Quantum queer superalgebra and crystal bases

By Dimitar GRANTCHAROV^{*)}, Ji Hye JUNG^{**)}, Seok-Jin KANG^{**)}, Masaki KASHIWARA, M.J.A.^{**),***)} and Myungho KIM^{**)}

(Contributed by Masaki KASHIWARA, M.J.A., Nov. 12, 2010)

Abstract: In this paper, we develop the crystal basis theory for the quantum queer superalgebra $U_q(\mathfrak{q}(n))$. We define the notion of crystal bases, describe the tensor product rule, and present the existence and uniqueness of crystal bases for $U_q(\mathfrak{q}(n))$ -modules in the category $\mathcal{O}_{int}^{\geq 0}$.

Key words: Quantum queer superalgebra; crystal bases; odd Kashiwara operators.

1. Introduction. The crystal bases are one of the most prominent discoveries of the modern combinatorial representation theory. Immediately after its first appearance in 1990 in [3], the crystal basis theory developed rapidly and attracted considerable mathematical attention. Many important and deep results for symmetrizable Kac-Moody algebras have been established in the last 20 years following the original works [3–5]. In particular, an explicit combinatorial realization of crystal bases for classical Lie algebras was given in [6].

In contrast to the case of Lie algebras, the crystal base theory for Lie superalgebras is still in its beginning stage. A major difficulty in the superalgebra case arises from the fact that the category of finite-dimensional representations is in general not semisimple. Nevertheless, there is an interesting category of finite-dimensional $U_q(\mathfrak{g})$ -modules which is semisimple for the two super-analogues of the general linear Lie algebra $\mathfrak{gl}(n)$: $\mathfrak{g} = \mathfrak{gl}(m|n)$ and $\mathfrak{g} = \mathfrak{q}(n)$. This is the category $\mathcal{O}_{int}^{\geq 0}$ of representations that appear as subrepresentations of tensor powers $\mathbf{V}^{\otimes N}$ of the natural representation \mathbf{V} of $U_q(\mathfrak{g})$. The semisimplicity of $\mathcal{O}_{int}^{\geq 0}$ is verified in [1] for $\mathfrak{g} = \mathfrak{gl}(m|n)$ and in [2] for $\mathfrak{g} = \mathfrak{q}(n)$.

The crystal basis theory of $\mathcal{O}_{int}^{\geq 0}$ for the general linear Lie superalgebra $\mathfrak{g} = \mathfrak{gl}(m|n)$ was developed in [1]. In this case the irreducible objects in $\mathcal{O}_{int}^{\geq 0}$ are indexed by partitions having so-called (m, n)-hook

shapes. This combinatorial description enables us to index the crystal basis of any irreducible object $V(\lambda)$ in $\mathcal{O}_{int}^{\geq 0}$ with highest weight λ by the set B(Y)of semistandard tableaux Y of shape λ . In addition to the existence of the crystal basis, the decompositions of $V(\lambda) \otimes \mathbf{V}$ and $B(Y) \otimes \mathbf{B}$, where **B** is the crystal basis for **V**, have been found in [1].

In this paper we focus on the second superanalogue of the general linear Lie algebra: the queer Lie superalgebra q(n). It has been known since its inception that the representation theory of $\mathfrak{q}(n)$ is more complicated compared to the other classical Lie superalgebra theories. A distinguished feature of q(n) is that any Cartan subsuperalgebra has a nontrivial odd part. As a result, the highest weight space of any highest weight q(n)-module has a structure of a Clifford module. In particular, every $\mathfrak{gl}(n)$ -component of a finite-dimensional $\mathfrak{g}(n)$ -module appears with multiplicity larger than one (in fact, a power of two). Important results related to the representation theory of q(n) include the q(n)analogue of the celebrated Schur-Weyl duality discovered by Sergeev in 1984 [8], and character formulae for all simple finite-dimensional representations found by Penkov and Serganova in 1997 [7]. The foundations of the highest weight representation theory of the quantum queer superalgebra $U_q(\mathfrak{q}(n))$ have been established in [2]. An interesting observation in [2] is that the classical limit of a simple highest weight $U_q(\mathbf{q}(n))$ -module is a simple highest weight U(q(n))-module or a direct sum of two highest weight $U(\mathfrak{q}(n))$ -modules.

In view of the above remarks, it is clear that developing a crystal basis theory for the category $\mathcal{O}_{int}^{\geq 0}$ of $U_q(\mathfrak{q}(n))$ is a challenging problem. The purpose of this paper is to announce the results that lead to a solution of this problem. Take the base

²⁰⁰⁰ Mathematics Subject Classification. Primary 17B37, $81\mathrm{R50}.$

^{*)} Department of Mathematics, University of Texas at Arlington, Arlington, TX76021, U.S.A.

 ^{**)} Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 151-747, Korea.
 ***) Research Institute for Mathematical Sciences, Kyoto

^{***)} Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan.

