Gröbner basis, Mordell-Weil lattices and deformation of singularities, II

By Tetsuji Shioda*),**)
(Communicated by Heisuke Hironaka, M.J.A., Jan. 12, 2010)

Abstract

We prove the main theorem on the structure of everywhere integral sections on a rational elliptic surface, which is formulated in the first part of the paper with the same title [18]. A few examples are given to illustrate it, and some open questions in the case of higher arithmetic genus will be discussed.

Key words: Gröbner basis; integral section; Mordell-Weil lattice; deformation of singularities.

1. Introduction. In this paper, we prove the main theorem on the structure of everywhere integral sections on a rational elliptic surface, which is formulated in the part I [18, Theorem 2.1]. We restate the main theorem below, after recalling the necessary notation (cf. [18, §1]).

First a section of an elliptic surface $f: S \rightarrow$ $C=\mathbf{P}^{1}$ is called everywhere integral [16] if it is disjoint from the zero-section. Denote the set of everywhere integral sections by \mathcal{P} and the defining ideal of \mathcal{P} by $I \subset R=k\left[x_{j}, y_{k}\right]$. By considering its primary decomposition $I=\cap_{i} \mathbf{q}_{i}$, the multiplicity of each $P_{i} \in \mathcal{P}$ is defined as $\mu\left(P_{i}\right)=\operatorname{dim}_{k} R / \mathbf{q}_{i}$ (cf. $[3,9])$. Then the linear dimension $\operatorname{dim}_{k} R / I$ is equal to the number of everywhere integral sections on S counted with multiplicities.

On the other hand, given a rational elliptic surface S with the zero-section O, let $T=T_{S}$ denote the trivial lattice of S, which is embedded as a sublattice of the negative-definite root lattice E_{8}^{-}:

$$
T=\oplus_{v \in R_{f}} T_{v} \subset E_{8}^{-}
$$

where R_{f} denotes the set of $v \in C$ such that the fibre $f^{-1}(v)$ is reducible, and T_{v} is a sublattice of the Néron-Severi lattice $\mathrm{NS}(S)$ spanned by the irreducible components $\Theta_{v, i}$ of $f^{-1}(v)$ not intersecting the zero-section (cf. [10, 11]; also [6, 7, 19]). We sometimes view $T \subset E_{8}$ by changing the sign.

Now the main theorem asserts the following
Theorem 1.1. Assume that S is a rational elliptic surface. Then (i) the number of everywhere

[^0]integral sections is at most 240: $0 \leq n=\# \mathcal{P} \leq 240$. Moreover it is 240 if and only if S has no reducible fibres.
(ii) The linear dimension $\operatorname{dim}_{k} R / I$ is equal to $240-\nu(T)$, where $\nu(T)$ is the number of roots in the trivial lattice T.
(iii) For each $i \leq n$, the multiplicity $\mu\left(P_{i}\right)$ is equal to the combinatorial multiplicity $m\left(P_{i}\right)$ which is defined as the number of the distinguished roots in the root graph associated with P_{i} (see Definition 2.2 of [18]).

The proof is given in the next section. In $\S 3$, a few examples are given as illustration of the main theorem. Actually rational elliptic surfaces are classified by Oguiso-Shioda [10] in terms of the trivial lattice and Mordell-Weil lattice. For every type, we have determined the data $n, m(P)(P \in \mathcal{P})$ appearing in Theorem 1.1, but the results will be reported in some other occasion. In the final section $\S 4$, we discuss some open questions in case $\chi>1$.

2. Proof of the main theorem.

2.1. The case $\boldsymbol{T}=\mathbf{0}$. First we consider the case $T=0$, i.e. no reducible fibres. In this case, Theorem 1.1 reduces to the following

Theorem 2.1. Assume that S is a rational elliptic surface with no reducible fibres. Then we have
(2.1) $\quad n=\operatorname{dim}_{k} R / I=240, \mu(P)=m(P)=1$
for all $P \in \mathcal{P}$.
Proof. We have only to prove the equality:

$$
\begin{equation*}
\operatorname{dim} R / I=240 \tag{2.2}
\end{equation*}
$$

In fact, by [18, Lemma 3.1], we know that $n=$ $\# \mathcal{P}=240$ and that $m(P)=1$ for each $P \in \mathcal{P}$. The latter holds, because the root graph $\Delta(P)$ consists of the vertex $D(P)$ alone as $T=0$. In view of the Chinese Remainder equality [18, (1.15)], we see that the claim (2.2) is equivalent to the following

$$
\begin{equation*}
\mu(P)=1 \text { for all } P \in \mathcal{P} \tag{2.3}
\end{equation*}
$$

Thus we proceed as follows to show (2.2) (see Lemma 2.4 below).

