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A note on the divisibility of class numbers
of imaginary quadratic fields Q(va? — k")

By Akiko ITO"
Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
(Communicated by Heisuke HIRONAKA, M.J.A., Oct. 12, 2011)
Abstract: Let n > 1 be an integer, k£ > 1 be an odd integer and a > 0 be an even integer.
Suppose a® + b*d = k", where d # 1,3 is a positive odd square-free integer and ged(a, bd) = 1.

In this paper, we describe imaginary quadratic fields Q(va? — k™) explicitly whose class numbers
are divisible by n if d = 1,5,7 mod 8 or d =3 mod 8 with (n,3) = 1 under certain conditions.
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1. Introduction. Let n>3, and D > 63
be a square-free integer such that t2D = K" — 2.
Here t, K, x are positive integers with (K,2z) = 1.
By Mollin [Mo], Murty [Mul], [Mu2] and
Soundararajan [So], it is known that if K" <
(D+1)*, then n|h(—D), where h(—D) denotes
the class number of imaginary quadratic fields
Q(\/jﬁ) In this paper, we consider whether
n | h(—D) is satisfied or not without the condi-
tion K" < (D+1)*>. By using a result on the
primitive divisors of Lucas numbers, we prove the
following.

Theorem 1.1. Let n>1 be an integer,
k>1 be an odd integer and a >0 be an even
integer. Suppose a®+b*d=Ek", where d# 1,3 is
a positive odd square-free integer, b>0 and
ged(a,bd) = 1. And assume b |*d. The condition
b |* d denotes all prime factors of b divide d.

(1) Ifd =1,5,7 mod 8 and the following conditions
(1), (i), (iil) are not satisfied, then n | h(—d).

(i) (a,b,d, k,n) = (2759646, 1,341,377, 5),
(ii) (a,b%d, k,n) =

3m?+¢e-4

<%~(2m2+5~3), 1

,m2+6,3),

where m > 0 with m =0 mod 4 and € = +1,
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where m > 0 with m £ 0 mod 3 and m =0 mod 4,
[>0 and e =+1. In the case (i), we have 51
h(—341) = 28 and, in the two cases (ii) and (iii), we
have n/3 | h(—d).
(2.1) If d =3 mod 8 and (n,3) =1, then n | h(—d)

except the case

(a,b,d, k,n) = (22434,1,19,55,5).

32 .

In fact, we have 5t h(—19) = 1.
(2.2) Ifd = 3 mod 8 and(n,3) # 1, thenn/3 | h(—d).

The method of the proof of this theorem is
based on the result of Cao [Ca2].

Remark 1. If b=1, the condition b|*d is
always satisfied. Therefore, this theorem contains
the case where a® — k" < 0 is square-free.

The above theorem implies that we can de-
scribe imaginary quadratic fields Q(vVa? — k) ex-
plicitly whose class numbers may not be divisible by
n under the conditions when b |* d, 2 |a, 2tk and
ged(a, bd) = 1.

Example. (A.1) For the Case (ii) and (iii) of
Theorem 1.1 (1), examples with n/3 | h(—d) and
nt h(—d) exist.

(A.1.1) For m =4 in Case (ii) of Theorem 1.1 (1),
we have

70,1,13,17,3
(a,b,d,k,n):{ ( )

(58,1,11,15,3)

ife=1
if e =—1.
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In these cases, we have 1=3/3|h(-13) =2 and
34h(~13), 1=3/3|h(-11)=1 and 3fh(-11)
respectively.

(A.1.2) For m=16, [=2, e=1 in Case (iii) of
Theorem 1.1 (1), we have

(a,b,d, k,n) = (3880,9, 183, 247, 3).
In this case, we have 1=3/3|h(—183) =8 and

3th(—183). For m=4, =2, e=—-1, k=5 in
Case (iii) of Theorem 1.1 (1), we have

(a,b,d, k,n) = (118,9,21,5,6).
In this case, we have 2=6/3|h(—21) =4 and
61 h(—21).
(A.2) For the Case (ii) and (iii) of Theorem 1.1 (1),
examples with n | h(—d) exist.
(A.2.1) For m = 12 in Case (ii) of Theorem 1.1 (1),
we have

(a,byd, ) = {

ife=1
if e =—-1.

