subgroup acting freely on a

maximal homogeneous space turns out to be abelian

and therefore admits a syndetic hull as G is

exponential. When we look at the general solvable

setting, abelian discrete subgroups may fail to

admit such a syndetic hull as the exponential

map is no longer a diffeomorphism. In these circum-

stances, I believe that the following conjecture

holds:

Conjecture 3.2. Let G be a connected sim-

ply connected solvable Lie group, H a maximal non-

normal connected subgroup of G and � a non-trivial

discontinuous subgroup for G=H. Then, the local

rigidity property holds if and only if G is isomorphic

to the axþ b group.

4. On stable discrete subgroups.

4.1. The terminology of stability in the

sense of Kobayashi-Nasrin. Let ðG;H;�Þ as in

the most general setting (G is a Lie group, H a

connected closed subgroup of G and � a discontin-

uous subgroup for the homogeneous space G=H).

The homomorphism ’ 2 Rð�; G;HÞ is said to be

stable in the sense of Kobayashi-Nasrin [11], if there

is an open set in Homð�; GÞ which contains ’ and is

contained in Rð�; G;HÞ. When the set Rð�; G;HÞ
is an open subset of Homð�; GÞ, then obviously each

of its elements is stable which is the case for any

irreducible Riemannian symmetric spaces with the

assumption that � is torsion free uniform lattice of

G ([11] and [14]).

Furthermore, we point out in this setting that

the concept of stability may be one fundamental

genesis to understand the local structure of the

deformation space.

Remark 4.1. It is straightforward to see

that a point in Rð�; G;HÞ is rigid if and only if it

is locally rigid and stable.

4.2. Stability of discrete subgroups. Let G

be a locally compact group and � a discrete

subgroup of G. In ([8], (5.2.1)), T. Kobayashi

defines the set t ð� : GÞ consisting of subsets H

for which SHS�1 \ � is compact for any compact

set S in G. Let tgp ð� : GÞ be the set of all closed

connected subgroups belonging to t ð� : GÞ.
I set:

Question 4.1. For a given discrete subgroup

� of G, is it possible to characterize all the subgroups

H 2 tgp ð� : GÞ for which the parameter space

Rð�; G;HÞ is open? (Any deformation parameter

is stable in the sense of Kobayashi-Nasrin).

An answer to this question is already given for

some restrictive cases of nilpotent Lie groups. This

question naturally leads to the following notion of

stability:

Definition 4.2. 1. Let � be a discrete sub-

group of G. We set Stabð� : GÞ the set of all

subgroups H 2 tgp ð� : GÞ for which the parameter

space Rð�; G;HÞ is open.

2. A discrete subgroup of G is said to be stable,

if Stabð� : GÞ ¼ tgp ð� : GÞ.
I pose therefore the following question:

Question 4.2. Is it possible to characterize

all stable discrete subgroups of a connected simply

connected nilpotent Lie groups?

Let g designate the Heisenberg Lie algebra of

dimension 2nþ 1 and G ¼ expðgÞ the corresponding

Lie group. g can be defined as a real vector space

endowed with a skew-symmetric bilinear form b

of rank 2n and a fixed generator Z belonging to

the kernel of b. The center Z ¼ RZ of g is then

the kernel of b and it is the one dimensional

subspace ½g; g�. For any X; Y 2 g, the Lie bracket

is given by ½X; Y � ¼ bðX; Y ÞZ. We have the follow-

ing results:

Theorem 4.3. Let G be a Heisenberg group

and � a discrete subgroup of G. Then

1. � is stable if and only if � is non-abelian or �

is abelian and maximal (of rank nþ 1).

2. If not, then Stabð� : GÞ ¼ fH 2 tgp ð� : GÞ :

expðZ Þ � Hg.
3. For any H 2 Stabð� : GÞ, the deformation

space T ð�; G;HÞ is equipped with a smooth mani-

fold structure.

Here and in the rest of the paper, the rank of

a discrete subgroup simply means the dimension of

its syndetic hull.

We now pay attention to the setting of n-step

threadlike nilpotent Lie groups. A threadlike Lie

algebra g is a real n-step nilpotent Lie algebra

of dimension nþ 1 admitting a stratified basis

fX; Y1; . . . ; Yng with non-trivial Lie brackets:
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½X; Yi� ¼ Yiþ1; i 2 f1; . . . ; n� 1g:

The connected simply connected associated Lie

group G ¼ expðgÞ, is also called a n-step threadlike

Lie group. In the case where n ¼ 2, G coincides with

the three dimensional Heisenberg Lie group. Our

upshot concerning this class of nilpotent Lie groups

announces as follows:

Theorem 4.4. Let G be a threadlike Lie

group. Then any non-abelian discrete subgroup �

of G is stable. In this case, for any H 2 tgp ð� : GÞ,
we have:

1. The deformation space T ð�; G;HÞ is a

Hausdorff space.

2. For k > 3, T ð�; G;HÞ is endowed with a

manifold structure.

3. For k ¼ 3, the parameter space Rð�; G;HÞ is

a disjoint union of an open dense smooth manifold

of dimension nþ 4 and a closed smooth manifold

of dimension nþ 3. Accordingly, T ð�; G;HÞ is a

disjoint union of an open dense smooth manifold

and a closed smooth manifold.

Let now G designate an exponential Lie group,

H a connected maximal subgroup of G and � a

discrete subgroup of G acting on G=H as a

discontinuous group. If H is normal, then H is

of codimension one and the related parameter

space is open. Otherwise, we have the following

theorem:

Theorem 4.5. Let G be an exponential Lie

group, H a non-normal connected maximal sub-

group of G and � a discontinuous subgroup for

G=H. Then the parameter space Rð�; G;HÞ is

open if and only if � is of rank two.

I close the paper by asking the following

question:

Question 4.3. Let G be a connected simply

connected nilpotent Lie group and � a stable

subgroup of G as in definition (4.2, 2). Is it true

that for any H 2 tgp ð� : GÞ, the deformation space

T ð�; G;HÞ is a Hausdorff space?
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