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Abstract: Let A be a finite-dimensional associative algebra and � a symmetric linear

function on A. In this note, we will show that the pseudotrace maps defined in [6] are obtained as

special cases of well-known symmetric linear functions on the endomorphism rings of projective

modules. As an application of our approach, we will give proofs of several propositions and

theorems in [6] for an arbitrary finite-dimensional associative algebra.
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1. Introduction. In this note, we work on

an algebraically closed field k of characteristic 0.

Let A be a finite-dimensional associative k-algebra.

A linear function � on A is said to be symmetric if

�ðabÞ ¼ �ðbaÞ for all a; b 2 A. We denote the space

of symmetric linear functions on A by SLFðAÞ.
In [6], Miyamoto introduces a notion of a

pseudotrace map on a basic symmetric k-algebra P

in order to construct pseudotrace functions of

logarithmic modules of vertex operator algebras

satisfying some finiteness condition called C2-con-

dition. Let � be a symmetric linear function on

P which induces a nondegenerate bilinear form

P � P ! k. Then the pseudotrace map tr�W is a

symmetric linear function on the endomorphism

ring of a finite-dimensional right P -module W

called interlocked with �. As it is implicitly men-

tioned in [6] and it is proved in this note, a finite-

dimensional right P -module which is interlocked

with � is in fact a direct sum of indecomposable

projective modules.

For an arbitrary finite-dimensional k-algebra

A, a finitely generated projective right A-moduleW

has an A-coordinate system of W , that is, fuigni¼1 �
W and f�igni¼1 � HomAðW;AÞ such that w ¼Pn

i¼1 ui�iðwÞ for all w 2W (see [2]). For any

symmetric linear function � on A, we can define a

symmetric linear function on EndAðW Þ by

�W ð�Þ ¼ �
Xn
i¼1

�i � �ðuiÞ
 !

for all � 2 EndAðWÞ (c.f. [3]). In this note, we show

that the symmetric linear function tr�W coincides

with the pseudotrace map when A ¼ P and �

induces a nondegenerate symmetric associative

bilinear form on P . We also prove that a right P -

module W is interlocked with � if and only if W is

projective. Then we can prove several propositions

and theorems in [6] for arbitrary finite-dimensional

k-algebras.

This note is organized as follows: In section 2,

we recall a construction of a symmetric linear

function �W on the endomorphism ring of finitely

generated projective modules W from � 2 SLFðAÞ.
In section 3, we assume that P is indecomposable,

basic and symmetric and � 2 SLFðP Þ satisfies

some conditions (see section 3). We recall a

notion of a right P -module W which is inter-

locked with � and a notion of a pseudotrace map

tr�W defined in [6]. We show that W is interlocked

with � if and only if W is projective. By using

this fact, for any indecomposable projective mod-

ule W , we define �W and show that �W coincides

with tr�W . In section 4 and 5, we prove several

propositions and theorems for pseudotrace maps

in [6] by using �W for arbitrary finite-dimensional

k-algebras.

2. Projective modules and symmetric

linear functions. Let A be a finite-dimensional

associative k-algebra. We denote a left (resp. right)

A-module M by AM (resp. MA).

In this section, we recall a notion of a sym-

metric linear function on the endomorphism ring

of a finitely generated projective right A-module

(c.f. [3]).
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Assume thatWA is finitely generated. ThenWA

is projective if and only if there exist subsets

fuigni¼1 �WA and f�igni¼1 � HomAðWA;AÞ such

that

w ¼
Xn
i¼1

ui�iðwÞ

for all w 2WA (see [2], chapter II, §2.6,

Proposition 12). The set fui; �igni¼1 is called an A-

coordinate system of WA.