(1746,1,109, 145, 3)
(1710,1,107,143,3)

In these cases, we have 3 |h(—109) =6 and 3|
h(—107) = 3 respectively.
(A.2.2) For m=32, =2, e=1 in Case (iii) of
Theorem 1.1 (1), we have

(a,b,d, k,n) = (32336,9, 759, 1015, 3).

In this case, we have 3 | h(—759) = 24. For m = 16,
[ =2,e = —1in Case (iii) of Theorem 1.1 (1), we have

(a,b,d, k,n) = (4312,9,201, 265, 3).

In this case, we have 3 | h(—201) = 12.

(B.1) For Theorem 1.1 (2.2), an example with n/3 |
h(—d) and n{h(—d) exists. For the case when
(a,b,d, k,n) = (4,1,11,3,3), we have 3/3 | h(—11) =
1 and 3t h(—11).

(B.2) For Theorem 1.1 (2.2), an example with n |
h(—d) exists. For the case when (a,b,d,k,n)=
(2,1,339,7,3), we have 3 | h(—339) = 6.

2. Preliminaries.

Lemma 2.1. Letk > 1,y be oddintegers and
x>0 be an even integer. Suppose x>+ y*D = k?,
where D # 1,3 is a positive square-free integer,
ged(D, k) = ged(z,y) =1 and z > 1.

(1) If -D = 3 mod 4, then we have

z+yV—D = (X, + Y1V-D)',
z =zt (21 > 0),

where X1,Y7, 2 are integers such that X? + DY} =
k7, ged(X1,Y1) =1 and h(—D) =0 mod z.
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(2) If =D =1 mod 4, then we have

t
X1 +YiwW-D
v+ <+2V) |

z =zt (21 > 0),
where X1,Y1, 21 are integers such that X% + DYI2 =
4k*, X1 = Y1 mod 2 and h(—D) =0 mod 2.
Proof. We can prove this in a way similar to
the proof of [Cal, Lemma 1]. (1) Since z? + y>D =
k*, we have

(x +yvV—D)(z —yvV—-D) = k.
From ged(D, k) = ged(z,y) =1, x + yv—D and © —
yvV —D are coprime integers of OQ(@)' Then, we
can write
(x +yv—D) = A?

for some ideal A of the field Q(v—D). Let 2z :=
ged(h(—D),z). We can write z; = ih(—D) + jz for
some 7, j € Z and we have

A= (AP (Y (1) (1)~ (1),

This implies that A* is a principal ideal and we
obtain

A? = (X1 +Yhv-D)
for some X3, Y7 € Z. Since ged(h(—D), 2) = 21, we
have z = 2t for some ¢t € Z. Then, we obtain
(¢ +yv=D) = (47)" = (X, + V1V-D)".

. o x _
The assumption D # 1,3 implies OQ(@> = {£1}.
Therefore, we have

z+yV—D=+(X, +YivV-D)".

(2) We can obtain a proof in a way similar to
the above case. Since —D =1 mod 4, we have
Oqv=p) = Z[@}. Then, we obtain
o (Xl +YM—D>
2

Q

for some X1, Y] € Z with X; = Y] mod 2. From this
and O(XQ(@) = {£1}, we have t
X1 +Yiv-D
v+ 3/=D— %%V) .
O
Lemma 2.2 (C. Ko [Ko] and V. A. Lebesgue
(cf. [Ca2, Lemma 3.7])). The equation x> — \ =

y', n>1, AX==x1 has the only positive integer
solution (z,y,n, A) = (3,2,3,1).
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Lemma 2.3 (R. Stanley [St, Theorem 8a,
Theorem 14al).

(1) The equation y* — 3™ =23, (2,3) =1, m,y >0
has just five integer solutions (m,z,y) = (0,—1,0),
(0,2,3), (1,1,2), (2,—2,1) and (2,40,253).

(2) The equation y* + 3™ = 2°, (2,3) =1, m, y >0
has just three integer solutions (m,xz,y) = (0,1,0),
(4,13,46) and (5,7,10).

