Gröbner basis, Mordell-Weil lattices and deformation of singularities, I

By Tetsuji Shioda*),**)

(Communicated by Heisuke HIRONAKA, M.J.A., Jan. 12, 2010)

Abstract: We call a section of an elliptic surface to be everywhere integral if it is disjoint from the zero-section. The set of everywhere integral sections of an elliptic surface is a finite set under a mild condition. We pose the basic problem about this set when the base curve is \mathbf{P}^1 . In the case of a rational elliptic surface, we obtain a complete answer, described in terms of the root lattice E_8 and its roots. Our results are related to some problems in Gröbner basis, Mordell-Weil lattices and deformation of singularities, which have served as the motivation and idea of proof as well.

Key words: Gröbner basis; integral section; Mordell-Weil lattice; deformation of singularities.

1. Introduction. Let S be a smooth projective surface having a relatively minimal elliptic fibration $f: S \to C$ with the zero-section O over a curve C, and let E be the generic fibre of f which is an elliptic curve over the function field K = k(C) (k is a base field of any characteristic). Assume that S has at least one singular fibre. Then the group M = E(K) of K-rational points is finitely generated (Mordell-Weil theorem). It can be identified with the group of sections of f. For each P in E(K), we denote by (P) the image curve of the corresponding section $C \to S$; the curve (P) may be also called a "section" without confusion.

An element P of M is called *everywhere integral* [16] if (P) is disjoint from the zero-section (O). Let \mathcal{P} be the set of all everywhere integral sections:

(1.1)
$$\mathcal{P} = \{ P \in M | (P) \cap (O) = \emptyset \}$$

Theorem 1.1. The set \mathcal{P} is a finite subset of the Mordell-Weil group M.

Proof. By the height formula [11, Theorem 8.6], we have for any $P \in M$

(1.2)
$$\langle P, P \rangle = 2\chi + 2(PO) - \sum_{w \in R_f} contr_w(P),$$

where the notation is as follows: χ is the arithmetic genus of S (a positive integer), (PO) is the intersection number of two irreducible curves (P) and (O)on S, and $contr_w(P)$ is the local contribution at w(a non-negative rational number); the summation is over the set R_f of the points $w \in C$ with $f^{-1}(w)$ reducible. If P belongs to the set \mathcal{P} , then it follows that $\langle P, P \rangle \leq 2\chi$. Thus \mathcal{P} forms a set of points with bounded height in M, and hence it is a finite set. (Recall that, by the theory of Mordell-Weil lattices [11], the height pairing is positive-definite on Mmodulo torsion.)

Now consider the case: $C = \mathbf{P}^1$, K = k(t). For the sake of simplicity, we assume in the following that the base field k is algebraically closed. Suppose that E/K is given by a generalized Weierstrass equation:

(1.3)
$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

and *O* is the point at infinity (x : y : 1) = (0 : 1 : 0). Without loss of generality, we assume that the coefficients a_{ν} are polynomials in *t* and "minimal" in the sense that if, for some $l \in k[t]$, a_{ν} is divisible by l^{ν} for all ν , then *l* must be a constant (i.e. $l \in k$), and if furthermore this holds even after one makes a coordinate change of *x*, *y*. Then we have

(1.4)
$$\deg a_{\nu} \le \nu \chi \quad (\nu = 1, 2, 3, 4, 6)$$

where χ is the arithmetic genus of S, which is known to be characterized as the smallest integer satisfying the above condition.

Lemma 1.2. Let $P \in M = E(K)$. Then P = (x, y) belongs to the set \mathcal{P} if and only if x, y are polynomials in t such that

(1.5)
$$\deg(x) \le 2\chi, \quad \deg(y) \le 3\chi$$

²⁰¹⁰ Mathematics Subject Classification. Primary 14J26, 14J27, 11G05.

^{*)} Research Institute for Mathematical Sciences, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.

^{**)} Department of Mathematics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan.