(1)

field to be $\mathbf{C}((q))$. Our main theorem is the existence and uniqueness of the crystal bases of $U_q(\mathfrak{q}(n))$ -modules in $\mathcal{O}_{int}^{\geq 0}$. The proofs will appear in full detail in a forthcoming paper. To overcome the challenges described above, we modify the notion of a crystal basis and introduce the so-called *abstract* $\mathfrak{q}(n)$ -crystal. To do so we first define odd Kashiwara operators $\tilde{e}_{\overline{1}}, \tilde{f}_{\overline{1}}$, and $\tilde{k}_{\overline{1}}$, where $\tilde{k}_{\overline{1}}$ corresponds to an odd element in the Cartan subsuperalgebra of q(n). Then, a crystal basis for a $U_q(\mathfrak{q}(n))$ -module M in the category $\mathcal{O}_{int}^{\geq 0}$ is a triple $(L, B, (l_b)_{b \in B})$, where the crystal lattice L is a free $\mathbf{C}[[q]]$ -submodule of M, B is a finite $\mathfrak{gl}(n)$ -crystal, $(l_b)_{b\in B}$ is a family of vector spaces such that $L/qL = \bigoplus_{b \in B} l_b$, with a set of compatibility conditions for the action of the Kashiwara operators imposed in addition. The definition of a crystal basis leads naturally to the notion of an abstract q(n)-crystal an example of which is the $\mathfrak{gl}(n)$ -crystal B in any crystal basis $(L, B, (l_b)_{b \in B})$. The modified notion of a crystal allows us to consider the multiple occurrence of $\mathfrak{gl}(n)$ -crystals corresponding to a highest weight $U_q(\mathfrak{q}(n))$ -module M in $\mathcal{O}_{int}^{\geq 0}$ as a single $\mathfrak{q}(n)$ -crystal. It is worth noting that M is not necessarily a simple module and that the q(n)-crystal B of M depends only on the highest weight λ of M, hence we may write $B = B(\lambda)$. In order to find the highest weight vector of $B(\lambda)$, we use the action of the Weyl group on $B(\lambda)$ and define odd Kashiwara operators \tilde{e}_{i} and f_i for i = 2, ..., n - 1. Then the highest weight vector of $B(\lambda)$ is simply the unique vector annihilated by the 2n-2 Kashiwara operators \tilde{e}_i and \tilde{e}_i . In addition to the existence and uniqueness of the crystal basis of M, we establish an isomorphism $\mathbf{B} \otimes B(\lambda) \simeq \bigsqcup_{\lambda + \varepsilon_j: \text{strict}} B(\lambda + \varepsilon_j)$ and explicitly describe the highest weight vectors of $\mathbf{B} \otimes B(\lambda)$ in terms of the even Kashiwara operators f_i and the highest weight vector of $B(\lambda)$. We conjecture that the highest weight vectors of $B(\lambda) \otimes \mathbf{B}$ can be found in an analogous way with the aid of the odd Kashiwara operators $f_{\overline{i}}$.

2. The quantum queer superalgebra. For an indeterminate q, let $\mathbf{F} = \mathbf{C}((q))$ be the field of formal Laurent series in q and let $\mathbf{A} = \mathbf{C}[[q]]$ be the subring of \mathbf{F} consisting of formal power series in q. Let $P^{\vee} = \mathbf{Z}k_1 \oplus \cdots \oplus \mathbf{Z}k_n$ be a free abelian group of rank n and let $\mathfrak{h} = \mathbf{C} \otimes_{\mathbf{Z}} P^{\vee}$. Define the linear functionals $\epsilon_i \in \mathfrak{h}^*$ by $\epsilon_i(k_j) = \delta_{ij}$ (i, j = 1, ..., n)and set $P = \mathbf{Z}\epsilon_1 \oplus \cdots \oplus \mathbf{Z}\epsilon_n$. We denote by $\alpha_i = \epsilon_i - \epsilon_{i+1}$ the simple roots. **Definition 2.1.** The quantum queer superalgebra $U_q(\mathfrak{q}(n))$ is the superalgebra over \mathbf{F} with 1 generated by $e_i, f_i, e_{\overline{i}}, f_{\overline{i}} \ (i = 1, ..., n - 1), q^h \ (h \in P^{\vee}), k_{\overline{j}} \ (j = 1, ..., n)$ with the following defining relations.

