Gröbner basis, Mordell-Weil lattices and deformation of singularities, I

By Tetsuji SHIODA*),**)
(Communicated by Heisuke Hironaka, M.J.A., Jan. 12, 2010)

Abstract

We call a section of an elliptic surface to be everywhere integral if it is disjoint from the zero-section. The set of everywhere integral sections of an elliptic surface is a finite set under a mild condition. We pose the basic problem about this set when the base curve is \mathbf{P}^{1}. In the case of a rational elliptic surface, we obtain a complete answer, described in terms of the root lattice E_{8} and its roots. Our results are related to some problems in Gröbner basis, Mordell-Weil lattices and deformation of singularities, which have served as the motivation and idea of proof as well.

Key words: Gröbner basis; integral section; Mordell-Weil lattice; deformation of singularities.

1. Introduction. Let S be a smooth projective surface having a relatively minimal elliptic fibration $f: S \rightarrow C$ with the zero-section O over a curve C, and let E be the generic fibre of f which is an elliptic curve over the function field $K=k(C)$ (k is a base field of any characteristic). Assume that S has at least one singular fibre. Then the group $M=E(K)$ of K-rational points is finitely generated (Mordell-Weil theorem). It can be identified with the group of sections of f. For each P in $E(K)$, we denote by (P) the image curve of the corresponding section $C \rightarrow S$; the curve (P) may be also called a "section" without confusion.

An element P of M is called everywhere integral [16] if (P) is disjoint from the zero-section (O). Let \mathcal{P} be the set of all everywhere integral sections:

$$
\begin{equation*}
\mathcal{P}=\{P \in M \mid(P) \cap(O)=\emptyset\} \tag{1.1}
\end{equation*}
$$

Theorem 1.1. The set \mathcal{P} is a finite subset of the Mordell-Weil group M.

Proof. By the height formula [11, Theorem 8.6], we have for any $P \in M$

$$
\begin{equation*}
\langle P, P\rangle=2 \chi+2(P O)-\sum_{w \in R_{f}} \operatorname{contr}_{w}(P) \tag{1.2}
\end{equation*}
$$

where the notation is as follows: χ is the arithmetic genus of S (a positive integer), (PO) is the intersec-

[^0]tion number of two irreducible curves (P) and (O) on S, and $\operatorname{contr}_{w}(P)$ is the local contribution at w (a non-negative rational number); the summation is over the set R_{f} of the points $w \in C$ with $f^{-1}(w)$ reducible. If P belongs to the set \mathcal{P}, then it follows that $\langle P, P\rangle \leq 2 \chi$. Thus \mathcal{P} forms a set of points with bounded height in M, and hence it is a finite set. (Recall that, by the theory of Mordell-Weil lattices [11], the height pairing is positive-definite on M modulo torsion.)

Now consider the case: $C=\mathbf{P}^{1}, K=k(t)$. For the sake of simplicity, we assume in the following that the base field k is algebraically closed. Suppose that E / K is given by a generalized Weierstrass equation:

$$
\begin{equation*}
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \tag{1.3}
\end{equation*}
$$

and O is the point at infinity $(x: y: 1)=(0: 1: 0)$. Without loss of generality, we assume that the coefficients a_{ν} are polynomials in t and "minimal" in the sense that if, for some $l \in k[t], a_{\nu}$ is divisible by l^{ν} for all ν, then l must be a constant (i.e. $l \in k$), and if furthermore this holds even after one makes a coordinate change of x, y. Then we have

$$
\begin{equation*}
\operatorname{deg} a_{\nu} \leq \nu \chi \quad(\nu=1,2,3,4,6) \tag{1.4}
\end{equation*}
$$

where χ is the arithmetic genus of S, which is known to be characterized as the smallest integer satisfying the above condition.