First we write down a "universal" rational elliptic surface. Let S_{λ} denote the elliptic surface defined by the Weierstrass equation:
$y^{2}+a_{1}(t) x y+a_{3}(t) y=x^{3}+a_{2}(t) x^{2}+a_{4}(t) x+a_{6}(t)$
where

$$
\lambda=\left(a_{i, j}\right)(j \leq i), a_{i}(t)=\sum_{j=0}^{i} a_{i, j} t^{j}(i=1,2,3,4,6) .
$$

Let

$$
\begin{equation*}
\Lambda=\left\{\lambda \mid S_{\lambda} \text { is a RES }\right\} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda_{0}=\left\{\lambda \in \Lambda \mid S_{\lambda} \text { has no reducible fibres }\right\} \tag{2.5}
\end{equation*}
$$

In characteristic different from 2 and 3 , one can choose $a_{i}(t)=0(i=1,2,3)$ (i.e. $a_{i, j}=0$ for $i=$ $1,2,3$ and all j) without loss of generality. In any case, Λ is open in an affine space of suitable dimension, and Λ_{0} is an open subset of Λ.

We denote by \mathcal{P}_{λ} and I_{λ} the set of everywhere integral sections \mathcal{P} of S_{λ} and its defining ideal, and by $V\left(I_{\lambda}\right)$ the 0 -dimensional affine scheme defined by I_{λ}.

Lemma 2.2. Under the assumption that $\chi=$ 1, $\left\{V\left(I_{\lambda}\right) \mid \lambda \in \Lambda\right\}$ forms a flat family over Λ.

Proof. (I owe this remark to Takeshi Saito.) For any χ, the ideal I_{λ} is generated by $6 \chi+1$ elements by definition, while the number of variables x_{i}, y_{j} is $(2 \chi+1)+(3 \chi+1)=5 \chi+2$. Hence, if $\chi=1, V\left(I_{\lambda}\right)$ is a complete intersection, and the flatness follows from [4, Ch. IV].

Lemma 2.3. Under the same assumption, $\left\{V\left(I_{\lambda}\right) \mid \lambda \in \Lambda_{0}\right\}$ forms a finite flat family over Λ_{0}.

Proof. For any (geometric) point $\lambda \in \Lambda_{0}, V\left(I_{\lambda}\right)$ consists of 240 points by [18, Lemma 3.1]. The affine coordinates of these points in the ambient affine space of $V\left(I_{\lambda}\right)$ are given by $z\left(P_{m}\right)(1 \leq m \leq 240)$ (see $[18,(1.7)])$, if we set $\mathcal{P}_{\lambda}=\left\{P_{m}(1 \leq m \leq 240)\right\}$.

Now fix any $\lambda \in \Lambda_{0}$. Let $\tilde{\lambda}$ be a generic point of Λ_{0}, and let $z(\tilde{P})$ be a generic point of $\tilde{V}:=V\left(I_{\tilde{\lambda}}\right)$. Take any specialization $\sigma: \tilde{\lambda} \rightarrow \lambda$, and any specialization $\tilde{\sigma}$ of $z(\tilde{P})$ over σ. Since \tilde{V} is specialized to $V\left(I_{\lambda}\right)$, bijectively as the point sets consisting of 240 points, the point $z(\tilde{P})$ must specialize to one of $z\left(P_{m}\right)^{\prime} s$, which are obviously finite. This is the case
for any choice of specialization $\tilde{\sigma}$, and hence the family in question is a proper family (cf. [5, Ch. II] or $[20, \mathrm{Ch} . \mathrm{VII}])$. Since it is a family of 0 -dimensional schemes, the assertion follows.

Lemma 2.4. (i) The dimension $\operatorname{dim}_{k} R / I_{\lambda}$ is constant for any $\lambda \in \Lambda_{0}(k)$. (ii) The constant value is equal to 240.