 \square

Proof. See the proof of [16, Theorem 2]. Let

(1.6)
$$P = (x, y) : \begin{cases} x = x_0 + x_1 t + \dots + x_{2\chi} t^{2\chi} \\ y = y_0 + y_1 t + \dots + y_{3\chi} t^{3\chi}, \end{cases}$$

and let

(1.7) $z = z(P) = (x_0, x_1, \cdots, x_{2\chi}, y_0, y_1, \cdots, y_{3\chi}).$

Then, substituting (1.6) into (1.3), we obtain a polynomial identity in t:

(1.8)

$$y^2 + \dots - (x^3 + \dots + a_6) = \phi_0 + \phi_1 t + \dots + \phi_{6\chi} t^{6\chi}.$$

Let us denote by I the ideal generated by the coefficients ϕ_d of t^d in the polynomial ring R:

 $I:=(\phi_0,\ldots,\phi_{6\chi})\subset R:=k[x_0,\cdots,x_{2\chi},y_0,\cdots,y_{3\chi}].$

We call I the *defining ideal* of \mathcal{P} . Obviously we have

(1.10)
$$P = (x, y) \in \mathcal{P} \Leftrightarrow z = z(P) \in V(I) \subset \mathbf{A}^{5\chi + 2}$$

with V(I) denoting, as usual, the affine scheme of common zeroes of I in the affine space. The map $P \mapsto z(P)$ defines a bijection from \mathcal{P} to the reduced part $V(I)_{red}$ of V(I), and in particular, we have

(1.11)
$$n := \# \mathcal{P} = \# V(I)_{red}.$$

Note that $V(I)_{red} = V(\sqrt{I})$ where \sqrt{I} denotes the radical of I.

Now we consider the (irredundant) primary decomposition of the ideal I:

$$(1.12) I = \mathbf{q}_1 \cap \dots \cap \mathbf{q}_n$$

and the associated prime decomposition of the radical \sqrt{I} :

(1.13)
$$\sqrt{I} = \mathbf{p}_1 \cap \cdots \cap \mathbf{p}_n.$$

Here each \mathbf{q}_i is a primary ideal in the polynomial ring R and $\mathbf{p}_i = \sqrt{\mathbf{q}_i}$ is a prime ideal. In fact, \mathbf{p}_i is the maximal ideal of the point $z(P) \in V(I)$ defined by (1.7) for the corresponding $P = P_i \in \mathcal{P}$. Let us call

(1.14)
$$\mu(P_i) := \dim_k R/\mathbf{q}_i$$

the multiplicity of $P_i \in \mathcal{P}$ (cf. [3, Ch. 4], [9, Ch. 4], [19, Ch. VII].)

We study the following question:

Question 1.3. Given an elliptic surface S over \mathbf{P}^1 of arithmetic genus χ , with the generic fibre E given by (1.3) and (1.4) as above, what are (i) the number of everywhere integral sections: $n = \#\mathcal{P}$, (ii)

the linear dimension: $\dim_k R/I$, and (iii) the multiplicity $\mu(P_i) = \dim_k R/\mathbf{q}_i$ for each $i \leq n$?

Note that, by the Chinese Remainder theorem, we have

(1.15)
$$\dim_k R/I = \sum_{i=1}^n \dim_k R/\mathbf{q}_i = \sum_{i=1}^n \mu(P_i)$$

Hence (ii) will follow from (iii).

Before going further, we present an explicit example.

Example 1.4. Let E/k(t) be the elliptic curve (1.16) $u^2 = x^3 + t^5 + 1.$

Here we assume k has characteristic 0 or p > 5. Then (i) the number of everywhere integral sections $n = \#\mathcal{P}$ is equal to 240. (ii) The linear dimension $\dim_k R/I$ is equal to 240, too. (iii) For all $P \in \mathcal{P}$, the multiplicity $\mu(P)$ is equal to 1.

Proof. Let us show that $\dim_k R/I = 240$ by a direct computation using the method of Gröbner basis. To simplify the notation, we replace the ideal

$$I \subset R = k[x_0, x_1, x_2, y_0, y_1, y_2, y_3]$$

by a similar ideal

$$I' \subset R' = k[u, x_0, x_1, y_0, y_1, y_2]$$

by letting $x_2 = u^2$, $y_3 = u^3$. (Note that $x_2^3 - y_3^2$ is contained in *I*.) The Gröbner basis method yields a "shape basis" of *I*′, i.e. a set of generators of *I*′ of the form:

$$I' = (\Psi_{240}(u), x_i - \varphi_i(u), y_j - \psi_j(u) | i = 0, 1, j = 0, 1, 2)$$

where Ψ, φ_i, ψ_j are polynomials of u and Ψ is a separable polynomial of degree 240. (The explicit form of the polynomial Ψ can be found in [13] or [15] if desired.) Therefore we have

$$\dim_k R/I = \dim_k R'/I' = \dim k[u]/(\Psi(u)) = 240.$$

Moreover the k-algebra $R/I \cong k[u]/(\Psi(u))$ is isomorphic to a direct sum of 240 copies of k, which shows that $I = \sqrt{I}$ and the primary decomposition of I is given by the 240 maximal ideals corresponding to the 240 roots of the polynomial $\Psi(u)$. In other words, \mathcal{P} consists of n = 240 elements and $\mu(P) = 1$ for each P.