Lemma 1.2. Let $P \in M=E(K)$. Then $P=$ (x, y) belongs to the set \mathcal{P} if and only if x, y are polynomials in t such that

$$
\begin{equation*}
\operatorname{deg}(x) \leq 2 \chi, \quad \operatorname{deg}(y) \leq 3 \chi \tag{1.5}
\end{equation*}
$$

Proof. See the proof of [16, Theorem 2].
Let

$$
P=(x, y):\left\{\begin{array}{l}
x=x_{0}+x_{1} t+\cdots+x_{2 \chi} t^{2 \chi} \tag{1.6}\\
y=y_{0}+y_{1} t+\cdots+y_{3 \chi} t^{3 \chi}
\end{array}\right.
$$

and let

$$
\begin{equation*}
z=z(P)=\left(x_{0}, x_{1}, \cdots, x_{2 \chi}, y_{0}, y_{1}, \cdots, y_{3 \chi}\right) \tag{1.7}
\end{equation*}
$$

Then, substituting (1.6) into (1.3), we obtain a polynomial identity in t :

$$
\begin{equation*}
y^{2}+\cdots-\left(x^{3}+\cdots+a_{6}\right)=\phi_{0}+\phi_{1} t+\cdots+\phi_{6 \chi} t^{6 \chi} \tag{1.8}
\end{equation*}
$$

Let us denote by I the ideal generated by the coefficients ϕ_{d} of t^{d} in the polynomial ring R :

$$
\begin{equation*}
I:=\left(\phi_{0}, \ldots, \phi_{6 \chi}\right) \subset R:=k\left[x_{0}, \cdots, x_{2 \chi}, y_{0}, \cdots, y_{3 \chi}\right] \tag{1.9}
\end{equation*}
$$

We call I the defining ideal of \mathcal{P}. Obviously we have

$$
\begin{equation*}
P=(x, y) \in \mathcal{P} \Leftrightarrow z=z(P) \in V(I) \subset \mathbf{A}^{5 \chi+2} \tag{1.10}
\end{equation*}
$$

with $V(I)$ denoting, as usual, the affine scheme of common zeroes of I in the affine space. The map $P \mapsto z(P)$ defines a bijection from \mathcal{P} to the reduced part $V(I)_{\text {red }}$ of $V(I)$, and in particular, we have

$$
\begin{equation*}
n:=\# \mathcal{P}=\# V(I)_{\text {red }} \tag{1.11}
\end{equation*}
$$

Note that $V(I)_{\text {red }}=V(\sqrt{I})$ where \sqrt{I} denotes the radical of I.

Now we consider the (irredundant) primary decomposition of the ideal I :

$$
\begin{equation*}
I=\mathbf{q}_{1} \cap \cdots \cap \mathbf{q}_{n} \tag{1.12}
\end{equation*}
$$

and the associated prime decomposition of the radical \sqrt{I} :

$$
\begin{equation*}
\sqrt{I}=\mathbf{p}_{1} \cap \cdots \cap \mathbf{p}_{n} \tag{1.13}
\end{equation*}
$$

Here each \mathbf{q}_{i} is a primary ideal in the polynomial ring R and $\mathbf{p}_{i}=\sqrt{\mathbf{q}_{i}}$ is a prime ideal. In fact, \mathbf{p}_{i} is the maximal ideal of the point $z(P) \in V(I)$ defined by (1.7) for the corresponding $P=P_{i} \in \mathcal{P}$. Let us call

$$
\begin{equation*}
\mu\left(P_{i}\right):=\operatorname{dim}_{k} R / \mathbf{q}_{i} \tag{1.14}
\end{equation*}
$$

the multiplicity of $P_{i} \in \mathcal{P}$ (cf. [3, Ch. 4], [9, Ch. 4], [19, Ch. VII].)

We study the following question:
Question 1.3. Given an elliptic surface S over \mathbf{P}^{1} of arithmetic genus χ, with the generic fibre E given by (1.3) and (1.4) as above, what are (i) the number of everywhere integral sections: $n=\# \mathcal{P}$, (ii)
the linear dimension: $\operatorname{dim}_{k} R / I$, and (iii) the multiplicity $\mu\left(P_{i}\right)=\operatorname{dim}_{k} R / \mathbf{q}_{i}$ for each $i \leq n$?

Note that, by the Chinese Remainder theorem, we have

$$
\begin{equation*}
\operatorname{dim}_{k} R / I=\sum_{i=1}^{n} \operatorname{dim}_{k} R / \mathbf{q}_{i}=\sum_{i=1}^{n} \mu\left(P_{i}\right) \tag{1.15}
\end{equation*}
$$

Hence (ii) will follow from (iii).
Before going further, we present an explicit example.