$$\begin{array}{l} q^{0}=1, \quad q^{h_{1}}q^{h_{2}}=q^{h_{1}+h_{2}} \quad (h_{1},h_{2}\in P^{\vee}),\\ q^{h}e_{i}q^{-h}=q^{\alpha_{i}(h)}e_{i} \quad (h\in P^{\vee}),\\ q^{h}f_{i}q^{-h}=q^{-\alpha_{i}(h)}f_{i} \quad (h\in P^{\vee}),\\ q^{h}k_{\overline{j}}=k_{\overline{j}}q^{h},\\ e_{i}f_{j}-f_{j}e_{i}=\delta_{ij}\frac{q^{k_{i}-k_{i+1}}-q^{-k_{i}+k_{i+1}}}{q-q^{-1}},\\ e_{i}e_{j}-e_{j}e_{i}=f_{i}f_{j}-f_{j}f_{i}=0\\ \text{ if }|i-j|>1,\\ e_{i}^{2}e_{j}-(q+q^{-1})e_{i}e_{j}e_{i}+e_{j}e_{i}^{2}=\\ f_{i}^{2}f_{j}-(q+q^{-1})f_{i}f_{j}f_{i}+f_{j}f_{i}^{2}=0\\ \text{ if }|i-j|=1,\\ k_{\overline{i}}^{2}=\frac{q^{2k_{i}}-q^{-2k_{i}}}{q^{2}-q^{-2}},\\ k_{\overline{i}}k_{\overline{j}}+k_{\overline{j}}k_{\overline{i}}=0 \quad (i\neq j),\\ k_{\overline{i}}e_{i}-qe_{i}k_{\overline{i}}=e_{\overline{i}}q^{-k_{i}},\\ k_{\overline{i}}f_{i}=q^{k_{i}}=e_{\overline{i}}q^{-k_{i}},\\ k_{\overline{i}}f_{i}=q^{k_{i}}=e_{\overline{i}}q^{k_{i}}=e_{\overline{i}}q^{k_{i}},\\ k_{\overline{i}}f_{i}=q^{k_{i}}=e_{\overline{i}}q^{k_{i}}=e_{\overline{i}}q^{k_{i}},\\ k_{\overline{i}}f_{i}=q^{k_{i}}=e_{\overline{i}}q^{k_{i}}=e_{\overline{i}}q^{k_{i}}=e_{\overline{i}}q^{k_{i}},\\ k_{\overline{i}}f_{i}=q^{k_{i}}=e_{\overline{i}}q^{k_{i}}=e_{\overline{i}}q^{k_{i}}=e_{\overline{i}}q^{k_{i}},\\ k_{\overline{i}}f_{i}=e_{\overline{i}}q^{k_{i}}=e_{\overline{i}}q^{k_{i}}=e_{\overline{i}}q^{k_{i}}=e_{\overline{i}}q^{k_{i}}=e_{\overline{i}}q^{k_{i}}=e_{\overline{i}}q^{k_{i}}=e_{\overline{i}}q^{k_{i}}=e_{\overline{i}}q^{k_{i}}=e_{\overline{i}}q^{k_{i}}=e_{\overline{i}}q^{k_{i}}=e_{\overline{i}}q^{k_{i}}=e_{\overline{i}}q^{k_{i}}=e_{\overline{i}}q^{k_{i}}=e_{\overline{i}}q^{k_{i}}=e_{\overline{i}}q^{k_{i}}=e_{\overline{i}}q^{k_{i}}=e_{\overline{i}}q^{k_{i}}=e_{\overline{i}}q^{k_{i}}=e_{\overline{i}}q^{k_{i}}=e_$$

$$\begin{aligned} &(1) & \kappa_{i} f_{i} - q_{j} i \kappa_{i} - f_{i} q_{i}, \\ &e_{i} f_{\overline{j}} - f_{\overline{j}} e_{i} = \delta_{ij} (k_{\overline{i}} q^{-k_{i+1}} - k_{\overline{i+1}} q^{-k_{i}}), \\ &e_{\overline{i}} f_{j} - f_{j} e_{\overline{i}} = \delta_{ij} (k_{\overline{i}} q^{k_{i+1}} - k_{\overline{i+1}} q^{k_{i}}), \\ &e_{i} e_{\overline{i}} - e_{\overline{i}} e_{i} = f_{i} f_{\overline{i}} - f_{\overline{i}} f_{i} = 0, \\ &e_{i} e_{i+1} - q e_{i+1} e_{i} = e_{\overline{i}} e_{\overline{i+1}} + q e_{\overline{i+1}} e_{\overline{i}}, \\ &q f_{i+1} f_{i} - f_{i} f_{i+1} = f_{\overline{i}} f_{\overline{i+1}} + q f_{\overline{i+1}} f_{\overline{i}}, \\ &e_{i}^{2} e_{\overline{j}} - (q + q^{-1}) e_{i} e_{\overline{j}} e_{i} + e_{\overline{j}} e_{i}^{2} = \\ &f_{i}^{2} f_{\overline{j}} - (q + q^{-1}) f_{i} f_{\overline{j}} f_{i} + f_{\overline{j}} f_{i}^{2} = 0, \\ &\text{if } |i - j| = 1. \end{aligned}$$

The generators e_i , f_i (i = 1, ..., n - 1), q^h $(h \in P^{\vee})$ are regarded as *even* and $e_{\overline{i}}$, $f_{\overline{i}}$ (i = 1, ..., n - 1), $k_{\overline{j}}$ (j = 1, ..., n) are *odd*. From the defining relations, it is easy to see that the even generators together with $k_{\overline{1}}$ generate the whole algebra $U_q(\mathbf{q}(n))$.

The superalgebra $U_q(\mathfrak{q}(n))$ is a Hopf superalgebra with the comultiplication $\Delta: U_q(\mathfrak{q}(n)) \rightarrow U_q(\mathfrak{q}(n)) \otimes U_q(\mathfrak{q}(n))$ defined by

(2)
$$\Delta(q^{h}) = q^{h} \otimes q^{h} \quad \text{for } h \in P^{\vee},$$
$$\Delta(e_{i}) = e_{i} \otimes q^{-k_{i}+k_{i+1}} + 1 \otimes e_{i},$$
$$\Delta(f_{i}) = f_{i} \otimes 1 + q^{k_{i}-k_{i+1}} \otimes f_{i},$$
$$\Delta(k_{\overline{1}}) = k_{\overline{1}} \otimes q^{k_{1}} + q^{-k_{1}} \otimes k_{\overline{1}}.$$

Let U^+ (resp. U^-) be the subalgebra of $U_q(\mathfrak{q}(n))$ generated by $e_i, e_{\overline{i}}$ (i = 1, ..., n - 1) (resp. $f_i, f_{\overline{i}}$ No. 10]