A Lucas pair is a pair (A4, B) of algebraic
integers such that A+ B and AB are non-zero
coprime rational integers and A/B is not a root of
unity. Given a Lucas pair (A, B), the corresponding
sequence of Lucas numbers is defined by

A" — Bn

Up = Un(A7 B) = ﬁ’

where n € NU{0}. Let (A, B) be a Lucas pair. A
prime number p is a primitive divisor of the Lucas
number u, (A, B) if p divides u,, but does not divide
(A - B)2u1 - u,_1. We say that a Lucas number is
an n-defective Lucas number if u,(A, B) has no
primitive divisor.

Lemma 2.4 (Y. Bilu, G. Hanrot and P. M.
Voutier [BHV]). For any integer n > 30, every
Lucas number is no n-defective. Further, for any
positive integer n < 30, all n-defective Lucas num-
bers are explicitly determined.

All n-defective (n >1) Lucas numbers are
given in [BHV, Table 1, 3] and [Mou, Theorem 4.1].
By [BHV, Remark 1.1, Proposition 2.1(i) and
Corollary 2.2], we also obtain the following (cf.
[Ca2, Lemma 3.4]).

Lemma 2.5. Ifp is a primitive divisor of the
Lucas number u,(A, B), then n = +1 mod p.

We wuse these results for the proof of
Theorem 1.1 mainly.

3. Proof of Theorem 1.1.

Case 1 (d =1 mod 4). By Lemma 2.1 (1), we have

a+bvV—d=+(x; +yvV-d),

where x1, y1, 21 are integers such that 2% + yid =
k*, ged(zy,91d) =1, 21 > 0 and h(—d) =0 mod 2.
If r is even, we can write r=2r (v € Z). We
have

n=zr,

a+bvV—d= +(a® — df?) 208V —d,
where (z1 +y1vV—d)” = a+ B8vV—d (o, 8 € Z). This

is a contradiction with 2t b. Then, we obtain 2t 7.
Let € :=|z1| + |p1| - V—d and € := |z1| — |y - vV —d.
Then, we have
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=r r
g —¢
b=|— -|y1|-
Z—¢
Let
g —e"
by == | =
g—c¢

By b=b; - |y1| and b |* d, we have b; |* d. We obtain
that === satisfies the definition of the r-th Lucas
number. We have

(it (5) ™ ol = 4o
+ ()l v=ar

For any prime number ¢ with ¢ | b1, we have ¢ |d
by by |* d. Then, we obtain b = rwi‘l =0 mod gq.
Since (x1,y1d) = 1, we have ¢t x1, that is, ¢ | . By
Lemma 2.5, this implies that 2%2 has no primitive
divisors. By Lemma 2.4, [BHV,Table 1, 3] and
[Mou, Theorem 4.1], we have r =1,3,5. For r =5,
we obtain (2|z1|, —4yid) = (12,—-1364), that is,
(a,b,d, k,n) = (2759646,1,341,377,5). For r =3,
we obtain (I) (2|z1|, —4y3d) = (m,—4 — 3m?), (1)

by =

(2|z1], —4y3d) = (m,4 —3m?) with m>1, (III)
(2|lz1], —4y3d) = (m,4-3"- e —3m?) with m >0,
m#Z0mod 3, >0, e==41 and (g,km)#

(1,1,2). For the case (I), we have m? +1 = k*. By
Lemma 2.2, we get z; =1, that is, n = 3. Since
a+bv/—d=+(z; + yl\/—_al)3 and y?d=1+ %m2,
we obtain b = 1, that is, b’d = y?d = 1+ %mQ. By
a=xa(2% — 3yid), |z1] =% >0, we obtain a=
2 (2m? + 3). For the case (II), (III), we can obtain
a, b?d, k¥ in a way similar to the case (I) by using
Lemma 2.2. Since a is even and

a:%~(2m2+5~3) or

m. | —2m? +¢ -3,

2

we have m =0 mod 4. Therefore, the condition

(e,k,m) # (1,1,2) of the case (III) is not needed.

For r =1, we have n = z;. From this and h(—d) =

0 mod z;, we obtain n | h(—D).

Case 2 (d =7 mod 8). We use the following result.
Lemma 3.1 (Y. Kishi [Ki] and A. Ito [It]).

(1) If d = 3 mod 8, for any integer s > 0,

(W) € ZV=d] = 3|s,

where u =v =1 mod 2.
(2) If d=7 mod 8, for any integer s > 0,
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(“%__d) ¢ Zv=d),

where u =v =1 mod 2.