Proof. The claim (i) follows from a general result for finite flat morphisms (see e.g. [8, Prop. 8, Lect. 6]). Thus, to prove (ii), it suffices to check it at one point $\lambda \in \Lambda_{0}(k)$. For instance, take λ corresponding to the rational elliptic surface $y^{2}=x^{3}+t^{5}+1$ treated in [18, Ex. 1.4]. (Actually, as the referee has kindly pointed out, it works only in characteristic $p \neq 2,3,5$. But we can always find a suitable equation which works in a given characteristic such as $y^{2}=x^{3}+t^{5}-t$ in case $p=5$.)

This completes the proof of Theorem 2.1.
2.2. General case. Now we prove Theorem 1.1 without assumption.

For any $\lambda \in \Lambda$, let \mathcal{D}_{λ} denote the set of roots in the E_{8}-frame on S_{λ}. Recall that, for each $P \in \mathcal{P}_{\lambda}$, $D(P):=(P)-(O)-F$ is an element of \mathcal{D}_{λ}.

Let $\tilde{\lambda}$ be a generic point of Λ_{0}, and let $\mathcal{P}_{\tilde{\lambda}}=$ $\left\{\tilde{P}_{i}(1 \leq i \leq 240)\right\}$. The set $\mathcal{D}_{\tilde{\lambda}}$ consists of $D\left(\tilde{P}_{i}\right)$'s by [18, Lemma 3.1].

Take any point $\lambda \in \Lambda(k)$ and any specialization $\sigma: \tilde{\lambda} \rightarrow \lambda$. By [18, Lemma 3.2], $\mathcal{D}_{\tilde{\lambda}}$ is mapped bijectively to \mathcal{D}_{λ} under the specialization, and by [18, Lemma 3.3], each $D\left(\tilde{P}_{i}\right)$ is mapped either to some element of T or to an element of the form $D \equiv$ $D(P)+\gamma$ for some $P \in \mathcal{P}_{\lambda}$ and $\gamma \in T$. For a fixed $P \in \mathcal{P}_{\lambda}$, the number of \tilde{P}_{i} 's corresponding to P in the above sense is equal to the multiplicity $\mu(P)$, because each \tilde{P}_{i} has multiplicity 1 by (2.3) which has just been established above. Comparing this with the decomposition of the set $\mathcal{D}=\mathcal{D}_{\lambda}$ in $[18$, Theorem 3.4], we conclude that $\mu(P)=m(P)$ for each $P \in \mathcal{P}_{\lambda}$. This proves the claim (iii) of Theorem 1.1.

Next, to prove (ii), we note from the Chinese Remainder theorem and (iii) just proven above that

$$
\operatorname{dim}_{k} R / I_{\lambda}=\sum_{P \in \mathcal{P}} \mu(P)=\sum_{P \in \mathcal{P}} m(P)
$$

By [18, Theorem 3.4], this implies

$$
\operatorname{dim}_{k} R / I_{\lambda}=240-\nu(T)
$$

Thus we have proven the claim (ii) of Theorem 1.1.
The claim (i) is now obvious: we have

$$
n=\# \mathcal{P} \leq \operatorname{dim}_{k} R / I \leq 240
$$

where the second inequality follows from (ii) above. This completes the proof of Theorem 1.1.
2.3. Further information in a special case (cf. [12, 13]). The idea of the above proof is adapted from our previous work [12, §8] and [13], treating a slightly less general family which admits a singular fibre of type $I I$ (a cuspidal cubic). We remark here that, if we restrict our attention to that family, everything in the above proof becomes clearer and more explicit.

Namely we consider

$$
\begin{align*}
E_{\lambda}: y^{2} & =x^{3}+\left(\sum_{i=0}^{3} p_{i} t^{i}\right) x+\sum_{j=0}^{3} q_{j} t^{j}+t^{5} \tag{2.6}\\
\lambda & =\left(p_{0}, \ldots, q_{3}\right) \in \mathbf{A}^{8} .
\end{align*}
$$

[From the viewpoint of topology of singularities, the above equation is called the universal deformation of E_{8}-singularity $y^{2}=x^{3}+t^{5}$ locally near the origin of \mathbf{C}^{3}. Our approach based on Mordell-Weil lattices is more algebraic and global, but both viewpoints are very closely connected.]