Example 1.4. Let $E / k(t)$ be the elliptic curve

$$
\begin{equation*}
y^{2}=x^{3}+t^{5}+1 \tag{1.16}
\end{equation*}
$$

Here we assume k has characteristic 0 or $p>5$. Then (i) the number of everywhere integral sections $n=\# \mathcal{P}$ is equal to 240 . (ii) The linear dimension $\operatorname{dim}_{k} R / I$ is equal to 240 , too. (iii) For all $P \in \mathcal{P}$, the multiplicity $\mu(P)$ is equal to 1.

Proof. Let us show that $\operatorname{dim}_{k} R / I=240$ by a direct computation using the method of Gröbner basis. To simplify the notation, we replace the ideal

$$
I \subset R=k\left[x_{0}, x_{1}, x_{2}, y_{0}, y_{1}, y_{2}, y_{3}\right]
$$

by a similar ideal

$$
I^{\prime} \subset R^{\prime}=k\left[u, x_{0}, x_{1}, y_{0}, y_{1}, y_{2}\right]
$$

by letting $x_{2}=u^{2}, y_{3}=u^{3}$. (Note that $x_{2}^{3}-y_{3}^{2}$ is contained in I.) The Gröbner basis method yields a "shape basis" of I^{\prime}, i.e. a set of generators of I^{\prime} of the form:
$I^{\prime}=\left(\Psi_{240}(u), x_{i}-\varphi_{i}(u), y_{j}-\psi_{j}(u) \mid i=0,1, j=0,1,2\right)$ where $\Psi, \varphi_{i}, \psi_{j}$ are polynomials of u and Ψ is a separable polynomial of degree 240 . (The explicit form of the polynomial Ψ can be found in [13] or [15] if desired.) Therefore we have

$$
\operatorname{dim}_{k} R / I=\operatorname{dim}_{k} R^{\prime} / I^{\prime}=\operatorname{dim} k[u] /(\Psi(u))=240 .
$$

Moreover the k-algebra $R / I \cong k[u] /(\Psi(u))$ is isomorphic to a direct sum of 240 copies of k, which shows that $I=\sqrt{I}$ and the primary decomposition of I is given by the 240 maximal ideals corresponding to the 240 roots of the polynomial $\Psi(u)$. In other words, \mathcal{P} consists of $n=240$ elements and $\mu(P)=1$ for each P.

In this paper, we give a complete answer to Question 1.3 in the case $\chi=1$, i.e. where S is a rational elliptic surface. The main theorem (Theorem 2.1) will be stated in the next section, whose proof will be given in the forthcoming Part II [17]. In $\S 3$, we study the behavior of the 240 roots in the
E_{8}-frame of a rational elliptic surface under specialization and establish a basic result (Theorem 3.4). As a by-product, we obtain a simple proof of the fact that the Mordell-Weil group M is generated by the set \mathcal{P} of everywhere integral sections (Theorem 3.5), whose known proof depends on some case-bycase checking [10].

The plan of the part II is as follows: we prove the main theorem by applying Theorem 3.4 and some general arguments $[4,5,8]$. Then we exhibit a few examples to illustrate it (cf. [12-14]). Finally we discuss some open questions in the case of higher arithmetic genus $\chi>1$.

As for the title of this paper, Gröbner basis computation is useful, as the above example shows, in dealing with Question 1.3 when S or E is explicitly given. We have made a helpful use of the software "Risa/asir" (developped by the authors of [9]) for some numerical experiments and for direct verification of our results based on the theory of MordellWeil lattices and geometry of elliptic surfaces. The idea from deformation of singularities (cf. [13], see also $[17, \S 2.3])$ is disguised as the specialization arguments in the proof of our main results.

Convention. Throughout the paper, we keep the notation of $\S 1$; we sometimes write $\mathcal{P}_{S}, I_{S}, \ldots$ to specify the dependence of \mathcal{P}, I, \ldots on the elliptic surface S under consideration. We continue to assume that k is algebraically closed.
2. Answer in case $\chi=1$. To state our main results, let us first recall some basic facts on rational elliptic surfaces, fixing the notation (cf. [10], [11, §10]).

