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Abstract: We show convergence of a finite difference scheme to solve the abstract Cauchy

problem on a scale of Banach spaces which includes that for Kowalevskaya’s system. We show

convergence of consistent difference schemes even for unstable cases.
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1. Introduction. We deal with finite differ-

ence schemes applied to the Cauchy problems of

linear partial differential equations in the normal

form, which is called Kowalevskaya’s system, and

we argue their convergence even without stability.

There are two different principles to discuss unique

solvability of linear partial differential equations in

the normal form; well-posedness and analyticity.

In the first category, we know, about difference

schemes, a remarkable result of Lax’ equivalence

theorem [3] that stability and convergence are

equivalent to each other for consistent finite differ-

ence schemes. The second category recalls to us the

Cauchy-Kowalevskaya theorem, and we will show

convergence of the consistent scheme in this re-

search within the category. The result contains the

case of ill-posed problems in the sense of the first

category, and we are able to show convergence of a

finite difference scheme to approximate the Cauchy

problem of the Cauchy-Riemann equation as an

example. In this sense, this work is a generalization

of that of K. Hayakawa [2].

We discuss convergence of finite difference

schemes in the framework of the Banach scales.

L. V. Ovsjannikov [5] and T. Yamanaka [6] suc-

ceeded independently in reduction of the Cauchy

problem of Kowalevskaya’s system to that of an

abstract ordinary differential equation on a scale of

Banach spaces, and they gave a clear proof of the

Cauchy-Kowalevskaya theorem. We follow their

discussions and prove our result through discreti-

zation of their estimates.

Following Yamanaka [6], we introduce a scale

of Banach spaces and the Cauchy problem on it. Let

S be a scale of Banach spaces: S is a collection of

parametrized Banach spaces fX�g0<���0
satisfying

X� � X�0 and kxk�0 < kxk� ðx 6¼ 0; x 2 X�Þ for

0 < �0 < � � �
0
. Here k k� stands for a norm of

the Banach space X�. Let AðtÞ be a bounded

singular operator with a parameter t 2 ½�T0; T0�;
AðtÞ:X� ! X�0 is a bounded linear operator such

that

kAðtÞuk�0 �
!

�� �0
kuk�ð1:1Þ

ðu 2 X�; 0 < �0 < � � �
0
Þ

for some positive number !, and kAðtÞuk�0 is

continuous with respect to t 2 ½�T0; T0� for fixed

u 2 X�. We have the following result.

Theorem (Ovsjannikov-Yamanaka).

Let � 2 ð0; �
0
Þ. For given f 2 C0ð½�T0; T0� : X�

0
Þ and

U 2 X�, there exists, for each �0 2 ð0; �Þ, a unique

function u 2 C0ð½��; �� : X�0 Þ satisfying the integral

equation

uðtÞ ¼ U þ
Z t

0

ðAð�Þuð�Þ þ fð�ÞÞd� jtj � �;ð1:2Þ

where � :¼ min
�
T0;

�� �0
!e

�
.

Corollary. Under the same assumptions

above, there exists a unique solution u 2 C1ð½��; �� :
X�0 Þ to the Cauchy problem
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d

dt
uðtÞ ¼ AðtÞuðtÞ þ fðtÞ;ð1:3Þ

uð0Þ ¼ U ð2 X�Þ;ð1:4Þ

where 0 < �0 < � � �
0

and � :¼ min
�
T0;

�� �0
!e

�
.