Assume that λ is generic (i.e. p_{0}, \ldots, q_{3} are algebraically independent) over \mathbf{Q}, and let k be the algebraic closure of $k_{0}:=\mathbf{Q}(\lambda)=\mathbf{Q}\left(p_{0}, \ldots, q_{3}\right)$. Then the elliptic surface S_{λ} is a RES without reducible fibres and $M_{\lambda}=E_{\lambda}(k(t))$ is isomorphic to the root lattice E_{8}. Take a basis $\left\{P_{1}, \ldots P_{8}\right\}$ forming the Dynkin diagram of type E_{8}, and let $u_{i}=s p_{\infty}\left(P_{i}\right) \in k$, where

$$
\begin{equation*}
s p_{\infty}: E_{\lambda}(k(t)) \rightarrow k \tag{2.7}
\end{equation*}
$$

denotes the specialization homomorphism: for any $P, s p_{\infty}(P)$ is defined as the unique intersection point of the section (P) and the singular fibre of type $I I$ $f^{-1}(\infty)$.

By the fundamental theorems for the algebraic equations of type E_{8} [12, Theorems 8.3, 8.4, 8.5], we have the following results:
(i) $\mathcal{K}=\mathbf{Q}\left(u_{1}, \ldots, u_{8}\right)$ is the splitting field of $E_{\lambda} / \mathbf{Q}(\lambda)(t)$, i.e. we have $E_{\lambda}(\mathcal{K}(t))=E_{\lambda}(k(t))$ and \mathcal{K} is the smallest extension of $\mathbf{Q}(\lambda)$ with this property.
(ii) $\mathcal{K} / \mathbf{Q}(\lambda)$ is a Galois extension with Galois group $W\left(E_{8}\right)$ (the Weyl group of type E_{8}).
(iii) $W\left(E_{8}\right)$ acts on the polynomial ring $\mathbf{Q}\left[u_{1}, \ldots\right.$, u_{8}], and the ring of invariants is equal to $\mathbf{Q}[\lambda]:=\mathbf{Q}\left[p_{0}, \ldots, q_{3}\right]$. In other words, $\left\{p_{0}, \ldots\right.$, $\left.q_{3}\right\}$ forms a set of fundamental invariants of $W\left(E_{8}\right)$ (of weight $20,14,8,2,30,24,18,12$ respectively).
(iv) The minimal polynomial $\Phi(X)$ of u_{1} over $\mathbf{Q}(\lambda)$ splits completely in \mathcal{K} and it has coefficients in $\mathbf{Q}[\lambda]$:

$$
\begin{equation*}
\Phi(X, \lambda)=\prod_{i=1}^{240}\left(X-u_{i}\right) \in \mathbf{Q}[\lambda][X] \tag{2.8}
\end{equation*}
$$

where each root u_{i} is \mathbf{Z}-linear combination of u_{1}, \ldots, u_{8}. The $240 u_{i}$ form a root system of type E_{8}.
(v) For each $i \leq 240$, there is a section $P_{i} \in$ $E_{\lambda}(k(t))$ of the form:

$$
\begin{array}{r}
P_{i}=\left(\frac{1}{u_{i}^{2}} t^{2}+a t+b, \frac{1}{u_{i}^{3}} t^{3}+c t^{2}+d t+e\right) \tag{2.9}\\
s p_{\infty}\left(P_{i}\right)=u_{i}
\end{array}
$$

where the coefficients a, b, c, d, e belong to $\mathbf{Q}(\lambda)\left(u_{i}\right) \cap$ $\mathbf{Q}\left[u_{1}, \ldots, u_{8}\right]$.

Let $u:=\left(u_{1}, \ldots, u_{8}\right) \in \mathbf{A}^{8}$. Then it follows from (iii) above that the map $\phi: u \mapsto \lambda=\phi(u)$ defines a finite ramified Galois covering $\mathbf{A}^{8} \rightarrow \mathbf{A}^{8}$ with Galois group $W\left(E_{8}\right)$, which is unramified on the open set $U \subset \mathbf{A}^{8}$ where the "discriminant" $\delta(\lambda)(c f .[1])$ does not vanish:

$$
\begin{equation*}
\delta(\lambda)=\Phi(0, \lambda)=\prod_{i=1}^{240} u_{i} \tag{2.10}
\end{equation*}
$$

Furthermore $S_{u}:=S_{\phi(u)}$ defines a smooth family of rational elliptic surfaces parametrized by the affine space \mathbf{A}^{8} upstairs (see [13, Prop. 4.3] and references given there).