Let $N=\operatorname{NS}(S)$ denote the Néron-Severi lattice of an elliptic surface S with a section. Let U be the rank two unimodular sublattice of N spanned by the classes of the zero-section (O) and any fibre F. Let $V=U^{\perp}$ be the orthogonal complement of U in N, which is called the frame of S; we have $N=U \oplus V$. If S is a rational elliptic surface (RES), the frame V is a negative-definite even unimodular lattice of rank 8 , and hence it is isomorphic to E_{8}^{-}, the opposite lattice of the root lattice E_{8} (cf. [2, Ch. 4]).

$$
\begin{equation*}
\mathrm{NS}(S)=U \oplus V, \quad V \cong E_{8}^{-} \tag{2.1}
\end{equation*}
$$

Thus we call the frame V of a RES as the E_{8}-frame.
Let $\mathcal{D}=\mathcal{D}_{S} \subset V$ be the subset of "roots" in V :

$$
\begin{equation*}
\mathcal{D}=\left\{c l(D) \in V \mid D^{2}=-2\right\} \tag{2.2}
\end{equation*}
$$

By the above, it forms a root system of type E_{8}. In particular, we have

$$
\begin{equation*}
\# \mathcal{D}=240 \tag{2.3}
\end{equation*}
$$

For any $P \in \mathcal{P}=\mathcal{P}_{S}$, we set

$$
\begin{equation*}
D(P):=(P)-(O)-F \tag{2.4}
\end{equation*}
$$

Then we have $D(P) \perp U$ and $D(P)^{2}=-2$, hence $D(P) \in \mathcal{D}$. (N.B. Here and in what follows, we sometimes write $D \in \mathcal{D}$ by abbreviating $\operatorname{cl}(D) \in \mathcal{D}$, where $c l(D)$ denotes the class of a divisor D in N. We write $D_{1} \equiv D_{2}$ if $\operatorname{cl}\left(D_{1}\right)=\operatorname{cl}\left(D_{2}\right)$ in N.)

On the other hand, each reducible fibre $f^{-1}(v)\left(v \in R_{f}\right)$ is decomposed as a sum of its irreducible components with positive integer coefficients:

$$
\begin{equation*}
f^{-1}(v)=\Theta_{v, 0}+\sum_{i=1}^{m_{v}-1} k_{v, i} \Theta_{v, i} \tag{2.5}
\end{equation*}
$$

where $\Theta_{v, 0}$ is the unique component intersecting the zero-section (O) and where m_{v} denotes the number of the irreducible components. Let T_{v} denote the sublattice of N generated by $\Theta_{v, i}\left(1 \leq i \leq m_{v}-1\right)$. It is known (see $[6,7,18]$) that each $\Theta_{v, i}$ has self-intersection number -2 (i.e. $\Theta_{v, i} \in \mathcal{D}$) and T_{v} is a (negative) root lattice of $A D E$-type determined by the type of the reducible fibre. Let T be the sublattice of the E_{8}-frame V defined by

$$
\begin{equation*}
T=\oplus_{v \in R_{f}} T_{v} \subset V \cong E_{8}^{-} \tag{2.6}
\end{equation*}
$$

which is called the trivial lattice of S.
Now our main theorem is the following
Theorem 2.1. Assume that S is a rational elliptic surface. Then (i) the number of everywhere integral sections $n=\# \mathcal{P}$ is bounded by 240:

$$
\begin{equation*}
0 \leq n \leq 240 \tag{2.7}
\end{equation*}
$$

and we have

$$
\begin{equation*}
n=240 \Longleftrightarrow T=0 \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{dim}_{k} R / I=240-\nu(T) \tag{ii}
\end{equation*}
$$

where $\nu(T)$ is the number of roots in the trivial lattice T.
(iii) For each $i \leq n$, the multiplicity $\mu\left(P_{i}\right)$ (see (1.14)) is equal to the combinatorial multiplicity $m\left(P_{i}\right)$ to be defined below. In other words, we have

$$
\begin{equation*}
\mu(P)=m(P) \text { for all } P \in \mathcal{P} \tag{2.10}
\end{equation*}
$$