Assume that WA is finitely generated and

projective. Let fui; �igni¼1 be an A-coordinate sys-

tem of WA. Then we define a map

TWA
: EndAðWAÞ ! A=½A;A�

by � 7! �ð
Pn

i¼1 �i � �ðuiÞÞ where � : A! A=½A;A�
is the canonical surjection (c.f. [5,8]). It is known

that the map TWA
does not depend on the choice

of A-coordinate systems and that TWA
ð� � �Þ ¼

TWA
ð� � �Þ for all �; � 2 EndAðWAÞ (see [5,8]). For

� 2 SLFðAÞ, we set �WA
¼ � � TWA

: EndAðWAÞ !
k. Then we have the following

Proposition 2.1. Assume that WA is finitely

generated and projective and let � be a symmetric

linear function on A. Then �WA
is a symmetric

linear function on EndAðWAÞ.
3. Miyamoto’s psedotrace maps. In this

section, we show that the map �WA
coincides with

the pseudotrace map defined in [6] if A satisfies

extra conditions.

First we recall the definition of a pseudotrace

map. Let P be a basic symmetric indecomposable

k-algebra We fix a decomposition of the unity 1 by

mutually orthogonal primitive idempotents:

1 ¼ e1 þ e2 þ � � � þ ek:

We also fix � 2 SLFðP Þ with the condition

ha; bi :¼ �ðabÞ is nondegenerate;
�ðeiÞ ¼ 0 for all 1 � i � k:

ð3:1Þ

Note that we have P=JðP Þ ¼ k�ee1 � � � � � k�eek since

P is basic and indecomposable. It is well-known

that feiP j1 � i � kg is the complete list of inde-

composable projective right P -modules.

Since a 2 SocðPP Þ if and only if aJðP Þ ¼ 0 we

see that

haJðP Þ; P i ¼ hJðP Þ; ai ¼ hP; JðP Þai ¼ 0:

The same argument for SocðPP Þ shows SocðPP Þ ¼
SocðPP Þ. Thus SocðPP Þ ¼ SocðPP Þ is a two-sided

ideal and we denote it by SocðP Þ. Then we have

haJðP Þ; P i ¼ ha; JðP Þi for any a 2 P . This identity

shows that SocðP Þ ¼ JðP Þ?. Similarly we have

JðP Þ ¼ SocðP Þ?. Thus the bilinear form h ; i in-

duces a nondegenerate pairing h ; i : SocðP Þ �
P=JðP Þ ! k. Let ff1; f2; . . . ; fkg be a basis of

SocðP Þ which are dual to the basis f�ee1; �ee2; . . . ; �eekg
of P=JðP Þ, that is, hfi; �eeji ¼ hfi; eji ¼ �ij for 1 �
i; j � k.

Lemma 3.1. eifj ¼ fjei ¼ �ijfj for all 1 �
i; j � k.

Proof. Note that eifj 2 SocðP Þ. Thus we have

heifj; �eeki ¼ �ikhfj; �eeki ¼ �ik�kj

so that eifj ¼ �ijfj. �

Lemma 3.2. SocðP Þ � JðP Þ, in particular,

eiSocðP Þej � eiJðP Þej for all 1 � i; j � k.

Proof. Since P ¼
Lk

i¼1 Pei, we see that

SocðP Þ ¼
Lk

i¼1 SocðPeiÞ. Then JðP Þei is the unique

maximal submodule of Pei. Suppose that

SocðPeiÞ is not contained in JðP Þ. We have

Pei ¼ SocðPeiÞ þ JðP Þei since JðP Þei is the unique

maximal submodule of Pei. Then we conclude

SocðPeiÞ ¼ Pei by Nakayama’s lemma. Therefore

we can see ei 2 SocðPeiÞ. By the same argument for

P ¼
Lk

i¼1 eiP , we obtain ei 2 SocðeiP Þ. Thus we

find JðP Þei ¼ eiJðP Þ ¼ 0, which shows that ei is a

central idempotent of P . This contradicts to the

assumption that P is indecomposable. �

Since P ¼
Pk

i¼1 kei þ JðP Þ, we have by

Lemma 3.1

eiPej ¼
kei þ eiJðP Þei; i ¼ j,

eiJðP Þej; i 6¼ j,

�
ð3:2Þ

and

eiSocðP Þej ¼
kfi; i ¼ j,

0; i 6¼ j.