In this paper, we give a complete answer to Question 1.3 in the case $\chi = 1$, i.e. where S is a rational elliptic surface. The main theorem (Theorem 2.1) will be stated in the next section, whose proof will be given in the forthcoming Part II [17]. In §3, we study the behavior of the 240 roots in the

(

 E_8 -frame of a rational elliptic surface under specialization and establish a basic result (Theorem 3.4). As a by-product, we obtain a simple proof of the fact that the Mordell-Weil group M is generated by the set \mathcal{P} of everywhere integral sections (Theorem 3.5), whose known proof depends on some case-bycase checking [10].

The plan of the part II is as follows: we prove the main theorem by applying Theorem 3.4 and some general arguments [4, 5, 8]. Then we exhibit a few examples to illustrate it (cf. [12–14]). Finally we discuss some open questions in the case of higher arithmetic genus $\chi > 1$.

As for the title of this paper, Gröbner basis computation is useful, as the above example shows, in dealing with Question 1.3 when S or E is explicitly given. We have made a helpful use of the software "Risa/asir" (developped by the authors of [9]) for some numerical experiments and for direct verification of our results based on the theory of Mordell-Weil lattices and geometry of elliptic surfaces. The idea from deformation of singularities (cf. [13], see also [17, §2.3]) is disguised as the specialization arguments in the proof of our main results.

Convention. Throughout the paper, we keep the notation of §1; we sometimes write $\mathcal{P}_S, I_S, \ldots$ to specify the dependence of \mathcal{P}, I, \ldots on the elliptic surface S under consideration. We continue to assume that k is algebraically closed.

2. Answer in case $\chi = 1$. To state our main results, let us first recall some basic facts on rational elliptic surfaces, fixing the notation (cf. [10], [11, §10]).

Let N = NS(S) denote the Néron-Severi lattice of an elliptic surface S with a section. Let U be the rank two unimodular sublattice of N spanned by the classes of the zero-section (O) and any fibre F. Let $V = U^{\perp}$ be the orthogonal complement of U in N, which is called the *frame* of S; we have $N = U \oplus V$. If S is a rational elliptic surface (RES), the frame Vis a negative-definite even unimodular lattice of rank 8, and hence it is isomorphic to E_8^- , the opposite lattice of the root lattice E_8 (cf. [2, Ch. 4]).

(2.1)
$$\operatorname{NS}(S) = U \oplus V, \quad V \cong E_8^-.$$

Thus we call the frame V of a RES as the E_8 -frame.

Let $\mathcal{D} = \mathcal{D}_S \subset V$ be the subset of "roots" in V:

(2.2)
$$\mathcal{D} = \{ cl(D) \in V | D^2 = -2 \}.$$

By the above, it forms a root system of type E_8 . In particular, we have

$$#\mathcal{D} = 240.$$

For any $P \in \mathcal{P} = \mathcal{P}_S$, we set

(2.4) D(P) := (P) - (O) - F.

Then we have $D(P) \perp U$ and $D(P)^2 = -2$, hence $D(P) \in \mathcal{D}$. (N.B. Here and in what follows, we sometimes write $D \in \mathcal{D}$ by abbreviating $cl(D) \in \mathcal{D}$, where cl(D) denotes the class of a divisor D in N. We write $D_1 \equiv D_2$ if $cl(D_1) = cl(D_2)$ in N.)

On the other hand, each reducible fibre $f^{-1}(v)(v \in R_f)$ is decomposed as a sum of its irreducible components with positive integer coefficients:

(2.5)
$$f^{-1}(v) = \Theta_{v,0} + \sum_{i=1}^{m_v - 1} k_{v,i} \Theta_{v,i}$$

where $\Theta_{v,0}$ is the unique component intersecting the zero-section (O) and where m_v denotes the number of the irreducible components. Let T_v denote the sublattice of N generated by $\Theta_{v,i}(1 \le i \le m_v - 1)$. It is known (see [6, 7, 18]) that each $\Theta_{v,i}$ has self-intersection number -2 (i.e. $\Theta_{v,i} \in \mathcal{D}$) and T_v is a (negative) root lattice of ADE-type determined by the type of the reducible fibre. Let T be the sublattice of the E_8 -frame V defined by

$$(2.6) T = \oplus_{v \in R_f} T_v \subset V \cong E_8^-$$

which is called the *trivial lattice* of S.