Definition 2.2. For any $P \in \mathcal{P}$, let $R_{f}(P)$ denote the subset of $v \in R_{f}$ such that (P) intersects some non-identity component $\Theta_{v, i}(i \neq 0)$ of $f^{-1}(v)$. The root graph associated with P, denoted by $\Delta(P)$, is the connected graph with the vertices

$$
\begin{equation*}
D(P), \Theta_{v, i}\left(v \in R_{f}(P), i \neq 0\right) \tag{2.11}
\end{equation*}
$$

where two vertices α, β are connected by an edge iff the intersection number $\alpha \cdot \beta=1$. By a distinguished root of $\Delta(P)$, we mean a linear combination of the vertices of the form:

$$
\begin{equation*}
D=D(P)+\sum_{v, i} n_{v, i} \Theta_{v, i}\left(n_{v, i} \in \mathbf{Z}, \geq 0\right) \tag{2.12}
\end{equation*}
$$

satisfying $D^{2}=-2$. Further we denote by $m(P)$ the number of distinguished roots in the root graph $\Delta(P)$, and call it the combinatorial multiplicity of P.

The proof will be postponed to the part II [17]. First we need to establish, in the next section, the fundamental relationship of the two sets \mathcal{P} and \mathcal{D} for a given RES (Theorem 3.4).
3. Relationship of \mathcal{P} and \mathcal{D}. For a rational elliptic surface, the Mordell-Weil group $M=E(K)$ is isomorphic to the quotient group of the NeronSeveri group N by the subgroup $U \oplus T$, hence to the quotient group V / T :

$$
\begin{equation*}
M \cong N /(U \oplus T) \cong V / T \tag{3.1}
\end{equation*}
$$

where V and $T=\oplus T_{v}$ are defined before in $\S 2$ (see [10, 11]).

Now we study the relation of \mathcal{P} and \mathcal{D}, by restricting the natural projection $\pi: V \rightarrow V / T \cong M$, to the set of the roots $\mathcal{D} \subset V$:

$$
\begin{equation*}
\pi: \mathcal{D} \rightarrow M \tag{3.2}
\end{equation*}
$$

Lemma 3.1. Assume $T=0$. Then the Mordell-Weil lattice M is isomorphic to E_{8}, and \mathcal{P} is equal to the set of sections $P \in M$ of height $\langle P, P\rangle=$ 2. In this case, the map π gives a bijection: $\mathcal{D} \rightarrow \mathcal{P}$. The inverse map $\mathcal{P} \rightarrow \mathcal{D}$ is given by $P \mapsto D(P)$.

Proof. If $T=0$, the rational elliptic surface f : $S \rightarrow \mathbf{P}^{1}$ has no reducible fibres, and hence $M \cong E_{8}$ (see [10] or $[11, \S 10]$). Now the height formula (1.1) says that for any $P \in M$

$$
\langle P, P\rangle=2+2(P O)
$$

where $(P O)$ is the intersection number of (P) and (O). Hence P has height 2 iff $(P O)=0$, i.e. iff $P \in \mathcal{P}$.

As the set of roots in E_{8}, both \mathcal{P} and \mathcal{D} have the same cardinality 240 . Thus the map $P \mapsto D(P)$ gives a bijection $\mathcal{P} \rightarrow \mathcal{D}$, and it is clear that $\pi(D(P))=P$ for any P. Hence the assertion.

Lemma 3.2. Suppose S is any rational elliptic surface. Let \tilde{S} be a generic rational elliptic surface (cf. $[17, \S 2]$), and we consider a smooth specialization $\tilde{S} \rightarrow S$ preserving the elliptic fibration and the zero-
section. Then it induces an isomorphism of the Néron-Severi lattices

$$
\begin{equation*}
\sigma: \mathrm{NS}(\tilde{S}) \xrightarrow{\sim} \mathrm{NS}(S) \tag{3.3}
\end{equation*}
$$

which gives rise to a bijection $\mathcal{D}_{\tilde{S}} \rightarrow \mathcal{D}_{S}$.
Proof. In general, a specialization of smooth projective surfaces $\tilde{S} \rightarrow S$ induces an injective homomorphism $\mathrm{NS}(\tilde{S}) \hookrightarrow \mathrm{NS}(S)$ preserving the intersection pairings. In the case of RES, it gives a lattice isomorphism of $\operatorname{NS}(\tilde{S})$ onto $\mathrm{NS}(S)$ in view of (2.1), which preserves the sublattices U, V by assumption. It is obvious that the set of roots \mathcal{D} in V, (2.2), is also preserved, proving the last assertion.
(N.B. This result may be called the conservation law of the E_{8}-roots on RES under specialization or deformation: cf. [13].)