In this paper, we deal with a semi-discrete

difference scheme for the equation (1.3), which does

not contain finite dimensional approximation of

the operator AðtÞ, and we show convergence of

the scheme. Since we know the abstract Cauchy

problem (1.3)–(1.4) includes that of Kowalevskaya’s

system
@

@t
ukðt; xÞ ¼

Xn
j¼1

�
akjðt; xÞ

@

@xj
ukðt; xÞð1:5Þ

þ bjðt; xÞujðt; xÞ
�
þ ckðt; xÞ

ð1 � k � nÞ;

ukð0; xÞ ¼ Uð0Þk ðxÞ ð1 � k � nÞ;ð1:6Þ

where fakjðt; xÞg1�k;j�n, fbjðt; xÞg1�j�n and

fckðt; xÞg1�k�n are analytic with respect to x 2 Rn

and are continuous with respect to t, and where

fUð0Þk ðxÞg1�k�n are analytic, we note that our result

guarantees convergence of a semi-discrete finite

difference scheme for (1.5). We here remark that

the Banach space for (1.5)–(1.6) is that of bounded

analytic functions, and an element u of X� is

analytic on D� :¼ fx 2 Cn j jxj < �g and kuk� ¼
supx2D�

juðxÞj.
We give our main result and its proof in §2, and

we show a numerical example in §3. It is impossible to

see convergence of difference schemes without stabil-

ity through numerical computation using the stand-

ard double precision, but it is possible to do it on

multiple-precision arithmetic, which can extinguish

the rounding errors virtually. In this research, we use

the multiple-precision arithmetic exflib designed by

Hiroshi Fujiwara [1]. The main theorem in §2 was

presented orally at the conference ‘‘International

conference on inverse problems and its applications

(17–20 Aug. 2009 at Korea)’’ without a proof.

2. Finite difference scheme and its con-

vergence. Let us consider the Cauchy problem

(1.3)–(1.4), and the Ovsjannikov-Yamanaka theo-

rem guarantees its unique solvability in jtj < �,

where � :¼ min
�
T0;

�� �0
!e

�
. We remark that we

assume existence of the solution u 2 C2ð½��; �� : X�0 Þ

to the Cauchy problem in our discussion. For a

positive number T such that 0 < T < � and a

positive integer N , we set �t :¼ T
N and tk :¼ k�t

ð0 � k � NÞ, and we give a semi-discrete finite

difference scheme for (1.3)–(1.4) as follows:

ukþ1 � uk
�t

¼ AðtkÞuk þ fðtkÞ ð0 � k � N � 1Þ;

u0 ¼ U:
Our difference scheme is

ukþ1 ¼ uk þ�tAðtkÞuk þ�tfðtkÞð2:1Þ
ð0 � k � N � 1Þ;

u0 ¼ U 2 X�;ð2:2Þ
and we obtain fukgNk¼0 � X�. To start analysis for

convergence, we should require regularity of the

solution of (1.3)–(1.4) in order to apply the Taylor

expansion. Suppose f 2 C1ð½�T0; T0� : X�0
Þ, then

u 2 C2ð½��; �� : X�0 Þ and we have

uðtkþ1Þ ¼ uðtkÞ þ�tAðtkÞuðtkÞð2:3Þ
þ�tfðtkÞ þ�t2vk;

where there exists a positive number V such that

kvkk�0 � V . Let us denote our aimed discretization

error uðtkÞ � uk by ek, then we have, from (2.1) and

(2.3),

ek ¼ e0 þ�t
Xk�1

j¼0

AðtjÞej þ�t2
Xk�1

j¼0

vjð2:4Þ

ð1 � k � N � 1Þ;
where e0 ¼ 0. We will show the convergence of the

scheme through estimation of fekgNk¼0 as N !1.

Main theorem. We follow the same hypoth-

esis and notation with the Ovsjannikov-Yamanaka

theorem, and we suppose f 2 C1ð½�T0; T0� : X�0
Þ.

Let T be 0 < T < �, and set �t ¼ T
N and tk ¼ k�t

ð0 � k � NÞ. Let � be a positive number such that

0 < � < �0 < � � �
0

and �0 � � > �� �0, then there

exists a positive number C such that

max
0�k�N

kuðtkÞ � ukk� � C�t:

Lemma 1. The radius of convergence of the

power series
X1
m¼1

mm

m!
zm is

1

e
.

Lemma 2. For a positive integer m, we have

Xk�1

j¼0

jm � 1

mþ 1
kmþ1.
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The idea of a proof of the main theorem is

a discretized analogue of that of Ovsjannikov-

Yamanaka theorem, and it is convenient to recall

its proof in advance for clear understanding of ours.