(i = 1, ..., n - 1), and let U^0 be the subalgebra generated by q^h $(h \in P^{\vee})$ and $k_{\overline{j}}$ (j = 1, ..., n). In [2], it was shown that the algebra $U_q(\mathfrak{q}(n))$ has the triangular decomposition:

$$(3) \qquad \qquad U^-\otimes U^0\otimes U^+ \xrightarrow{\sim} U_q(\mathfrak{q}(n)).$$

Hereafter, a $U_q(\mathbf{q}(n))$ -module is understood as a $U_q(\mathbf{q}(n))$ -supermodule. A $U_q(\mathbf{q}(n))$ -module Mis called a *weight module* if M has a weight space decomposition $M = \bigoplus_{\mu \in P} M_\mu$, where

$$M_{\mu} := \{ m \in M; q^h m = q^{\mu(h)} m \quad \text{for all } h \in P^{\vee} \}.$$

The set of weights of M is defined to be

$$\operatorname{wt}(M) = \{ \mu \in P; M_{\mu} \neq 0 \}.$$

Definition 2.2. A weight module V is called a highest weight module with highest weight $\lambda \in P$ if V is generated by a finite-dimensional U^0 -module \mathbf{v}_{λ} satisfying the following conditions:

(a) $e_i v = e_{\overline{i}} v = 0$ for all $v \in \mathbf{v}_{\lambda}$, i = 1, ..., n-1, (b) $q^h v = q^{\lambda(h)} v$ for all $v \in \mathbf{v}_{\lambda}$, $h \in P^{\vee}$.

There is a unique irreducible highest weight module with highest weight $\lambda \in P$ up to parity change. We denote it by $V(\lambda)$.

Set

$$P^{\geq 0} = \{\lambda = \lambda_1 \epsilon_1 + \dots + \lambda_n \epsilon_n \in P; \\\lambda_j \in \mathbf{Z}_{\geq 0} \quad \text{for all } j = 1, \dots, n\}, \\\Lambda^+ = \{\lambda = \lambda_1 \epsilon_1 + \dots + \lambda_n \epsilon_n \in P^{\geq 0}; \\\lambda_i \geq \lambda_{i+1} \text{ and } \lambda_i = \lambda_{i+1} \text{ implies} \\\lambda_i = \lambda_{i+1} = 0 \text{ for all } i = 1, \dots, n-1\} \\\text{to that each element } \lambda \in \Lambda^+ \text{ correspondent}$$

Note that each element $\lambda \in \Lambda^+$ corresponds to a strict partition $\lambda = (\lambda_1 > \lambda_2 > \cdots > \lambda_r > 0)$. Thus we will call $\lambda \in \Lambda^+$ a strict partition.

We define $\mathcal{O}_{int}^{\geq 0}$ to be the category of finitedimensional weight modules such that wt(M) \subset $P^{\geq 0}$ and $k_{\tilde{i}}|_{M_{\mu}} = 0$ for any $i \in \{1, \ldots, n\}$ and $\mu \in$ $P^{\geq 0}$ satisfying $\langle k_i, \mu \rangle = 0$. The fundamental properties of the category $\mathcal{O}_{int}^{\geq 0}$ are summarized in the following proposition.

Proposition 2.3 [2].

- (a) Every $U_q(\mathfrak{q}(n))$ -module in $\mathcal{O}_{int}^{\geq 0}$ is completely reducible.
- (b) Every irreducible object in $\mathcal{O}_{int}^{\geq 0}$ has the form $V(\lambda)$ for some $\lambda \in \Lambda^+$.

3. Crystal bases. Let M be a $U_q(\mathfrak{q}(n))$ module in $\mathcal{O}_{int}^{\geq 0}$. For $i = 1, 2, \ldots, n-1$, we define the even Kashiwara operators on M in the usual way. That is, for a weight vector $u \in M_\lambda$, consider the *i*-string decomposition of u:

$$u = \sum_{k \ge 0} f_i^{(k)} u_k,$$

where $e_i u_k = 0$ for all $k \ge 0$, $f_i^{(k)} = f_i^k / [k]!$, $[k] = \frac{q^k - q^{-k}}{q - q^{-1}}$, $[k]! = [k][k - 1] \cdots [2][1]$, and we define the even Kashiwara operators \tilde{e}_i , \tilde{f}_i $(i = 1, \ldots, n - 1)$ by

(4)
$$\tilde{e}_i u = \sum_{k \ge 1} f_i^{(k-1)} u_k,$$
$$\tilde{f}_i u = \sum_{k \ge 0} f_i^{(k+1)} u_k.$$

On the other hand, we define the *odd Kashiwara* operators $\tilde{k}_{\overline{1}}$, $\tilde{e}_{\overline{1}}$, $\tilde{f}_{\overline{1}}$ by

(5)

$$\widetilde{k}_{\overline{1}} = q^{k_1 - 1} k_{\overline{1}},$$
 $\widetilde{e}_{\overline{1}} = -(e_1 k_{\overline{1}} - q k_{\overline{1}} e_1) q^{k_1 - 1},$
 $\widetilde{f}_{\overline{1}} = -(k_{\overline{1}} f_1 - q f_1 k_{\overline{1}}) q^{k_2 - 1}.$

Recall that an abstract $\mathfrak{gl}(n)$ -crystal is a set Btogether with the maps $\tilde{e}_i, \tilde{f}_i: B \to B \sqcup \{0\}, \varphi_i, \varepsilon_i: B \to \mathbf{Z} \sqcup \{-\infty\} \ (i = 1, \dots, n-1)$, and wt: $B \to P$ satisfying the conditions given in [5]. In this paper, we say that an abstract $\mathfrak{gl}(n)$ -crystal is a $\mathfrak{gl}(n)$ -crystal if it is realized as a crystal basis of a finite-dimensional integrable $U_q(\mathfrak{gl}(n))$ -module. In particular, we have $\varepsilon_i(b) = \max\{n \in \mathbf{Z}_{\geq 0}; \ \tilde{e}_i^n b \neq 0\}$ and $\varphi_i(b) = \max\{n \in \mathbf{Z}_{\geq 0}; \ \tilde{f}_i^n b \neq 0\}$ for any b in a $\mathfrak{gl}(n)$ -crystal B.