Lemma 3.3. For any $D \in \mathcal{D}_{S}, \pi(D)=P$ belongs to \mathcal{P}_{S} unless $\pi(D)=O$. In this case, we have

$$
\begin{equation*}
D \equiv D(P)+\gamma \quad(\gamma \in T) \tag{3.4}
\end{equation*}
$$

where γ is a linear combination of $\Theta_{v, i}\left(v \in R_{f}, i>0\right)$ with non-negative integer coefficients.

Proof. Fix $D \in \mathcal{D}_{S}$, and assume that $\pi(D)=$ $P \neq O$. We claim that $P \in \mathcal{P}_{S}$.

We may suppose that S is in the situation described in Lemma 3.2. Then there exists some $\tilde{D} \in \mathcal{D}_{\tilde{S}}$ such that $\sigma(\tilde{D})=D$. Applying Lemma 3.1 to \tilde{S} (which obviously has $T=0$), we have

$$
\begin{equation*}
\tilde{D}=D(\tilde{P}):=(\tilde{P})-(\tilde{O})-\tilde{F} \tag{3.5}
\end{equation*}
$$

for some $\tilde{P} \in \mathcal{P}_{\tilde{S}}$, where \tilde{O} (or \tilde{F}) denotes the zerosection (or a fibre) of \tilde{S}.

Suppose that, under the specialization, the irreducible curve $\tilde{\Gamma}:=(\tilde{P})$ on \tilde{S} reduces to an effective divisor on S :

$$
\Gamma=\sum_{j} \Gamma_{j}
$$

with the irreducible components Γ_{j}. By the conservation of intersection numbers, we have

$$
1=(\tilde{\Gamma} \tilde{F})=(\Gamma F)=\sum_{j}\left(\Gamma_{j} F\right)
$$

with each $\left(\Gamma_{j} F\right) \geq 0$. Hence there exists a unique Γ_{j}, say $j=1$, such that

$$
\left(\Gamma_{1} F\right)=1, \quad\left(\Gamma_{j} F\right)=0(j \neq 1)
$$

Then Γ_{1} is a section of S, i.e. $\Gamma_{1}=\left(P_{1}\right)$ for some $P_{1} \in M$, and all other Γ_{j} are contained in fibres. Obviously P_{1} is equal to $P=\pi(D)$.

Next, in the intersection number relation:

$$
0=(\tilde{\Gamma}(\tilde{O}))=(\Gamma(O))=(P O)+\sum_{j>1}\left(\Gamma_{j}(O)\right)
$$

observe that $(P O) \geq 0$ (because $P \neq O$ by assumption) and $\left(\Gamma_{j} O\right) \geq 0$. Hence we have $(P O)=0$ and $\left(\Gamma_{j} O\right)=0$. The former implies that $P \in \mathcal{P}_{S}$, as claimed, while the latter implies that the other components $\Gamma_{j}(j>1)$, if any, are among the non-identity components $\Theta_{v, i}(i>0)$ of reducible fibres. Therefore \tilde{D} specializes via σ to the following

$$
\begin{equation*}
D^{*}=(P)-(O)-(F)+\gamma, \quad \gamma=\sum_{v, i>0} m_{v, i} \Theta_{v, i} \in T \tag{3.6}
\end{equation*}
$$

where $m_{v, i}$ are some non-negative integers. On the other hand, since $\sigma(\tilde{D})=D$, we have $D \equiv D^{*}$. This proves Lemma 3.3.

Theorem 3.4. For any rational elliptic surface S with a section, let \mathcal{D} be the set of roots in the E_{8}-frame. Then the map $\pi: \mathcal{D} \rightarrow \mathcal{P} \cup\{O\}$ is a surjective map unless $T=0$, and \mathcal{D} is decomposed into the disjoint union:

$$
\begin{equation*}
\mathcal{D}=\pi^{-1}(O) \bigsqcup \bigsqcup_{P \in \mathcal{P}} \pi^{-1}(P) \tag{3.7}
\end{equation*}
$$

The inverse image $\pi^{-1}(O)$ is the set of roots in T (it is empty if $T=0$). For any $P \in \mathcal{P}$, we have

$$
\begin{equation*}
\pi^{-1}(P)=\left\{D \in \mathcal{D} \mid D \equiv D(P)+\sum_{v, i>0} m_{v, i} \Theta_{v, i}\right\} \tag{3.8}
\end{equation*}
$$