Now our main theorem is the following

Theorem 2.1. Assume that S is a rational elliptic surface. Then (i) the number of everywhere integral sections $n = \#\mathcal{P}$ is bounded by 240:

$$(2.7) 0 \le n \le 240,$$

 $and \ we \ have$

$$(2.8) n = 240 \iff T = 0.$$

(

2.9)
$$\dim_k R/I = 240 - \nu(T)$$

where $\nu(T)$ is the number of roots in the trivial lattice T.

(iii) For each $i \leq n$, the multiplicity $\mu(P_i)$ (see (1.14)) is equal to the combinatorial multiplicity $m(P_i)$ to be defined below. In other words, we have

(2.10)
$$\mu(P) = m(P) \text{ for all } P \in \mathcal{P}$$

Definition 2.2. For any $P \in \mathcal{P}$, let $R_f(P)$ denote the subset of $v \in R_f$ such that (P) intersects some non-identity component $\Theta_{v,i} (i \neq 0)$ of $f^{-1}(v)$. The root graph associated with P, denoted by $\Delta(P)$, is the connected graph with the vertices

No. 2]

(ii)

T. Shioda

$$(2.11) D(P), \Theta_{v,i} (v \in R_f(P), i \neq 0),$$

where two vertices α, β are connected by an edge iff the intersection number $\alpha \cdot \beta = 1$. By a *distinguished root* of $\Delta(P)$, we mean a linear combination of the vertices of the form:

(2.12)
$$D = D(P) + \sum_{v,i} n_{v,i} \Theta_{v,i} \ (n_{v,i} \in \mathbf{Z}, \ge 0)$$

satisfying $D^2 = -2$. Further we denote by m(P) the number of distinguished roots in the root graph $\Delta(P)$, and call it the *combinatorial multiplicity* of P.

The proof will be postponed to the part II [17]. First we need to establish, in the next section, the fundamental relationship of the two sets \mathcal{P} and \mathcal{D} for a given RES (Theorem 3.4).

3. Relationship of \mathcal{P} and \mathcal{D}. For a rational elliptic surface, the Mordell-Weil group M = E(K) is isomorphic to the quotient group of the Néron-Severi group N by the subgroup $U \oplus T$, hence to the quotient group V/T:

$$(3.1) M \cong N/(U \oplus T) \cong V/T$$

where V and $T = \oplus T_v$ are defined before in §2 (see [10, 11]).

Now we study the relation of \mathcal{P} and \mathcal{D} , by restricting the natural projection $\pi: V \to V/T \cong M$, to the set of the roots $\mathcal{D} \subset V$:

(3.2)
$$\pi: \mathcal{D} \to M.$$

Lemma 3.1. Assume T = 0. Then the Mordell-Weil lattice M is isomorphic to E_8 , and \mathcal{P} is equal to the set of sections $P \in M$ of height $\langle P, P \rangle = 2$. In this case, the map π gives a bijection: $\mathcal{D} \to \mathcal{P}$. The inverse map $\mathcal{P} \to \mathcal{D}$ is given by $P \mapsto D(P)$.

Proof. If T = 0, the rational elliptic surface $f : S \to \mathbf{P}^1$ has no reducible fibres, and hence $M \cong E_8$ (see [10] or [11, §10]). Now the height formula (1.1) says that for any $P \in M$

$$\langle P, P \rangle = 2 + 2(PO)$$

where (PO) is the intersection number of (P) and (O). Hence P has height 2 iff (PO) = 0, i.e. iff $P \in \mathcal{P}$.

As the set of roots in E_8 , both \mathcal{P} and \mathcal{D} have the same cardinality 240. Thus the map $P \mapsto D(P)$ gives a bijection $\mathcal{P} \to \mathcal{D}$, and it is clear that $\pi(D(P)) = P$ for any P. Hence the assertion.