Proof. The statement (1) is contained in [Ki,
p.190]. The proof is easy. To show (2), it is enough
to show that

1 u+v\/—_ds ufv\/f_ds
{(5) (57 e

for any integer s > 0. The following argument is
contained in [It], but we reproduce it here for the
convenience of readers. Since —d = 1 mod 8, we can
consider /—d € Zy, where Z; denotes the unit
group of the ring Z, of 2-adic integers. Then, to
show the above statement is equivalent to show that

1 u+vv—d ’ u—ovv—d ’
{(5) (=57 o

Since v—d =1 mod 27, and v is odd, we have
vW—d =1, 3 mod 4Zs. By checking four cases
(uvv\/__d) = (ivi)v (173)7 (371)7 (3,3), where u = j
denotes u = j mod 4Z,, we obtain ““‘T‘/’_d £
%‘/’_‘l mod 2Zs. Then, we have

<u+v\/jc_l>s+ (u—v\/jcz

2 2

) =1 mod 2Z,,

that is,
1 u+v\/—_d8 u—v\/—_dS
{7 () o
O

Since d = 7 mod 8, we have —d =1 mod 4. By
Lemma 2.1 (2), we can write

_d "
Ve %%V)

for some z1,y; € Z with 21 = y; mod 2. From this
and Lemma 3.1 (2), we obtain z; = y; =0 mod 2.
This case is reduced to considering the same power
root of a+byv/—d in Z[v/—d] as in Case 1 and we
may check the case r=1,3,5 in the same way to
Case 1.

Case 3 (d=3 mod 8). Since d=3 mod 8, we
obtain —d =1 mod 4. By Lemma 2.1 (2), we have

v —d "
a+b~/—d: i(%) ,

n=zr (21 >0),
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where z1,y1,21 are integers such that 22 + dy} =
4k, 1 =1y mod 2 and h(—d) =0 mod 2. We
consider two cases when 31 r or 3 | r respectively.
Case 3-1 (d=3 mod 8 and 31{r). Form
y1 mod 2 and Lemma 3.1 (1), we obtain z; =
0 mod 2. This case is reduced to considering the
same power root of a-+bv—d in Z[v/—d| as in
Case 1 and we may check the case r = 1,3,5 in the
same way to Case 1.

Case 3-2 (d =3 mod 8and 3 | r). From Lemma 3.1
(1) and z; =y mod 2, two cases when x1 = y; =
0 mod 2 and ;1 =y; =1 mod 2 are possible. We
consider these cases respectively. If x; =y =
0 mod 2, this case is reduced to considering the
same power root of a+bv—d in Z[v—d| as in
Case 1. We may check the case »r=1,3,5 in the
same way to Case 1. Next, we consider the case
when 1 = y; =1 mod 2. By the assumption 3 | r,
we have r = 3r’ for some integer r’. Therefore, we

obtain
3
V—d
a+bv/—d= i(xl“’;) .
By Lemma 3.1 (1), we can write

3
(W‘_d> 6V d

2

for some integers v and é. This implies that

a+bV=d=+(y+6V/=d)",
n =3r'z.

This case is reduced to considering the same power
root of a + bv/—d in Z[v/—d] as in Case 1 and we may
check the case ' =1,3,5.If ¥ = 1, z; =n/3 | h(—d).
If ¥ = 5, we have k** = 55. This is impossible. Next,
we consider when ' = 3. In the cases (I), (II) of
Case 1, we have m? £ 1 = k3. By Lemma 2.2 and
21 k, this is impossible. In the case (III) of Case 1,
we have m?+ 3! = k**. By Lemma 2.3 (1), [ >0,
kE>1 and 2{k, m?—3" =k* is impossible. By
Lemma 2.3 (2) and [ >0, the equation m?+
3' = k% has two integer solutions (I, k' m) =
(4,13,46), (5,7,10). We obtain b*d = 3% . (3n2H43)
in a way similar to the case (I) of Case 1. If
(I, k", m) = (4,13,46), (5,7,10), b%d is even. This is
a contradiction with 21 b%d. Then, these cases are
impossible. The proof of Theorem 1.1 is completed.
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