Now we consider specializing the generic point of the affine space upstairs $u=\left(u_{1}, \ldots, u_{8}\right)$ to some $u^{0}=\left(u_{1}^{0}, \ldots, u_{8}^{0}\right)$. It induces a unique specialization $\quad \lambda=\phi(u) \rightarrow \lambda^{0}=\phi\left(u^{0}\right)$ in the affine space downstairs. By (v) above, we can write each P_{i} as $P_{i}(u)$ with its coefficients of t lying in $\mathbf{Q}(\lambda)\left(u_{i}\right) \cap$ $\mathbf{Q}\left[1 / u_{i}, u_{1}, \ldots, u_{8}\right]$. Hence, as far as $u_{i}^{0} \neq 0, P_{i}$ has a unique specialization P_{i}^{0} with $s p_{\infty}\left(P_{i}^{0}\right)=u_{i}^{0}$.

Thus, if $\delta\left(\lambda^{0}\right) \neq 0, P_{i} \rightarrow P_{i}^{0}$ gives a bijection of the set of 240 roots in the Mordell-Weil lattice M_{λ} to that in $M_{\lambda^{0}}$. (N.B. The map $u_{i} \rightarrow u_{i}^{0}$ is not necessarily injective even if we assume $\delta\left(\lambda^{0}\right) \neq 0$. See [12, p. 685] for such an example.)

On the other hand, if $\delta\left(\lambda^{0}\right)=0$, then there exist some i such that $u_{i}^{0}=0$. In this case, P_{i} must specialize to O in $M_{\lambda^{0}}$. The number ν of such i 's is equal to $\nu(T)$, the number of roots in the trivial lattice $T \subset \operatorname{NS}\left(S_{\lambda^{0}}\right)$. In other words, the multiplicity of the factor X in the polynomial $\Phi\left(X, \lambda^{0}\right)$ is equal to $\nu(T)$. If we set $\mathcal{P}_{\lambda^{0}}=\left\{Q_{1}, \ldots, Q_{n}\right\}$, then we have
$\Phi\left(X, \lambda^{0}\right)=\prod_{i=1}^{240}\left(X-u_{i}^{0}\right)=X^{\nu} \prod_{j=1}^{n}\left(X-s p_{\infty}\left(Q_{j}\right)\right)^{m\left(Q_{j}\right)}$.
Thus, for a fixed $u^{0}=u_{i}^{0}$, the multiplicity of ($X-$ $\left.u^{0}\right)$ in $\Phi\left(X, \lambda^{0}\right)$ is equal to the sum of $m\left(Q_{j}\right)$'s such that $s p_{\infty}\left(Q_{j}\right)=u^{0}$.
3. Examples. By [10], the Mordell-Weil lattice (abbreviated as MWL) of a rational elliptic surface is classified into 74 types by the triple $\{T, L, M\}$, where (i) T is the trivial lattice, with the opposite sign, embedded in E_{8}, (ii) L is the narrow MWL $E(K)^{0}$ which is isomorphic to the orthogonal complement of T in E_{8}, and (iii) M is the MWL $E(K)$ which is the direct sum of the dual lattice of L and the torsion group T^{\prime} / T, where T^{\prime} is the primitive closure of T in E_{8}.

For each type $\{T, L, M\}$, we have determined the set $\mathcal{P} \subset M, n=\# \mathcal{P}$, and the combinatorial multiplicities $m(P)$ for each $P \in \mathcal{P}$. The summary will be reported at some other occasion, where some \mathbf{Q}-split examples (cf. $[12,14]$) of every type will be given to simplify the direct verification via Gröbner basis computation (cf. [3, 9]).

