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Comparability of clopen sets in a zero-dimensional dynamical system
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Abstract:

Let ¢ be a homeomorphism on a totally disconnected, compact metric space X.

We introduce a binary relation on the family of clopen subsets of X, which is described in terms of
the p-invariant probability measures. We show that ¢ is uniquely ergodic if and only if any two
clopen subsets of X are comparable with respect to the binary relation.
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1. Introduction. Let ¢ be a homeomor-
phism on a totally disconnected, compact metric
space X. Let M, denote the set of (-invariant
probability measures. For clopen sets A, B C X, we
write A > B either if (A) > p(B) for all p € M, or
if p(A) = p(B) for all p € M,. If ¢ is minimal, then
A > B induces an embedding of B into A via finite
or countable Hopf-equivalence [9]. The embedding
plays significant roles in analyses of orbit structures
of Cantor minimal systems [8,9,11] and also in those
for locally compact Cantor minimal systems [13].
We refer the reader to [14,16] for other facts
concerning Hopf-equivalence.

Another important object in analyses of the
orbit structures is ordered group. Let G, denote
the quotient group of the abelian group C(X,Z)
of integer-valued continuous functions on X by a
subgroup:

ZWZ{fEC(X,Z)|/ fdp =0 for all € M,}.
X

Let
G, ={f1€G,lf =0},

where [f] is the equivalence class of f € C(X,Z). If
¢ is minimal, then the ordered group (G, Gz) with
the canonical order unit is a complete invariant for
orbit equivalence [7].

If ¢ is uniquely ergodic, then any clopen
subsets of X are comparable (with respect to >).
As is mentioned above, if in addition ¢ is minimal,
then one of any two clopen subsets of X is
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embedded into the other clopen subset via count-
able Hopf-equivalence. These facts may lead us to
have questions:

e does a non-uniquely ergodic system always
have incomparable clopen sets?

e does a non-uniquely ergodic system always
have a pair of clopen sets neither of which is
embedded into the other clopen set via count-
able Hopf-equivalence?

The goal of this paper is to give an affirmative

answer to these questions in the following way.
Theorem 1.1. The following are equivalent:

(i) ¢ is uniquely ergodic;

(ii) any two clopen subsets of X are comparable;

(iii) the ordered group (Gy, GY) is totally ordered.
By presenting some examples, we also demon-

strate in Section 4 that, in general, neither of the

conditions:

e the quotient group K(X, ) of C(X,Z) by the
coboundary subgroup:

By ={fov—fIf € C(X,Z)}

is totally ordered;
e one of any two clopen subsets of X is embedded
into the other via countable Hopf-equivalence
is equivalent to any condition of Theorem 1.1.
Throughout this paper, we freely use terminol-
ogy concerning (partially) ordered group, dimen-
sion group, ordered Bratteli diagram, tail equiv-
alence relation, Bratteli-Vershik system and etc.
See for precise definitions of them [3-5,7,10,12,15].
2. Preliminaries. Put

K'(X,0)" ={lf] € K'(X,9)|f > 0}.
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The quotient group of K°(X,¢) by a subgroup
Z,/B, is order isomorphic to G,,. If any point in X
is chain recurrent for ¢, then (K°(X, ), K°(X,¢)")
becomes an ordered group; see [2]. This fact is
proved also in [16] by means of finite Hopf-
equivalence. If ¢ is minimal (resp. almost minimal),
then (K°(X,¢), K°(X,)") becomes a simple (resp.
almost simple) dimension group; see [12] (resp. [3]).
In each of these cases, (K°(X,¢), K°(X,p)") with
the canonical order unit [y x] is a complete invariant
for strong orbit equivalence; see [3,7], where xx is
the characteristic function of X.

Suppose that ¢ has a unique minimal set. By
[12, Theorem 1.1}, any point in X is chain recurrent
for . Given pe€ M,, define a state 7, on
(KO(X,0), [xx]) by for f € C(X,Z),

nllr = [ s

The map p+— 7, is a bijection between M, and
the set of states on (K°(X, ), [xx]); see
[12, Theorem 5.5].

Proposition 2.1. (G,,G}) is an ordered
group.