Lemma 3.2. Suppose S is any rational elliptic surface. tic surface. Let \tilde{S} be a generic rational elliptic surface (cf. [17, §2]), and we consider a smooth specialization $\tilde{S} \to S$ preserving the elliptic fibration and the zerosection. Then it induces an isomorphism of the Néron-Severi lattices

(3.3)
$$\sigma: \mathrm{NS}(\tilde{S}) \xrightarrow{\sim} \mathrm{NS}(S),$$

which gives rise to a bijection $\mathcal{D}_{\tilde{S}} \to \mathcal{D}_{S}$.

Proof. In general, a specialization of smooth projective surfaces $\tilde{S} \to S$ induces an injective homomorphism $NS(\tilde{S}) \hookrightarrow NS(S)$ preserving the intersection pairings. In the case of RES, it gives a lattice isomorphism of $NS(\tilde{S})$ onto NS(S) in view of (2.1), which preserves the sublattices U, V by assumption. It is obvious that the set of roots \mathcal{D} in V, (2.2), is also preserved, proving the last assertion.

(N.B. This result may be called the *conservation* law of the E_8 -roots on RES under specialization or deformation: cf. [13].)

Lemma 3.3. For any $D \in \mathcal{D}_S$, $\pi(D) = P$ belongs to \mathcal{P}_S unless $\pi(D) = O$. In this case, we have

(3.4)
$$D \equiv D(P) + \gamma \quad (\gamma \in T)$$

where γ is a linear combination of $\Theta_{v,i}$ ($v \in R_f, i > 0$) with non-negative integer coefficients.

Proof. Fix $D \in \mathcal{D}_S$, and assume that $\pi(D) = P \neq O$. We claim that $P \in \mathcal{P}_S$.

We may suppose that S is in the situation described in Lemma 3.2. Then there exists some $\tilde{D} \in \mathcal{D}_{\tilde{S}}$ such that $\sigma(\tilde{D}) = D$. Applying Lemma 3.1 to \tilde{S} (which obviously has T = 0), we have

(3.5)
$$\tilde{D} = D(\tilde{P}) := (\tilde{P}) - (\tilde{O}) - \tilde{F}$$

for some $\tilde{P} \in \mathcal{P}_{\tilde{S}}$, where \tilde{O} (or \tilde{F}) denotes the zerosection (or a fibre) of \tilde{S} .

Suppose that, under the specialization, the irreducible curve $\tilde{\Gamma} := (\tilde{P})$ on \tilde{S} reduces to an effective divisor on S:

$$\Gamma = \sum_{j} \Gamma_{j}$$

with the irreducible components Γ_j . By the conservation of intersection numbers, we have

$$1 = (\tilde{\Gamma}\tilde{F}) = (\Gamma F) = \sum_{j} (\Gamma_{j}F)$$

with each $(\Gamma_j F) \ge 0$. Hence there exists a unique Γ_j , say j = 1, such that

$$(\Gamma_1 F) = 1, \quad (\Gamma_j F) = 0 \ (j \neq 1)$$

Then Γ_1 is a section of S, i.e. $\Gamma_1 = (P_1)$ for some $P_1 \in M$, and all other Γ_j are contained in fibres. Obviously P_1 is equal to $P = \pi(D)$. No. 2]

Next, in the intersection number relation:

$$0 = (\tilde{\Gamma}(\tilde{O})) = (\Gamma(O)) = (PO) + \sum_{j>1} (\Gamma_j(O))$$

observe that $(PO) \geq 0$ (because $P \neq O$ by assumption) and $(\Gamma_j O) \geq 0$. Hence we have (PO) = 0 and $(\Gamma_j O) = 0$. The former implies that $P \in \mathcal{P}_S$, as claimed, while the latter implies that the other components $\Gamma_j (j > 1)$, if any, are among the non-identity components $\Theta_{v,i} (i > 0)$ of reducible fibres. Therefore \tilde{D} specializes via σ to the following

$$D^* = (P) - (O) - (F) + \gamma, \quad \gamma = \sum_{v,i>0} m_{v,i}\Theta_{v,i} \in T$$

where $m_{v,i}$ are some non-negative integers. On the other hand, since $\sigma(\tilde{D}) = D$, we have $D \equiv D^*$. This proves Lemma 3.3.