Here we illustrate our results with a few classical examples. Examples in $\S 3.1$ are the prototype of the present work treated in the earlier paper [13]. Next $\S 3.2$ shows more complicated new features, dealing with the familiar Legendre curve.
3.1. Cases of higher Mordell-Weil rank (cf. $[13, \S 5])$. For a rational elliptic surface, the rank $r=M$ is bounded by 8 and the higher MW-rank cases correspond to the cases of smaller rkT. The first four cases in [10] (cf. $[12,13,15])$ are the following (where $\operatorname{rkT} \leq 2$):
(i) $T=0, L=M=E_{8}$,
(ii) $T=A_{1}, L=E_{7}, M=E_{7}^{*}$,
(iii) $T=A_{2}, L=E_{6}, M=E_{6}^{*}$,
(iv) $T=A_{1}^{\oplus 2}, L=D_{6}, M=D_{6}^{*}$.

The set \mathcal{P} of everywhere integral sections in M consists of the roots in the root lattice L and the minimal vectors of $M=L^{*}$ (the dual lattice of L) for the first three cases. Thus $n=\# \mathcal{P}$ is equal to the number $\nu(L)$ of the roots in L, plus the number of minimal vectors in case (ii) or (iii): that is (i) $n=240$, (ii) $n=126+56=182$, (iii) $n=72+54=$ 126.

If $P \in \mathcal{P}$ is a root of L, then the multiplicity $m(P)$ is 1 , because the root graph consists of the single vertex $D(P)$. On the other hand, if P is a

Fig. 1. Root graph $\Delta(P)$.
minimal vector of $M=L^{*}$, then the multiplicity $m(P)$ is equal to $m(P)=2$ in case (ii) and $m(P)=$ 3 in case (iii), because then the root graph $\Delta(P)$ is given, respectively, by Figure 1. Here the root $D(P)$ is denoted by the encircled vertex and other roots $\Theta_{v, i}$ in $[18,(2.11)]$ by the black vertices. (We write θ for Θ in the following figures.)

In case (iv), the set \mathcal{P} consists of 60 roots of $L=D_{6}, 12$ minimal vectors of height $\langle P, P\rangle=1$ in $M=D_{6}^{*}$, plus $64 Q \in M$ with height $\langle Q, Q\rangle=3 / 2$. We have $m(P)=4$ and $m(Q)=2$, as shown by Figure 1 (iv) or (ii) respectively. Compare [13, §5].

In each case, check the identity:

$$
\begin{align*}
126 \cdot 1+56 \cdot 2 & =238=240-2,2=\nu\left(A_{1}\right) \tag{3.1}\\
72 \cdot 1+54 \cdot 3 & =234=240-6,6=\nu\left(A_{2}\right) \tag{3.2}\\
60 \cdot 1+64 \cdot 2 & +12 \cdot 4=236=240-4, \tag{3.3}\\
4 & =\nu\left(A_{1}^{\oplus 2}\right) .
\end{align*}
$$

3.2. The Legendre surface. Let E be defined by the Legendre form:

$$
\begin{equation*}
E: y^{2}=x(x-1)(x-t) \tag{3.4}
\end{equation*}
$$

Let $K=k(t)$ where k is any field of characteristic $\neq 2$. The elliptic surface defined by this equation is obviously a rational surface, since the function field $K(E)=k(t, x, y)$ is equal to $k(x, y)$.

There are two singular fibres of type I_{2} at $t=$ 0,1 and one of type I_{2}^{*} at $t=\infty$. The trivial sublattice $T=A_{1}^{\oplus 2} \oplus D_{6}$ is of index 4 in E_{8}, and the Mordell-Weil group is $M=E_{8} / T \cong(\mathbf{Z} / 2 \mathbf{Z})^{2}$, a torsion group of order 4 . More explicitly, we have

$$
\begin{equation*}
E(K)=\left\{O, P_{1}=(0,0), P_{2}=(1,0), P_{3}=(t, 0)\right\} \tag{3.5}
\end{equation*}
$$

Thus \mathcal{P} consists of three 2 -torsions $\left\{P_{1}, P_{2}, P_{3}\right\}$ and $n=\# \mathcal{P}=3$. Figure 2 shows how each section $\left(P_{j}\right)$ intersects the irreducible components $\theta_{v, i}(v=$ $0,1, \infty)$ of three singular fibres. (N.B. Two different sections do not intersect. The picture is not correct in that $\left(P_{1}\right)$ and $\left(P_{3}\right)$ look as if they intersect.)

We can determine their (combinatorial) multiplicities as follows:

Fig. 2. Legendre elliptic surface.

Fig. 3. Root graph $\Delta(P)$ for $P=P_{1}$.