Proof. Suppose that [f] € GI N (=G with f €
C(X,Z). There are nonnegative g1,¢92 € C(X,Z)
such that f — g1, f + g2 € Z,. Since for all u € M,,

O:/(91+gz)du2/gldu20,
X X

we obtain [f] =[g] =0, ie. GfN(-G)={0}.
Other requirements for (G, G) to be an ordered
group are readily verified. U

Definition 2.2. Clopen sets A,BC X are
said to be countably Hopf-equivalent if there exist
{n; € Z|i € Z*} and disjoint unions

A=|JAiU{zo} and B= | BiU{y}

ieEN ieN

of nonempty clopen sets A;, B; and singletons
{zo},{yo} such that

o " (xg) = yo;

e "(A;) = B, for every i € N;

e the map a: A — B defined by

{gp’”(m) if € A; and ¢ € N;
a(r) = .
Y0 if ¢ =x
is a homeomorphism.

We shall refer to « as a countable equivalence map
from A onto B.
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Lemma 2.3. Suppose that ¢ is minimal. Let
A, B C X be clopen. Put

D, = {[xc] € G,|C C X is clopen.}.

Then, the following are equivalent:
(a) A>B;
(b) B is countably Hopf-equivalent to a clopen
subset of A;
(¢) [xal— [xs € D,.
Proof. By [9, Proposition 2.6], (a) is equivalent
to (b). If «: B— «a(B) C A is a countable equiv-
alence map, then

[xal = [x8] = [xa] = [Xa)] = [Xa\aB)] € Dy.

Hence, (b) implies (c). If [xa] — [xz] = [xc] for some
clopen set C C X, then p(A)— u(B)=u(C)>0
for all € M,. Then, the minimality of ¢ implies
A > B. Hence, (c) implies (a). This completes the
proof. (I
3. A proof of Theorem 1.1. (ii) = (iii):
We first show that ¢ must have a unique mini-
mal set on which any ¢-invariant probability
measure is supported. Let Y C X be a minimal
set and p € M, be supported on Y. Suppose
ve M,\{u}. Assume that v(A) >0 for a clopen
set AC X \Y. Define v/ € M, by for a Borel set
UcCX,
sy~ AUAY)
v(X\Y)
By regularity, there exists a clopen set B containing
Y such that v/(B) < /(A). However,

w(B) =1>0=p(A).
This contradicts (ii).
In the remainder of this proof, we tacitly use
Lemma 2.3. The fact proved in the preceding

paragraph allows us to assume the minimality of
¢. Given a € G, choose

{ai,bj € D, \ {0}]1 <i<mn,1<j<m}
so that
a=ar+a+-+a,—br—by— - —bpy.

The following procedure, consisting of at most
m steps, determines a > 0 or a < 0.
Step 1. If

En:az‘ —-b <0,
=1
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then a <0, and the procedure ends. Otherwise,
there is k; for which

k1
Cpy = Zai —b € D, \ {0};
=1

a = Cy, +a/€1+1+"'+an_b2_b3_"'_bm-
By this operation, the number of terms b; decreases
by one. We may write

a=ap +ag41+ -+ a, —by—bg— - — by

Step 2. If

ia’i_lhgoa

i=ky

then a <0, and the procedure ends. Otherwise,
there is ko > k; for which

ka
Chy = Zai —by e D, \ {0};

i=k
a:ckz+ak2+1+...+an_b3_b4_..._bm_
By this operation, the number of terms b; decreases
by one. We may write

a:akg+ak'2+1+"'+an_b3_b4_"'_bm-

Now, it is clear how we should execute each
step. The procedure necessarily ends by Step m. We
obtain a > 0 exactly when the procedure ends at
Step m.

(iii) = (i): Assume the existence of a clopen set
A C X such that

¢y = inf

| xadp < SUP/XAdM =01
HEM, [x X

pneM,

Since M, is compact, there exist u; € My, i = 1,2,
such that for each i = 1,2,

Ci:/XAdM-
X

Take m,n € N so that

n
< —<cCr.
m

Then,
/ (mxa —n)dus > 0;
X
/(mXA —n)dpg < 0.
X

This contradicts (iii), completing the proof of
Theorem 1.1.
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The proof of (ii) = (iii) developed above is
based on an idea implied in the first paragraph of
[6, Subsection 5.4]. G. Elliott showed in [6] that
given an AF-algebra A, any two projections in
the AF-algebra A are comparable in the sense
of Murray and von Neumann if and only if the
dimension group associated with the AF-algebra
A is totally ordered. The author believes that
this result would not immediately lead to
Theorem 1.1.