Definition 3.1. Let $M = \bigoplus_{\mu \in P^{\geq 0}} M_{\mu}$ be a $U_q(\mathfrak{q}(n))$ -module in the category $\mathcal{O}_{int}^{\geq 0}$. A crystal basis of M is a triple $(L, B, l_B = (l_b)_{b \in B})$, where

- (a) L is a free **A**-submodule of M such that (i) $\mathbf{F} \otimes_{\mathbf{A}} L \xrightarrow{\sim} M$,
 - (ii) $L = \bigoplus_{\mu \in P^{\geq 0}} L_{\mu}$, where $L_{\mu} = L \cap M_{\mu}$,
 - (iii) L is stable under the Kashiwara operators $\tilde{e}_i, \tilde{f}_i \ (i = 1, \dots, n-1), \ \tilde{k}_{\overline{1}}, \ \tilde{e}_{\overline{1}}, \ \tilde{f}_{\overline{1}}.$
- (b) B is a $\mathfrak{gl}(n)$ -crystal together with the maps $\tilde{e}_{\overline{1}}, \tilde{f}_{\overline{1}}: B \to B \sqcup \{0\}$ such that
 - (i) $\operatorname{wt}(\tilde{e}_{\overline{1}}b) = \operatorname{wt}(b) + \alpha_1, \operatorname{wt}(f_{\overline{1}}b) = \operatorname{wt}(b) \alpha_1,$
 - (ii) for all $b, b' \in B$, $\tilde{f}_{\overline{1}}b = b'$ if and only if $b = \tilde{e}_{\overline{1}}b'$.
- (c) $l_B = (l_b)_{b \in B}$ is a family of non-zero C-vector spaces such that

(i)
$$l_b \subset (L/qL)_{\mu}$$
 for $b \in B_{\mu}$,

- (ii) $L/qL = \bigoplus_{b \in B} l_b$,
- (iii) $\tilde{k}_{\overline{1}}l_b \subset l_b$,
- (iv) for $i = 1, \ldots, n 1, \overline{1}$, we have
 - (1) if $\tilde{e}_i b = 0$ then $\tilde{e}_i l_b = 0$, and otherwise \tilde{e}_i induces an isomorphism $l_b \xrightarrow{\sim} l_{\tilde{e}_i b}$.
 - (2) if $\tilde{f}_i b = 0$ then $\tilde{f}_i l_b = 0$, and otherwise \tilde{f}_i induces an isomorphism $l_b \xrightarrow{\sim} l_{\tilde{t},b}$.

Note that one can prove that $\tilde{e}_1^2 = \tilde{f}_1^2 = 0$ as endomorphisms of L/qL for any crystal basis (L, B, l_B) .

Example 3.2. Let

$$\mathbf{V} = \bigoplus_{j=1}^{n} \mathbf{F} v_j \oplus \bigoplus_{j=1}^{n} \mathbf{F} v_{\overline{j}}$$

be the vector representation of $U_q(\mathfrak{q}(n))$. The action of $U_q(\mathfrak{q}(n))$ on **V** is given as follows:

$$\begin{split} e_i v_j &= \delta_{j,i+1} v_i, \quad e_i v_{\overline{j}} = \delta_{j,i+1} v_{\overline{i}}, \quad f_i v_j = \delta_{j,i} v_{i+1}, \quad f_i v_{\overline{j}} = \\ \delta_{j,i} v_{\overline{i+1}}, \quad e_{\overline{i}} v_j &= \delta_{j,i+1} v_{\overline{i}}, \quad e_{\overline{i}} v_{\overline{j}} = \delta_{j,i+1} v_i, \quad f_{\overline{i}} v_j = \delta_{j,i} v_{\overline{i+1}}, \\ f_{\overline{i}} v_{\overline{j}} &= \delta_{j,i} v_{i+1}, \quad q^h v_j = q^{\epsilon_j(h)} v_j, \quad q^h v_{\overline{j}} = q^{\epsilon_j(h)} v_{\overline{j}}, \quad k_{\overline{i}} v_j = \\ \delta_{j,i} v_{\overline{j}}, \quad k_{\overline{i}} v_{\overline{j}} = \delta_{j,i} v_j. \end{split}$$

$$\mathbf{L} = \bigoplus_{j=1}^{n} \mathbf{A} v_{j} \oplus \bigoplus_{j=1}^{n} \mathbf{A} v_{\overline{j}}.$$

 $l_j = \mathbf{C}v_j \oplus \mathbf{C}v_{\overline{j}}$, and let **B** be the crystal graph given below.

$$\boxed{1} \xrightarrow[]{-\frac{1}{1}} \boxed{2} \xrightarrow[]{-\frac{2}{1}} \boxed{3} \xrightarrow[]{-\frac{3}{1}} \cdots \xrightarrow[]{-\frac{n-1}{1}} \boxed{n}$$

Here, the actions of \tilde{f}_i $(i = 1, ..., n - 1, \overline{1})$ are expressed by *i*-arrows. Then $(\mathbf{L}, \mathbf{B}, l_{\mathbf{B}} = (l_j)_{j=1}^n)$ is a crystal basis of **V**.