Fig. 4. Root graph $\Delta(P)$ for $P=P_{3}$.

$$
\begin{equation*}
m\left(P_{1}\right)=64, m\left(P_{2}\right)=64, m\left(P_{3}\right)=48 \tag{3.6}
\end{equation*}
$$

Indeed the root graph $\Delta(P)$ for $P=P_{1}$ is shown by Figure 3 (and similarly for $P=P_{2}$), while $\Delta(P)$ for $P=P_{3}$ is as in Figure 4.

Then, by counting the number of distinguished roots in the root graph $\Delta(P),(3.6)$ can be verified. For instance, to show that $m\left(P_{1}\right)=64$, consider first the distinguished roots $\xi=D(P)+\cdots$ not containing the vertex $\theta_{0,1}$ in Figure 3. Thus we seek for the number of "positive roots" in the Dynkin diagram of type E_{7} whose coefficient of $D(P)$ is 1 . As is wellknown (see $[1,2]$), there exist 33 positive roots in the Dynkin diagram of type E_{7} containing the left vertex $D(P)$, but one of them is of the form $2 D(P)+\cdots$. Hence we have exactly 32ξ of the required form. Then, considering $\xi+\theta_{0,1}$ for each such ξ, we obtain another set of 32 distinguished roots. In this way, we check that the number of distinguished roots in the root graph $\Delta\left(P_{1}\right)$ is equal to $2 \cdot 32$, i.e. $m\left(P_{1}\right)=64$.

Incidentally, it should be remarked that the root graph of an everywhere integral section P is a visual counterpart of the height formula for P. For instance, the height formula for $P=P_{i}$ above reads as

$$
\begin{align*}
& \left\langle P_{1}, P_{1}\right\rangle=2+0-6 / 4-1 / 2-0 \tag{3.7}\\
& \left\langle P_{2}, P_{2}\right\rangle=2+0-6 / 4-0-1 / 2 \tag{3.8}\\
& \left\langle P_{3}, P_{3}\right\rangle=2+0-1-1 / 2-1 / 2 \tag{3.9}
\end{align*}
$$

where the local contribution terms contrv (P) (see [11, p. 229]) on the right hand side are written in the order of $v=\infty, 0,1$.

Now Theorem 1.1 implies that, if I denotes the defining ideal of \mathcal{P} in this case, then the primary decomposition of I is of the form $I=\mathbf{q}_{1} \cap \mathbf{q}_{2} \cap \mathbf{q}_{3}$, with \mathbf{q}_{i} corresponding to $P_{i}(i=1,2,3)$, and we have

$$
\begin{equation*}
\operatorname{dim}_{k} R / \mathbf{q}_{i}=64(i=1,2), \operatorname{dim}_{k} R / \mathbf{q}_{3}=48 \tag{3.10}
\end{equation*}
$$

implying $\operatorname{dim}_{k} R / I=176$. As mentioned before, Gröbner basis computations allow one to make a direct verification of such a result.
4. Open questions. When the arithmetic genus χ is greater than 1, Question 1.3 posed in the Introduction of part I [18] remains open. Let us pose a few more specific questions here.

We use the same notation as in [18, §1]. In particular, \mathcal{P} denotes the set of everywhere integral sections on a given elliptic surface S over \mathbf{P}^{1} of arithmetic genus χ, and I denotes its defining ideal.

Question 4.1. Assume that $P \in \mathcal{P}$ has height $\langle P, P\rangle=2 \chi$. Is the multiplicity $\mu(P)$ equal to 1 ?

The assumption is equivalent to saying that $P \in \mathcal{P}$ belongs to the narrow Mordell-Weil lattice, or that the sections (P) and (O) intersect the same irreducible component for every reducible fibre. Question 4.1 is true if $\chi=1$ by Theorem 1.1 , since the assumption implies that the combinatorial multiplicity $m(P)=1$.

In particular, we ask:
Question 4.2. Assume that the trivial lattice $T=0$, or equivalently, there are no reducible fibres. Then is it true that $I=\sqrt{I}$?

Next consider the case $\chi=2$, i.e. S is an elliptic K3 surface.

Question 4.3. What is the maximum cardinality $n=\# \mathcal{P}$ when S varies among elliptic $K 3$ surfaces?

