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Abstract:

We give fibrewise mod p decompositions of the adjoint bundle of a principal

G-bundle P when the topological group G has mod p decompositions by automorphisms as in [5],
which imply mod p decompositions of the gauge group of P.

Key words:

1. Introduction and statement of the result.
We will always assume that spaces have the homo-
topy types of CW-complexes.

Let G be a connected topological group, and let
P be a principal G-bundle over a space B. The gauge
group of P, denoted G(P), is the topological group of
G-equivariant self-maps of P covering the identity of
B with the compact open topology, where the group
structure is given by the composite of maps. For an
action p of G on a space F', we denote by P x, F' the
fibre bundle associated to P with the action p. In the
special case that p is the adjoint action of G onto G
itself, we put ad P = P x, G and call it the adjoint
bundle of P. Note that ad P is a fibrewise topological
group in the sense of [3]. Then if we denote the space
of sections of a fibrewise space E — B by T'(E), we
have that I'(ad P) is a topological group. It is shown
in [1] that there is a natural isomorphism of topolog-
ical groups:

G(P) =~T(ad P)

Thus a fibrewise decomposition of the adjoint bundle
ad P yields a decomposition of the gauge group G(P).
The gauge group G(P), of course, inherits the
structures of the topological group G. Then if we
have a decomposition of G, G(P) may have a decom-
position. In fact, Theriault [11] showed that mod p
decompositions of G induce those of G(P) when the
base space B is S%. Other decompositions of gauge
groups are discussed in [7] and [8]. The aim of this
note is to produce a fibrewise mod p decomposition
of the adjoint bundle ad P for yielding a mod p de-
composition of the gauge group G(P) when G has a
mod p decomposition by an automorphism as in [5].
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In order to state the result, we need some nota-
tion. Let P be a set of primes. We denote by —p
the localization away from P in the sense of Hilton,
Mislin and Roitberg [6]. We also denote by —{, the
fibrewise localization away from P in the sense of
May [9].

Suppose G has an automorphism « with the sub-
group of fixed points H. We define a map o : G/H —
G by

o(gH) = galg) ™
for g € G. We also define amap 0 : H x G/H — G by
0(h,gH) = h - o(gH)

for h € H and g € G. Let p be the action of H upon
G/H defined by

p(h,gH) = hgH

for h € H and g € G. Now we give the main theorem
whose proof will be given in the next section where
we also give some examples.

Theorem 1.1. Let G, H,0 and p be as above.
Suppose that the localized map Op is a homotopy
equivalence for some set of primes P. Then there is
a fibrewise homotopy equivalence:

(ad BG|pp)h ~pir (ad EH), x gy (EH x, G/H)},

Let E — B be a fibration whose fibre is connected
and nilpotent. It follows from the result of Mgller
[10] that the induced map I'(E) — I'(EL) from the
fibrewise localization F — E{, is the localization
I'(E) — I'(E)p. Obviously, we have I'(Ey xp Ey) =2
['(E,) x T'(E,) for fibrewise spaces Ey and E; over
B. Then we obtain:

Corollary 1.1. Let G,H,0 and p be as in

Theorem 1.1. Suppose that the localized map 0p is a
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homotopy equivalence for some set of primes P.
Then there is a homotopy equivalence:

G(EG|py)p =~ G(EH)p x I'(EH x,G/H)p

2. Proof of Theorem 1.1 and examples.
We first give a proof of Theorem 1.1. Let ady denote
the adjoint action of H onto G. Then we have a com-
mutative diagram

HxG/H —'— Gq/H

which induces a fibrewise map 7 fitting into the fol-
lowing commutative diagram of fibre sequences.

HxG/H ’ G

| |

ad EH xpy (EH x, G/H) —— ad EG| gy

| l

BH BH

Thus Theorem 1.1 follows from Dold’s theorem
together with the assumption that the localized map
fp is a homotopy equivalence.

Next, we give some examples to which we can
apply Theorem 1.1 and Corollary 1.1. The following
special gauge groups are of our main interesting. Let
G be a connected simple Lie group. Then the princi-
pal G-bundle over S* is classified by 73(G) = Z.

Definition 2.1. We denote by Gj(G) the gauge
group of principal G-bundle classified by k € Z =~

773(G).
Example 2.1. Let G,H,p,d and « be as in
Table I. Here the matrix J is <OE %) Then

each « is an automorphism of G with the subgroup
of fixed points H. Note that the order of a equals
p. In [5], Harris showed that the localized map 6. is
a homotopy equivalence, where —1 stands for the

Table I.

G H p d e
SU(2n+1) SO(2n+1) 2 2 complex conjugation
SU(2n) Sp(n) 2 1 conjugation by J

Eg Fy 2 1 canonical involution
Spin(8) Gs 3 1 automorphism in [4]

[Vol. 86(A),

localization away from the set of all primes but
p, that is, inverting p. Then we can apply Theorem
1.1 and Corollary 1.1. Moreover, since the inclu-
sion H — G induces d-multiplication in 73, we have
obtained:

Proposition 2.1. Let G, H,p,d and p be as
above. Then we have a homotopy equivalence

Gar(G)s = Gi(H) x T(E),
where E is the pullback of EH x, G/H by the map
S* — BH representing k € Z = 7y(BH).

Example 2.2. In [2], an involution of Spin(2n)
whose fixed points subgroup is Spin(2n — 1) is con-
structed. Harris [5] also showed that the localized
map 0% is a homotopy equivalence for this involution.
Then we can apply Theorem 1.1 and Corollary 1.1.
For this example, we can refine Proposition 2.1 a lit-
tle. Put n > 3. Let E be the pullback of the bundle
E Spin(2n—1) x pS?"~! by the map S*— B Spin(2n—
1) representing k € Z = 7y(B Spin(2n — 1)), where p
is the restriction of the canonical action of Spin(2n)
on S?"1 to Spin(2n — 1). Note that the composite

73(Spin(2n — 1)) — m3(Spin(2n)) — To,42(S*" 1)

is the quotient map Z — Z/24, where the first
arrow is induced from the inclusion Spin(2n — 1) —
Spin(2n) and the second arrow is the J-homomor-
phism. Now we know that E is fibrewise homotopy
equivalent to a fibre space Ej over S* with fibre
S21=1 classified by [k] €Z/24 = 79,2(S?"71). In par-
ticular, if k is a multiple of 3, Elf is fibrewise homo-
topy equivalent to the trivial bundle S* x $2*~! In
this case, we have ’

I'(Ek)

~ map(s4’5%2kfl) ~ S%anl X Q4S%Z7L717

rol—

since S_f”’l is an H-space. Thus we have established:
Proposition 2.2 (cf. [11]). Let Ey be as above.
Then we have a homotopy equivalence

Gr(Spin(2n)): ~ Gi(Spin(2n — 1))% x T'(Ey)

1
2

ol

Moreover, if k is a multiple of 3, we have

F(Ek)l ~ an,—l x 9451271,—1.
2 2 2
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