4. Examples. We first provide an example
of a non-uniquely ergodic, minimal homeomorphism
having incomparable clopen sets. Since Q? with the
strict ordering is a simple dimension group, there
exists a properly ordered Bratteli diagram B such
that K°(Xp,Ap) is order isomorphic to Q* by an
isomorphism ¢ mapping the canonical order unit
[xx,] to (1,1), where (Xp,Ap) is the Bratteli-
Vershik system associated with the properly or-
dered Bratteli diagram B. See for details [4,7,12].
See also [1,7.7.3]. The homeomorphism Ap has
exactly two ergodic probability measures. The
measures j; correspond to states 7 : Q* — Q
(¢ =1,2) which are the projections to the i-th
coordinate. By [9, Lemma 2.4], there exist clopen
sets C, D C Xp such that

dlxel) = @3) and 1([xp]) = G;)

Since

the clopen sets C' and D are incomparable.

Let V and E denote the vertex set and the edge
set of the properly ordered Bratteli diagram B,
respectively. The set V' is decomposed into pairwise
disjoint, finite subsets Vj (a singleton), Vi, Vs, . ...
The set FE is also decomposed into pairwise disjoint,
finite subsets FEi, E»,... so that for each i€ N,
each edge in E; starts from V;_; and terminates
at V;. Since the Bratteli diagram (V| E) is simple,
by telescoping B if necessary, we may assume that
for each 7 € N, there exists an edge from a given
vertex in V;_; to a given vertex in V;. For each
1 € N, set

V= VU {v}
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with an additional vertex v;. For each integer ¢ > 2,
add edges to E;, denoting by E! the resulting set, so
that in £/,

(a) at least two edges exist from v;_; to a given

vertex in V;;

(b) only one edge exists from v;_; to v;;

(¢) there exist no edges from V;_; to v;.
Put an additional edge e; from vy to vy, where
% = {’Uo}. Set

Ei = El @] {61}.

We obtain a Bratteli diagram (V', E'), where

o0 o0
V' =% Ul JV and E' = J E].
i=1 i=1

For each i = 1,2, extend the measure y; on Xp to
a measure p; on Xy gy by assigning each cylinder
set C' C Xy py \ Xp terminating at J;2, Vi the ;-
measure of a cylinder subset of Xp terminating at
the range vertex of C; see [15,Lemma 4.4]. By
adding more edges to each E] with ¢ > 2 which start
from v;_; and terminate at V; if necessary, we may
assume that each y is infinite. The properties of the
Bratteli diagram (V’, E') allow us to put a partial
order > on E' so that B = (V',E',>') becomes
an almost simple, ordered Bratteli diagram. This
implies that the associated Bratteli-Vershik system
(Xp,Ap) is almost minimal; see [3]. Since each p
is invariant under the tail equivalence relation on
Xw.p), it is also Ap-invariant. The homeomor-
phism Ap is uniquely ergodic, because there exists a
one-to-one correspondence between the set of Ap-
invariant measures on Xp which are finite on any
clopen set disjoint from a fixed point z of Ap and
the set of Ap-invariant finite measures on Xp; see
[15, Lemma 4.4]. The unique invariant probability
measure is the point mass concentrated on z. Let
C,D C Xp be as in the preceding paragraph.
Observe that

It follows from these inequalities that neither C' nor
D is embedded into the other via countable Hopf-
equivalence. Let F' denote a subgroup:

{lf] € K°(Xp, Ap)|z ¢ supp(f), f € C(X,2)},

where
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supp(f) = {z € Xp|f(x) # 0}.
Define group homomorphisms p; : F — R (i = 1,2)
by

pilfN) = [ fdui.

Xp
Observe that for any a € FN K(Xp, A\p)",
0 < pi(a) < .

If the equivalence classes of C' and D are compara-
ble in K°(Xp,\p), then we may obtain a con-
tradiction to the above inequalities. Hence,
K% Xp,\p) is not totally ordered.
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