Theorem 3.3. Let M_j be a $U_q(\mathfrak{g})$ -module in $\mathcal{O}_{int}^{\geq 0}$ with crystal basis (L_j, B_j, l_{B_j}) (j = 1, 2). Set $B_1 \otimes B_2 = B_1 \times B_2$ and

$$l_{B_1\otimes B_2} = (l_{b_1}\otimes l_{b_2})_{b_1\in B_1, b_2\in B_2}.$$

Then

$$(L_1 \otimes_{\mathbf{A}} L_2, B_1 \otimes B_2, l_{B_1 \otimes B_2})$$

is a crystal basis of $M_1 \otimes_{\mathbf{F}} M_2$, where the action of the Kashiwara operators on $B_1 \otimes B_2$ are given as follows:

$$\tilde{e}_{i}(b_{1} \otimes b_{2}) = \begin{cases} \tilde{e}_{i}b_{1} \otimes b_{2} & \text{if } \varphi_{i}(b_{1}) \geq \varepsilon_{i}(b_{2}), \\ b_{1} \otimes \tilde{e}_{i}b_{2} & \text{if } \varphi_{i}(b_{1}) < \varepsilon_{i}(b_{2}), \end{cases}$$

$$\tilde{f}_{i}(b_{1} \otimes b_{2}) = \begin{cases} \tilde{f}_{i}b_{1} \otimes b_{2} & \text{if } \varphi_{i}(b_{1}) > \varepsilon_{i}(b_{2}), \\ b_{1} \otimes \tilde{f}_{i}b_{2} & \text{if } \varphi_{i}(b_{1}) \geq \varepsilon_{i}(b_{2}), \end{cases}$$

$$\tilde{e}_{\overline{1}}(b_{1} \otimes b_{2}) = \begin{cases} \tilde{e}_{\overline{1}}b_{1} \otimes b_{2} & \text{if } \varphi_{i}(b_{1}) \leq \varepsilon_{i}(b_{2}), \\ b_{1} \otimes \tilde{f}_{i}b_{2} & \text{if } \varphi_{i}(b_{1}) \leq \varepsilon_{i}(b_{2}), \end{cases}$$

$$\tilde{e}_{\overline{1}}(b_{1} \otimes b_{2}) = \begin{cases} \tilde{e}_{\overline{1}}b_{1} \otimes b_{2} & \text{if } \langle k_{1}, \text{wt } b_{2} \rangle = 0, \\ b_{1} \otimes \tilde{e}_{\overline{1}}b_{2} & \text{otherwise}, \end{cases}$$

$$\tilde{f}_{\overline{1}}(b_{1} \otimes b_{2}) = \begin{cases} \tilde{f}_{\overline{1}}b_{1} \otimes b_{2} & \text{if } \langle k_{1}, \text{wt } b_{2} \rangle = 0, \\ b_{1} \otimes \tilde{e}_{\overline{1}}b_{2} & \text{otherwise}, \end{cases}$$

$$\tilde{f}_{\overline{1}}(b_{1} \otimes b_{2}) = \begin{cases} \tilde{f}_{\overline{1}}b_{1} \otimes b_{2} & \text{if } \langle k_{1}, \text{wt } b_{2} \rangle = 0, \\ b_{1} \otimes \tilde{f}_{\overline{1}}b_{2} & \text{otherwise}. \end{cases}$$

Sketch of Proof. Our assertion follows from the following comultiplication formulas.

$$\begin{split} \Delta(k_{\overline{1}}) &= k_{\overline{1}} \otimes q^{2k_1} + 1 \otimes k_{\overline{1}}, \\ \Delta(\tilde{e}_{\overline{1}}) &= \tilde{e}_{\overline{1}} \otimes q^{k_1+k_2} + 1 \otimes \tilde{e}_{\overline{1}} \\ &- (1-q^2) \tilde{k}_{\overline{1}} \otimes e_1 q^{2k_1}, \\ \Delta(\tilde{f}_{\overline{1}}) &= \tilde{f}_{\overline{1}} \otimes q^{k_1+k_2} + 1 \otimes \tilde{f}_{\overline{1}} \\ &- (1-q^2) \tilde{k}_{\overline{1}} \otimes f_1 q^{k_1+k_2-1}. \end{split}$$

Motivated by the properties of crystal bases, we introduce the notion of abstract crystals.

Definition 3.4. An *abstract* $\mathfrak{q}(n)$ *-crystal* is a $\mathfrak{gl}(n)$ -crystal together with the maps $\tilde{e}_{\overline{1}}, \tilde{f}_{\overline{1}}: B \to B \sqcup \{0\}$ satisfying the following conditions: (a) wt $(B) \subset P^{\geq 0}$,

- (b) $\operatorname{wt}(\tilde{e}_{\overline{1}}b) = \operatorname{wt}(b) + \alpha_1, \operatorname{wt}(\tilde{f}_{\overline{1}}b) = \operatorname{wt}(b) \alpha_1,$
- (c) for all $b, b' \in B$, $\tilde{f}_{\overline{1}}b = b'$ if and only if $b = \tilde{e}_{\overline{1}}b'$.