�
ð3:3Þ

Set dij ¼ dimk eiJðP Þej=eiSocðP Þej for all 1 �
i; j � k. Then since the pairing

h ; i : eiJðP Þej=eiSocðP Þej � ejJðP Þei=ejSocðP Þei
! k

is well-defined and nondegenerate, it follows that

dij ¼ dji for all 1 � i; j � k.

Also since eiSocðP Þej � eiJðP Þej � eiPej, (3.2)

and (3.3), we have dimk eiPei ¼ dii þ 2 and

dimk eiPej ¼ dij for i 6¼ j by (3.2) and (3.3).

Lemma 3.3 ([6], Lemma 3.2). The algebra P

has a basis
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� ¼ f�ii0 ; �iidiiþ1; �
ij
sij
j1 � i; j � k; 1 � sij � dijg

satisfying

(a) �ii0 ¼ ei, �
ii
diiþ1 ¼ fi,

(b) ei�
ij
s ej ¼ �ijs ,

(c) h�ijs ; �abdabþ1	ti ¼ �i;b�j;b�s;t,

(d) �ijs �
ji
djiþ1	s ¼ fi,

(e) the space spanned by f�ijt jt 
 sg is eiPei-

invariant.

For 1 � i; j � k, set

�i ¼ f�ijs j1 � j � k; sg; �ij ¼ f�ijs jsg:

Note that �i is a basis of eiP for any 1 � i � k and

�	 fe1; . . . ; ekg is a basis of JðP Þ. We sometimes

denote an element of �ij by �
ij.

Definition 3.4 ([6], Definition 3.6). Assume

thatWP is finitely generated. The moduleWP is said

to be interlocked with � if kerðfiÞ ¼ fw 2 W jwfi ¼ 0g
is equal to

P
�2�	feigW� for all 1 � i � k.

It is obvious that kerðfiÞ �
P

�2�	feigW� since

�fi ¼ 0 for any � 2 �	 feig. In [6], the pseudotrace

map is defined on the endomorphism ring of a finite-

dimensional right P -module which is interlocked

with �. The isomorphism stated in [6, p.68] is more

precisely understood as follows:

Theorem 3.5. Let P be a basic symmetric

indecomposable algebra. Assume that � 2 SLFðP Þ
satisfies the condition (3.1) and WP is finitely

generated. Then WP is interlocked with � if and

only if WP is projective. In particular, if WP is

interlocked with � then the multiplicity of the

indecomposable projective module eiP in WP is

given by dimkWPfi for 1 � i � k.

In order to prove this theorem, we first show

the following lemmas.

Lemma 3.6. Any indecomposable projective

module eiP for 1 � i � k is interlocked with �.

Proof. For eip 2 eiP , suppose eipfi ¼ 0 and

express p as p ¼
P

�2� a�� with a� 2 k. Then 0 ¼
eipfi ¼ ei

P
�2� a��fi ¼ aeifi. Thus p belongs to the

space spanned by �	 feig, which shows eip 2P
�2�	feig eiP�.
For i 6¼ j, we can see eipfj ¼ aejeifj ¼ 0

for all p 2 P . Thus we have kerðfjÞ � eiP ¼P
�2�	fejg eiP�. �

Lemma 3.7. The module WP is interlocked

with � if and only if any direct summand of WP is

interlocked with �.

Proof. Suppose that WP ¼W1 �W2 where W1

and W2 are right P -modules. Then we have

X
�2�	feig

W� ¼
X

�2�	feig
W1�

0@ 1A�
X

�2�	feig
W2�

0@ 1A:ð3:4Þ

By (3.4) and the definition of the module which

interlocked with �, we have the lemma. �

Lemma 3.8. Assume that WP is interlocked

with �. Then

Wei=WJðP Þei ¼� Wfi; wei 7! wfi

for any 1 � i � k.

Proof. The kernel of the map Wei !Wfi,

wei 7! wfi is equal to
P

�2�	feigW�ei ¼WJðP Þei
since WP is interlocked with �. �

Proof of Theorem 3.5. By Lemma 3.6 and

Lemma 3.7, any finite direct sum of indecomposable

projective modules is interlocked with �.