$\left(m_{v, i} \geq 0\right)$ which is equal to the set of distinguished roots in the root graph $\Delta(P)$ defined in §2. In particular, its cardinality is equal to the combinatorial multiplicity of P :

$$
\begin{equation*}
m(P)=\# \pi^{-1}(P) \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{P \in \mathcal{P}} m(P)=240-\nu(T) \tag{3.10}
\end{equation*}
$$

Proof. This is clear by Lemma 3.1 and 3.3. The decomposition (3.7) of \mathcal{D} is just the union of the inverse images of π, and counting the cardinality gives the relation (3.10).

As a by-product of the above proof, we obtain a conceptual proof of the following fact (see [9, Theorem 2.5], [11, Theorem 10.8]), which has been proven by using the classification of RES plus some case-bycase checking:

Theorem 3.5. For any rational elliptic surface with a section (defined over an algebraically closed field of arbitarary characterisitic), the MordellWeil group is generated by the set \mathcal{P} of everywhere integral sections.

Proof. It is well-known that the root lattice E_{8} is generated by a basis consisting of eight roots (see e.g. [1, 2]). Hence the E_{8}-frame V is generated by the set \mathcal{D} of roots. Since we have $M \cong V / T$ by (3.1), M is generated by $\pi(\mathcal{D})$, hence by \mathcal{P} by the first part of Lemma 3.3.

Acknowledgement. The author is funded by JSPS Grant-in-Aid for Scientific Research © No. 20540051.

References

[1] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Hermann, Paris, 1968.
[2] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Third edition, Springer, New York, 1999.
[3] D. Cox, J. Little and D. O'Shea, Using algebraic geometry, Springer, New York, 1998.
[4] A. Grothendieck, Éléments de Géometrie Algébrique, Publ. Math. IV, IHES.
[5] R. Hartshorne, Algebraic geometry, Springer, New York, 1977.
[6] K. Kodaira, On compact analytic surfaces. II, Ann. of Math. (2) 77 (1963), 563-626.
[7] K. Kodaira, On compact analytic surfaces. III, Ann. of Math. (2) 78 (1963), 1-40.
[8] D. Mumford, Lectures on curves on an algebraic surface, Princeton Univ. Press, Princeton, N.J., 1966.
[9] M. Noro and K. Yokoyama, Computational Foundations of Gröbner Bases, Tokyo Univ. Press (2003). (in Japanese).
[10] K. Oguiso and T. Shioda, The Mordell-Weil lattice of a rational elliptic surface, Comment. Math. Univ. St. Paul. 40 (1991), no. 1, 83-99.
[11] T. Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul. 39 (1990), no. 2, 211-240.
[12] T. Shioda, Construction of elliptic curves with high rank via the invariants of the Weyl groups, J. Math. Soc. Japan 43 (1991), no. 4, 673719.
[13] T. Shioda, Mordell-Weil lattices of type E_{8} and deformation of singularities, in: Lecture Notes in Math. 1468 (1991), 177-202.
[14] T. Shioda, Existence of a rational elliptic surface with a given Mordell-Weil lattice, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), no. 9, 251-255.
[15] T. Shioda, Cyclotomic analogue in the theory of algebraic equations of type E_{6}, E_{7}, E_{8}, in Integral quadratic forms and lattices (Seoul, 1998), 87-96, Contemp. Math., 249, Amer. Math. Soc., Providence, RI.
[16] T. Shioda, Integral points and Mordell-Weil lattices, in A panorama of number theory or the view from Baker's garden (Zürich, 1999), 185193, Cambridge Univ. Press, Cambridge.
[17] T. Shioda, Gröbner Basis, Mordell-Weil Lattices
and Deformation of Singularities, II. Proc. Japan Acad. Ser. A Math. Sci. 86 (2010), no. 2, 27-32.
[18] J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, in Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), 33-52. Lecture Notes in Math., 476, Springer, Berlin.
[19] A. Weil, Foundations of algebraic geometry, Amer. Math. Soc., Providence, R.I., 1962.

[^0]: 2010 Mathematics Subject Classification. Primary 14J26, 14J27, 11G05.
 *) Research Institute for Mathematical Sciences, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
 **) Department of Mathematics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan.