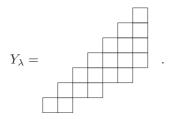
Let B_1 and B_2 be abstract $\mathfrak{q}(n)$ -crystals. The tensor product $B_1 \otimes B_2$ of B_1 and B_2 is defined to be the $\mathfrak{gl}(n)$ -crystal $B_1 \otimes B_2$ together with the maps $\tilde{e}_{\overline{1}}$, $\tilde{f}_{\overline{1}}$ defined by (7). Then it is an abstract $\mathfrak{q}(n)$ -crystal. Note that \otimes satisfies the associative axiom.

Example 3.5.

- (a) If (L, B, l_B) is a crystal basis of a $U_q(\mathfrak{q}(n))$ module M in the category $\mathcal{O}_{int}^{\geq 0}$, then B is an abstract $\mathfrak{q}(n)$ -crystal.
- (b) The crystal graph **B** is an abstract q(n)-crystal.
- (c) By the tensor product rule, $\mathbf{B}^{\otimes N}$ is an abstract $\mathfrak{q}(n)$ -crystal. When n = 3, the $\mathfrak{q}(n)$ -crystal structure of $\mathbf{B} \otimes \mathbf{B}$ is given below.

$$\begin{array}{c}1\otimes1\xrightarrow{1}2\otimes1\xrightarrow{2}3\otimes1\\ \downarrow_{1}^{\downarrow}1\xrightarrow{1}\downarrow_{1}^{\downarrow}1\xrightarrow{1}\downarrow_{1}^{\downarrow}1\xrightarrow{1}\downarrow_{1}^{\downarrow}1\\ \downarrow_{1}^{\downarrow}1\xrightarrow{1}\downarrow_{1}^{\downarrow}1\xrightarrow{1}\downarrow_{1}^{\downarrow}1\\ \downarrow_{1}^{\downarrow}1\xrightarrow{1}\downarrow_{1}^{\downarrow}1\xrightarrow{1}\downarrow_{1}^{\downarrow}1\\ \downarrow_{1}^{\downarrow}1\xrightarrow{1}\downarrow_{1}^{\downarrow}1\xrightarrow{1}\downarrow_{1}^{\downarrow}1\\ \downarrow_{2}^{\downarrow}2\xrightarrow{2}3\otimes2\\ \downarrow_{2}^{\downarrow}2\xrightarrow{1}2\otimes3\xrightarrow{2}3\otimes2\\ \downarrow_{2}^{\downarrow}2\xrightarrow{1}2\otimes3\xrightarrow{2}3\otimes3\end{array}$$

(d) For a strict partition $\lambda = (\lambda_1 > \lambda_2 > \cdots > \lambda_r > 0)$, let Y_{λ} be the skew Young diagram having λ_1 many boxes in the first diagonal, λ_2 many boxes in the second diagonal, etc. For example, if λ is given by (7 > 6 > 4 > 2 > 0), then we have



Let $\mathbf{B}(Y_{\lambda})$ be the set of all semistandard tableaux of shape Y_{λ} with entries from $1, 2, \ldots, n$. Then by an *admissible reading* introduced in [1], $\mathbf{B}(Y_{\lambda})$ is embedded in $\mathbf{B}^{\otimes |\lambda|}$ and it is stable under $\tilde{e}_i, \tilde{f}_i, \tilde{e}_{\overline{1}}, \tilde{f}_{\overline{1}}$. Hence it becomes an abstract q(n)-crystal. Moreover, the q(n)-crystal structure thus obtained does not depend on the choice of admissible readings.

Let B be an abstract q(n)-crystal. For i = $2, \ldots, n-1$, let w be an element of the Weyl group W with shortest length such that $w(\alpha_i) = \alpha_1$. Such an element is unique and we may choose w = $s_2 \cdots s_i s_1 \cdots s_{i-1}$. We define the *odd Kashiwara* operators $\tilde{e}_{i}, \tilde{f}_{i}$ $(i = 2, \ldots, n-1)$ by

$$ilde{e}_{\overline{i}} = S_{w^{-1}} ilde{e}_{\overline{1}} S_w, \quad ilde{f}_{\overline{i}} = S_{w^{-1}} ilde{f}_{\overline{1}} S_w.$$

Here S_w is the Weyl group action on the $\mathfrak{gl}(n)$ crystal. The operators \tilde{e}_{i} , \tilde{f}_{i} do not depend on the choice of reduced expressions of w. We say that $b \in$ B is a highest weight vector if $\tilde{e}_i b = \tilde{e}_i b = 0$ for all $i=1,\ldots,n-1.$

4. Existence and uniqueness. In this section, we present the main result of our paper.

Theorem 4.1.