Conversely, suppose that WP is interlocked

with �. By Lemma 3.8, there exists vei such that

veifi 6¼ 0 if dimkWfi 6¼ 0. Then the map

� : eiP !W; eip 7! veieip;

is a P -homomorphism. Suppose kerð�Þ 6¼ 0. Note

that SocðeiP Þ ¼ kfi by Lemma 3.1. Since eiP

has the unique simple submodule SocðeiP Þ
(see [4, Proposition 9.9 (ii)]) we have fi 2 kerð�Þ
and veifi ¼ 0. This is a contradiction. Thus � is

injective.

Since P is a symmetric algebra, any projective

module is also injective (see [4, Proposition 9.9

(iii)]). Therefore � is split and then eiP is a direct

summand ofW , say,W ¼� eiP �W 0. By Lemma 3.5,

W 0 is also interlocked with � and dimkW
0fi ¼

dimkWfi 	 1 since dimk eiPfi ¼ 1. If Wfi ¼ 0 for

all 1 � i � k, then wfi ¼ 0 for all w 2 W and

1 � i � k. Thus we have

W ¼
\k
i¼1

X
�2�	feig

W�

0@ 1A ¼WJðP Þ:

By Nakayama’s lemma, we have W ¼ 0.

Therefore the induction on dimkWfi proves

the theorem. In particular, the multiplicity of eiP in

W is equal to dimkWfi for all 1 � i � k. �

Assume that WP is finitely generated and

projective. Then WP is isomorphic to a finite

direct sum of indecomposable projective mod-

ules:

WP ¼�
Mk
i¼1

nieiP ;ð3:5Þ
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where ni is the multiplicity of eiP , that is,

ni ¼ dimkWfi. We denote the element of WP

corresponding to ei by veij for 1 � i � k and 1 �
j � ni. Note that WP has a basis fveij � j � 2 �i; 1 �
i � k; 1 � j � nig.

Since �ðveij Þ ¼ �ðveuj eiÞ ¼ �ðveij Þei 2 Wei for � 2
EndP ðWP Þ and Lemma 3.3 (b), we have

�ðveij Þ ¼
Xk
s¼1

Xns
t¼1

X
�si2�si

��
si

jt v
es
t �

sið3:6Þ

for 1 � i � k and 1 � j � ni where �
�si

jt 2 k. In [6],

the pseudotrace map tr�WP
on EndP ðWP Þ is defined

by

tr�WP
ð�Þ ¼

Xk
i¼1

Xni
j¼1

�fijj:ð3:7Þ

In order to show that the pseudotrace map

coincides with �WP
, we choose the following P -

coordinate system of WP . Note that �WP
does not

depend on the choice of P -coordinate systems.

Set

�ijðv
es
t �

spÞ ¼ �ip; i ¼ s; j ¼ t,

0; otherwise

�
for 1 � i � k and 1 � j � ni. Then �ij belongs to

HomP ðWP; P Þ for 1 � i � k and 1 � j � ni.

Lemma 3.9. The set fveij ; �ij j 1 � i � k; 1 �
j � nig is a P -coordinate system of WP .

Proof. By the definitions of veij and �ij, we have

veij �
ip ¼ veij �

i
jðv

ei
j �

ipÞ ¼
Pk

s¼1

Pns
t¼1 v

es
t �

s
t ðv

ei
j �

ipÞ.
Since the elements veij �

ip form a basis of WP , we

have shown the lemma. �

Theorem 3.10. Let P be a basic symmetric

algebra. Assume that � 2 SLFðP Þ satisfies the con-

dition (3.1) and that WP is finitely generated and

projective. Then �WP
¼ tr�WP

.

Proof. For � 2 EndP ðWP Þ, one has

�WP
ð�Þ ¼ �

Xk
i¼1

Xni
j¼1

�ij � �ðv
ei
j Þ

 !