Theorem 3.4. For any rational elliptic surface S with a section, let \mathcal{D} be the set of roots in the E_8 -frame. Then the map $\pi : \mathcal{D} \to \mathcal{P} \cup \{O\}$ is a surjective map unless T = 0, and \mathcal{D} is decomposed into the disjoint union:

(3.7)
$$\mathcal{D} = \pi^{-1}(O) \bigsqcup_{P \in \mathcal{P}} \pi^{-1}(P).$$

The inverse image $\pi^{-1}(O)$ is the set of roots in T (it is empty if T = 0). For any $P \in \mathcal{P}$, we have

(3.8)

$$\pi^{-1}(P) = \{ D \in \mathcal{D} \mid D \equiv D(P) + \sum_{v,i>0} m_{v,i}\Theta_{v,i} \}$$

 $(m_{v,i} \ge 0)$ which is equal to the set of distinguished roots in the root graph $\Delta(P)$ defined in §2. In particular, its cardinality is equal to the combinatorial multiplicity of P:

(P),

(3.9)
$$m(P) = \#\pi^{-1}$$

and

3.10)
$$\sum_{P \in \mathcal{P}} m(P) = 240 - \nu(T).$$

Proof. This is clear by Lemma 3.1 and 3.3. The decomposition (3.7) of \mathcal{D} is just the union of the inverse images of π , and counting the cardinality gives the relation (3.10).

As a by-product of the above proof, we obtain a conceptual proof of the following fact (see [9, Theorem 2.5], [11, Theorem 10.8]), which has been proven by using the classification of RES plus some case-bycase checking: **Theorem 3.5.** For any rational elliptic surface with a section (defined over an algebraically closed field of arbitrary characterisitic), the Mordell-Weil group is generated by the set \mathcal{P} of everywhere integral sections.

Proof. It is well-known that the root lattice E_8 is generated by a basis consisting of eight roots (see e.g. [1, 2]). Hence the E_8 -frame V is generated by the set \mathcal{D} of roots. Since we have $M \cong V/T$ by (3.1), M is generated by $\pi(\mathcal{D})$, hence by \mathcal{P} by the first part of Lemma 3.3.

Acknowledgement. The author is funded by JSPS Grant-in-Aid for Scientific Research © No. 20540051.

References

- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Hermann, Paris, 1968.
- [2] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Third edition, Springer, New York, 1999.
- D. Cox, J. Little and D. O'Shea, Using algebraic geometry, Springer, New York, 1998.
- [4] A. Grothendieck, Éléments de Géometrie Algébrique, Publ. Math. IV, IHES.
- [5] R. Hartshorne, Algebraic geometry, Springer, New York, 1977.
- [6] K. Kodaira, On compact analytic surfaces. II, Ann. of Math. (2) 77 (1963), 563–626.
- [7] K. Kodaira, On compact analytic surfaces. III, Ann. of Math. (2) 78 (1963), 1–40.
- [8] D. Mumford, Lectures on curves on an algebraic surface, Princeton Univ. Press, Princeton, N.J., 1966.
- [9] M. Noro and K. Yokoyama, Computational Foundations of Gröbner Bases, Tokyo Univ. Press (2003). (in Japanese).
- [10] K. Oguiso and T. Shioda, The Mordell-Weil lattice of a rational elliptic surface, Comment. Math. Univ. St. Paul. 40 (1991), no. 1, 83–99.
- T. Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul. **39** (1990), no. 2, 211–240.
- T. Shioda, Construction of elliptic curves with high rank via the invariants of the Weyl groups, J. Math. Soc. Japan 43 (1991), no. 4, 673– 719.
- $\begin{bmatrix} 13 \end{bmatrix}$ T. Shioda, Mordell-Weil lattices of type E_8 and deformation of singularities, in: Lecture Notes in Math. **1468** (1991), 177–202.
- T. Shioda, Existence of a rational elliptic surface with a given Mordell-Weil lattice, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), no. 9, 251–255.

T. Shioda

- T. Shioda, Cyclotomic analogue in the theory of algebraic equations of type E₆, E₇, E₈, in Integral quadratic forms and lattices (Seoul, 1998), 87–96, Contemp. Math., 249, Amer. Math. Soc., Providence, RI.
- [16] T. Shioda, Integral points and Mordell-Weil lattices, in A panorama of number theory or the view from Baker's garden (Zürich, 1999), 185– 193, Cambridge Univ. Press, Cambridge.
- [17] T. Shioda, Gröbner Basis, Mordell-Weil Lattices

and Deformation of Singularities, II. Proc. Japan Acad. Ser. A Math. Sci. 86 (2010), no. 2, 27–32.

- J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, in Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), 33-52. Lecture Notes in Math., 476, Springer, Berlin.
- [19] A. Weil, Foundations of algebraic geometry, Amer. Math. Soc., Providence, R.I., 1962.