- (a) Let $\lambda \in \Lambda^+$ be a strict partition and let M be a highest weight $U_q(\mathbf{q}(n))$ -module in the category $\mathcal{O}_{int}^{\geq 0}$ with highest weight λ . If (L, B, l_B) is a crystal basis of M, then L_{λ} is invariant under $k_{\overline{i}} := q^{k_i - 1} k_{\overline{i}}$ for all $i = 1, \ldots, n$. Conversely, if M_{λ} is generated by a free **A**-submodule L^0_{λ} invariant under $k_{\overline{i}}$ (i = 1, ..., n), then there exists a unique crystal basis (L, B, l_B) of M such that
 - (i) $L_{\lambda} = L_{\lambda}^0$,

 - (ii) $B_{\lambda} = \{b_{\lambda}\},$ (iii) $L^{0}_{\lambda}/qL^{0}_{\lambda} = l_{b_{\lambda}},$
 - (iv) B is connected.

Moreover, as an abstract q(n)-crystal, B depends only on λ . Hence we may write $B = B(\lambda)$.

(b) The $\mathfrak{q}(n)$ -crystal $B(\lambda)$ has a unique highest weight vector b_{λ} .

(c) If $b \in \mathbf{B} \otimes B(\lambda)$ is a highest weight vector, then we have

$$b=1\otimes ilde{f}_1\cdots ilde{f}_{j-1}b_\lambda$$

for some j such that $\lambda + \epsilon_j$ is a strict partition.

- (d) Let M be a $U_q(\mathfrak{q}(n))$ -module in $\mathcal{O}_{int}^{\geq 0}$, and let (L, B, l_B) be a crystal basis of M. Then there exist decompositions $M = \bigoplus_{a \in A} M_a$ as a $U_q(\mathfrak{q}(n))$ -module, $L = \bigoplus_{a \in A} L_a$ as an A-module, $B = \bigsqcup_{a \in A} B_a$ as a $\mathfrak{q}(n)$ -crystal, parametrized by a set A such that for any $a \in A$ the following conditions hold:
 - (i) M_a is a highest weight module with highest weight λ_a and $B_a \simeq B(\lambda_a)$ for some strict partition λ_a ,
 - (ii) $L_a = L \cap M_a, \ L_a/qL_a = \bigoplus_{b \in B_a} l_b,$
 - (iii) (L_a, B_a, l_{B_a}) is a crystal basis of M_a .
- (e) Let M be a highest weight $U_q(\mathfrak{q}(n))$ -module in the category $\mathcal{O}_{int}^{\geq 0}$ with highest weight λ . Assume that M has a crystal basis $(L, B(\lambda), l_{B(\lambda)})$ such that $L_{\lambda}/qL_{\lambda} = l_{b_{\lambda}}$. Then we have
 - (i) $\mathbf{V} \otimes M = \bigoplus_{\lambda + \epsilon_j: strict} M_j$, where M_j is a highest weight $U_q(q(n))$ -module with highest weight $\lambda + \epsilon_j$ and $\dim(M_j)_{\lambda + \epsilon_j} =$ $2 \dim M_{\lambda}$

(ii)
$$L_j = (\mathbf{L} \otimes L) \cap M_j$$

(iii) $\mathbf{B} \otimes B(\lambda) \simeq \coprod_{\lambda + \epsilon_i: strict} B_j$, where

$$B_j \simeq B(\lambda + \epsilon_j), \quad L_j/qL_j = \bigoplus_{b \in B_j} l_b.$$

We will prove all of our assertions at once by induction on the length of λ . The proof is involved because our theorem consists of several interlocking statements. The key ingredient is a combinatorial proof of (c).

Acknowledgments. Dimitar Grantcharov was partially supported by NSA grant H98230-10-1-0207 and by Max Planck Institute for Mathematics, Bonn. Ji Hye Jung was partially supported by BK21 Mathematical Sciences Division and by NRF Grant # 2010-0010753. Seok-Jin Kang was partially supported by KRF Grant # 2007-341-C00001 and by National Institute for Mathematical Sciences (2010 Thematic Program, TP1004). Masaki Kashiwara was partially supported by Grant-in-Aid for Scientific Research (B) 23340005, Japan Society for the Promotion of Science. Myungho Kim was partially supported by KRF Grant # 2007-341-C0001 and by NRF Grant #2010-0019516.

References

- $[\ 1\]$ G. Benkart, S.-J. Kang and M. Kashiwara, Crystal bases for the quantum superalgebra $U_q(\mathfrak{gl}(m,n)),$ J. Amer. Math. Soc. **13** (2000), no. 2, 295–331.
- [2] D. Grantcharov et al., Highest weight modules over quantum queer superalgebra $U_q(\mathfrak{q}(n))$, Commun. Math. Phys. **296** (2010), no. 3, 827–860.
- [3] M. Kashiwara, Crystalizing the q-analogue of universal enveloping algebras, Commun. Math. Phys. 133 (1990), no. 2, 249–260.
- [4] M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J.

63 (1991), no. 2, 465–516.

- [5] M. Kashiwara, The crystal base and Littelmann's refined Demazure character formula, Duke Math. J. 71 (1993), no. 3, 839–858.
- [6] M. Kashiwara and T. Nakashima, Crystal graphs for representations of the q-analogue of classical Lie algebras, J. Algebra 165 (1994), no. 2, 295– 345.
- I. Penkov and V. Serganova, Characters of finitedimensional irreducible q(n)-modules, Lett. Math. Phys. 40 (1997), no. 2, 147–158.
- $\begin{bmatrix} 8 \end{bmatrix}$ A. N. Sergeev, Tensor algebra of the identity representation as a module over the Lie superalgebras $\mathfrak{gl}(n,m)$ and Q(n), Mat. Sb. (N.S.) **123(165)** (1984), no. 3, 422–430.