¼ �
Xk
i;s¼1

Xni
j¼1

Xns
t¼1

X
�si2�si

�ijð�
�si

jt v
es
t �

siÞ

0@ 1A
¼
Xk
i¼1

Xni
j¼1

X
�ii2�ii

�
�ii

jj �ð�iiÞ

¼
Xk
i¼1

Xni
j¼1

�fijj ¼ tr�WP
ð�Þ

since (3.6) and Lemma 3.3 (c). �

4. The center and symmetric linear func-

tions. In this section, we assume that the

finite-dimensional k-algebra A contains a nonzero

central element � such that ð� 	 rÞsA ¼ 0 and

ð� 	 rÞs	1A 6¼ 0 for some r 2 k and s 2 Z>0.

Set K ¼ fa 2 A j ð� 	 rÞa ¼ 0g. Note that K is

a two-sided ideal of A. Let � :MA ! NA be an A-

module homomorphism. Then M=MK is an A=K-

module and the map b�� :M=MK ! N=NK defined

by b��ðmÞ ¼ �ðmÞ is an A=K-module homomorphism

where m is the image of m under the canonical map

M !M=MK. Assume thatWA is finitely generated

and projective and let fui; �igni¼1 be an A-coordinate

system of WA. Then fui; b��igni¼1 is an A=K-coordi-

nate system of the right A=K-module W=WK.

Let � be a symmetric linear function on A.

Then �0ðaÞ ¼ �ðð� 	 rÞaÞ for any a 2 A=K is well-

defined and symmetric on A=K.

Proposition 4.1 ([6], Proposition 3.8). Assume

thatWA is finitely generated and projective. Let � be a

symmetric linear function on A. Then

�WA
ð� � ð� 	 rÞÞ ¼ �0W=WKðb��Þ

for all � 2 EndAðWAÞ where � 	 r is identified as an

element of EndAðWAÞ.
Proof. Let fui; �igni¼1 be an A-coordinate sys-

tem of WA. Then we have

�0W=WKðb��Þ ¼ �0
Xn
i¼1

b��i � b��ðuiÞ
 !

¼ � ð� 	 rÞ
Xn
i¼1

�i � �ðuiÞ
 !

¼ �
Xn
i¼1

�i � �ðuið� 	 rÞÞ
 !

¼ �WA
ð� � ð� 	 rÞÞ:

�

5. Basic algebras and symmetric linear

functions. Let

1 ¼
Xn
i¼1

Xni
j¼1

eijð5:1Þ

be a decomposition of the unity 1 by mutually

orthogonal primitive idempotents where eijA ¼�
eikA and eijA 6¼� ek‘A for i 6¼ k. Set ei ¼ ei1 for 1 �
i � n and e ¼

Pn
i¼1 ei. Then k-algebra eAe with

the unity e is called a basic algebra associated with

A. Then Ae is ðA; eAeÞ-bimodule. Let ‘ : A!
EndeAeðAeeAeÞ and r : eAe! EndAðAAeÞ be maps
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defined by ‘ðaÞðbeÞ ¼ abe for all a; b 2 A and

rðeaeÞðbeÞ ¼ beae for all a; b 2 A.

Lemma 5.1 ([1], Proposition 4.15, Theorem

17.8).

(a) The map r is an anti-isomorphism of algebras.

(b) The map ‘ is an isomorphism of algebras

By Lemma 5.1, an element a 2 A is identified

as an element in EndeAeðAeÞ and an element eae 2
eAe is identified as an element in EndAðAeÞ.

Remark 5.2. By Lemma 5.1, we have two

linear maps

ð	ÞAeeAe : SLFðeAeÞ ! SLFðAÞ;
ð	Þ

AAe
: SLFðAÞ ! SLFððeAeÞopÞ:

Since SLFðeAeÞ ¼ SLFððeAeÞopÞ, the second map is

in fact a map SLFðAÞ ! SLFðeAeÞ.
By (5.1), we have

Ae ¼
Mn
i¼1

Mni
j¼1

eijAe:ð5:2Þ

The following fact is well-known.