A sketch of a proof of the Ovsjannikov-Yamanaka

theorem: We apply the method of successive

approximation to the integral equation (1.2).

Define a sequence of functions fuðpÞgp�0 by

uðpþ1ÞðtÞ ¼ UðtÞ þ
Z t

0

ðAð�ÞuðpÞð�Þ þ fð�ÞÞd�ð2:5Þ

ðp � 0Þ;
where uð0Þ ¼ U , and we have

uðpþ1ÞðtÞ � uðpÞðtÞ ¼
Z t

0

Að�ÞðuðpÞð�Þ � uðp�1Þð�ÞÞd�

ðp � 1Þ:ð2:6Þ

In order to estimate kuðmÞ � uðm�1Þk�0 , we divide the

interval ½�0; �� into m equal sub-intervals by ðm� 1Þ
points

�
j

:¼ ��
j

m
ð�� �0Þ ð0 � j � mÞ:ð2:7Þ

Combining (1.1) with (2.6), we have

kuð1Þ � uð0Þk�1
�

m!

�� �0 kUk�0
tþ Ft

¼
m!

�� �0 kUk�tþ Ft;

where F is a positive constant depending on the

function F ðtÞ, and finally we obtain

kuðmÞ � uðm�1Þk�0
¼ kuðmÞ � uðm�1Þk�m

� kUk�
!mmm

ð�� �0Þm
tm

m!
þ F

!m�1mm�1

ð�� �0Þm�1

tm

m!
:

By Lemma 1, we can construct a majorant for

fuðmÞgm�0 in jtj < �� �0
!e

, and we obtain a solution

to the equation (1.2) through completeness of the

Banach space X�0 . �

For the sake of a proof of our theorem, we are

enough to follow a discretized version of the above

proof, but we should note the choice of the scale �.

In the following proof, we take the scale � such that

� < �0 and �0 � � > �� �0.
A proof of the theorem: Let us regard the formula

(2.4) as a kind of discretization of the integral

equation (1.2), and we define, following (2.5), a

sequence
�
ðeðpÞ1 ; � � � ; eðpÞN Þ

�
p�0

by

e
ðpþ1Þ
k ¼ e0 þ�t

Xk�1

j¼0

AðtjÞeðpÞj þ�t2
Xk�1

j¼0

vjð2:8Þ

ð1 � k � NÞ;
where e

ð0Þ
k ¼ e0 ð¼ 0Þ for 1 � k � N. In order to

estimate keðmÞk � eðm�1Þ
k k� ð1 � k � NÞ, we divide

the interval ½�; �0� into m equal sub-intervals and

set

�
j

:¼ �0 �
j

m
ð�0 � �Þ ð0 � j � mÞ:

Firstly we have

keð1Þk k�1
¼ �t2

Xk�1

j¼0

vj

�����
�����
�1

� �tV ðk�tÞ:ð2:9Þ

The formula (2.8) leads us to

e
ðpþ1Þ
k � eðpÞk ¼ �t

Xk�1

j¼0

AðtjÞðeðpÞj � e
ðp�1Þ
j Þ

ð1 � k � NÞ;
and we have, from (2.9),

keð2Þk � e
ð1Þ
k k�2

¼ �t
Xk�1

j¼0

AðtjÞeð0Þj

�����
�����
�2

� �t
Xk�1

j¼0

m!

�0 � ��t2jV

	 


� �t
m!

�0 � � V
1

2
ðk�tÞ2 ð1 � k � NÞ:

Through the inductive estimation, we obtain, from

Lemma 2,

keðpÞk � e
ðp�1Þ
k k�p � �t

m!

�0 � �

	 
p�1

V
ðk�tÞp

p!

ð1 � k � NÞ;
since

keðpÞk � e
ðp�1Þ
k k�p ¼ �t

Xk�1

j¼0

AðtjÞðeðp�1Þ
j � eðp�2Þ

j Þ
�����

�����
�p

� �t
m!