In characteristic 0 , the largest value of n we know at the moment is $n=5820$, attained by the elliptic K3 surface:

$$
\begin{equation*}
y^{2}=x^{3}+\left(t^{5}-t^{-5}-11\right) \tag{4.1}
\end{equation*}
$$

which has MWL of rank 18 (cf. [17]).
Its reduction modulo $p=11$ is a supersingular K3 surface, and the induced elliptic fibration has MWL of rank 20 which attains $n=12540$. This is the largest value of n known to us.

Question 4.4. Assume $\chi=2$. Can one give some combinatorial description of the multiplicity $\mu(P)$ for $P \in \mathcal{P}$?

Acknowledgements. I am grateful to Shigefumi Mori and Shigeru Mukai for inviting me to RIMS, Kyoto University, where I have enjoyed warm hospitality and completed this paper in the stimulating atmosphere.

I thank Takeshi Saito for his useful comments on the earlier version of this work when I talked on this theme at Tagajo Symposium in March 2008. Also I thank Masayuki Noro and Kazuhiro Yokoyama for their advice about using Risa/asir. Finally I would like to thank the referee and the editor for their helpful comments on the present article.

The author is funded by JSPS Grant-in-Aid for Scientific Research © No. 20540051.

References

[1] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Hermann, Paris, 1968.
[2] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Third edition, Springer, New York, 1999.
[3] D. Cox, J. Little and D. O'Shea, Using algebraic geometry, Springer, New York, 1998.
[4] A. Grothendieck, Éléments de Géometrie Algébrique, Publ. Math. IV, IHES.
[5] R. Hartshorne, Algebraic geometry, Springer, New York, 1977.
[6] K. Kodaira, On compact analytic surfaces. II, Ann. of Math. (2) $7 \boldsymbol{7 7}$ (1963), 563-626.
[7] K. Kodaira, On compact analytic surfaces. III, Ann. of Math. (2) 78 (1963), 1-40.
[8] D. Mumford, Lectures on curves on an algebraic surface, Princeton Univ. Press, Princeton, N.J., 1966.

9] M. Noro and K. Yokoyama, Computational Foundations of Gröbner Bases, Tokyo Univ. Press (2003). (in Japanese).
[10] K. Oguiso and T. Shioda, The Mordell-Weil lattice of a rational elliptic surface, Comment. Math. Univ. St. Paul. 40 (1991), no. 1, 83-99.
[11] T. Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul. 39 (1990), no. 2, 211-240.
[12] T. Shioda, Construction of elliptic curves with high rank via the invariants of the Weyl groups, J. Math. Soc. Japan 43 (1991), no. 4, 673-719.
[13] T. Shioda, Mordell-Weil lattices of type E_{8} and deformation of singularities, in Prospects in complex geometry (Katata and Kyoto, 1989), 177-202, Lecture Notes in Math., 1468, Springer, Berlin.
[14] T. Shioda, Existence of a rational elliptic surface with a given Mordell-Weil lattice, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), no. 9, 251-255.
[15] T. Shioda, Cyclotomic analogue in the theory of algebraic equations of type E_{6}, E_{7}, E_{8}, in Integral quadratic forms and lattices (Seoul, 1998), 87-96, Contemp. Math., 249, Amer. Math. Soc., Providence, RI.
[16] T. Shioda, Integral points and Mordell-Weil lattices, in A panorama of number theory or the view from Baker's garden (Zürich, 1999), 185-193, Cambridge Univ. Press, Cambridge.
[17] T. Shioda, The Mordell-Weil lattice of $y^{2}=x^{3}+$ $t^{5}-1 / t^{5}-11$, Comment. Math. Univ. St. Pauli 56 (2007), no. 1, 45-70.
[18] T. Shioda, Gröbner Basis, Mordell-Weil Lattices and Deformation of Singularities, I. Proc. Japan Acad. Ser. A Math. Sci. 86 (2010), no. 2, 21-26.
[19] J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, in Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), 33-52. Lecture Notes in Math., 476, Springer, Berlin.
[20] A. Weil, Foundations of algebraic geometry, Amer. Math. Soc., Providence, R.I., 1962.

[^0]: 2010 Mathematics Subject Classification. Primary 14J26, 14J27, 11G05.
 *) Research Institute for Mathematical Sciences, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
 **) Department of Mathematics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan.