�0 � �
Xk�1

j¼0

keðp�1Þ
j � eðp�2Þ

j k�
p�1
:

Hence we have

keðmÞk � eðm�1Þ
k k� ¼ ke

ðmÞ
k � eðm�1Þ

k k�mð2:10Þ

� �t
m!

�0 � �

	 
m�1

V
ðk�tÞm

m!

ð1 � k � NÞ:
When m > l, we can estimate keðmÞk � eðlÞk k� by

(2.10):
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keðmÞk � eðlÞk k� �
Xm
p¼lþ1

keðpÞk � e
ðp�1Þ
k k�

� �tV
Xm
p¼lþ1

p!

�0 � �

	 
p�1ðk�tÞp

p!
:

The radius of convergence of the power series

X1
p¼1

p!

�0 � �

	 
p�1 tp

p!
is
�0 � �
!e

, and we have assumed

that 0 � k�t � T < � <
�� �0
!e

and �0 � � > �� �0.

Then we conclude that there exists ek 2 X� such

that kek � eðmÞk k� ! 0 as m! þ1 and that

max
0�k�N

kekk � C�t:

This estimate is equivalent to

max
0�k�N

kuk � uðtkÞk � C�t;

and we complete the proof. �

Remark. The result can be generalized for

non-linear cases, following the result of T.

Nishida [4].

3. Numerical example. We show a numer-

ical example to illustrate the main theorem and we

apply our theory to the Cauchy problem

@

@t
uðt; xÞ ¼ ð5x� 3Þ

@

@x
uðt; xÞ t > 0; x 2 R;ð3:1Þ

uð0; xÞ ¼ 5x� 3:ð3:2Þ

This example is a simple case of Kowalevskaya’s

system (1.5)–(1.6), and it has a real characteristic

line tþ 1
5 log j5x� 3j ¼ const. and the exact solution

uðt; xÞ ¼ ð5x� 3Þe5t. In the following computation,

we discretize also the x-direction by the forward

difference, and our finite difference scheme is

ukþ1ðxÞ � ukðxÞ
�t

ð3:3Þ

¼ ð5x� 3Þ
ukðxþ�xÞ � ukðxÞ

�x
:

We remark that the scheme (3.3) does not take

either the characteristic line or speed of propaga-

tion into account and that it is generally an

unstable scheme in the usual sense [3]. Our result

guarantees convergence of the exact numerical

solution, which is the exact solution to the differ-

ence scheme, for an analytic initial data. Here our

numerical results for the case �x ¼ �t ¼ 0:01 and

0:1 � t � 0:25.

Figure 1 shows the result by the standard double

precision, and Fig. 2 does by 50 (decimal) digits

precision on exflib [1] which enables us to extinguish

influence of the rounding errors virtually. The

numerical solution in Fig. 1 has oscillation because

of instability of the difference scheme (3.3), but the

oscillation is due to influence of the rounding errors.

We are, as is shown in Fig. 2, able to extinguish

influence of the rounding error virtually on exflib.

Figure 3 shows rate of convergence as �t! 0. We

-2
-4
-6
-8

-10
-12

0.2
0.15

0.1
0.05

00.240.220.20.180.160.140.120.1 x

t

Fig. 1. Numerical results by the double precision.

-2
-4
-6
-8

-10
-12

0.2
0.15

0.1
0.05

00.240.220.20.180.160.140.120.1 x

t

Fig. 2. Numerical results by 50 decimal digits precision.
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Δt
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Fig. 3. Rate of convergence by 200 decimal digits precision.
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here compute numerical solutions by 200 (decimal)

digits precision on exflib and show an estimate

max
0<tk<0:2
0�x�1

juðtk; xÞ � ukðxÞj

for the case �x ¼ �t. Dotted line in Fig. 3 indicates

Oð�tÞ, and we notice that it is consistent to the

main result. There numerical computations are

carried out by Prof. Hiroshi Fujiwara on his system

exflib [1].
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