Lemma 5.3. Let e and f be idempotents

of A. Then the following assertions are equiv-

alent.

(a) Ae ¼� Af.

(b) eA ¼� fA.

(c) There exist p 2 eAf and q 2 fAe such that

pq ¼ e and qp ¼ f.

Lemma 5.4. For 1 � i � n and 1 � j � ni,

we have eiAe ¼� eijAe as right eAe-modules.

Proof. By Lemma 5.3 and the fact eiA ¼� eijA,

there exist pij 2 eijAei and qij 2 eiAeij such that

pijqij ¼ eij and qijpij ¼ ei. Then the maps

� : eijAe! eiAe defined by �ðeijaeÞ ¼ qijae and

� : eiAe! eijAe defined by �ðeiaeÞ ¼ pijae are

eAe-homomorphisms and are inverse each other.

Thus we have shown the lemma. �

For any ae 2 Ae, it is not difficult to check

that ae ¼
Pn

i¼1 �iðaÞei where �iðaÞ ¼ aei. Thus

fei; �igni¼1 is an A-coordinate system of AAe.

By the proof of Lemma 5.1, we can see that

eijAeeAe is generated by pij 2 eijAei such that

pijqij ¼ eij and qijpij ¼ ei for some qij 2 eiAeij. Note

that we can choose pi1 ¼ qi1 ¼ ei1 ¼ ei. For any

ae 2 Ae, we set �ijðeaÞ ¼ qijae 2 eAe for all

1 � i � n and 1 � j � ni. Then we have �ij 2
HomeAeðAe; eAeÞ and

Pn
i¼1

Pni
j¼1 pij�ijðaeÞ ¼Pn

i¼1

Pni
j¼1 eijðaeÞ ¼ ae by (5.1). Thus fpij; �ijj1 �

i � n; 1 � j � nig is an eAe-coordinate system of

AeeAe. In the following, we fix the A-coordinate

system fei; �igni¼1 of AAe and the eAe-coordinate

system fpij; �ijj1 � i � n; 1 � j � nig of AeeAe.

Lemma 5.5.

(a) Let � be a symmetric linear function on A.

Then �
AAeðeaeÞ ¼ �ðeaeÞ for all eae 2 eAe.

(b) Let  be a symmetric linear function on eAe.

Then  AeeAeðaÞ ¼  ð
Pn

i¼1

Pni
j¼1 qijapijÞ for all

a 2 A.

Proof. Since �
AAeðeaeÞ ¼

Pn
i¼1 �ð�iðeieaeÞÞ ¼Pn

i¼1 �ðeiaeiÞ and � is symmetric, we obtain

�ðeiAejÞ ¼ �ðejeiAejÞ ¼ 0 for i 6¼ j, which shows

the first assertion.

The second assertion is proved as follows:

 AeeAeðaÞ ¼
Xn
i¼1

Xni
j¼1

 ð�ijðapijÞÞ

¼
Xn
i¼1

Xni
j¼1

 ðqijapijÞ:

�

Theorem 5.6.

(a) Let � be a symmetric linear function on A.

Then ð�
AAeÞAeeAeðaÞ ¼ �ðaÞ for all a 2 A.

(b) Let  be a symmetric linear function on eAe.

Then we have ð AeeAeÞAAeðeaeÞ ¼  ðeaeÞ for all

eae 2 eAe.

(c) The space of symmetric linear functions on A

and the one of eAe are isomorphic as vector

spaces.

Proof. By Lemma 5.5, we have

ð�
AAeÞAeeAeðaÞ ¼ ð�Þ

AAe

Xn
i¼1

Xni
j¼1

qijapij

 !

¼ �
Xn
i¼1

Xni
j¼1

qijapij

 !

¼ �
Xn
i¼1

Xni
j¼1

pijqija

 !

¼ �
Xn
i¼1

Xni
j¼1

eija

 !
¼ �ðaÞ

which shows (a).

By Lemma 5.5, we have

ð AeeAeÞAAeðeaeÞ ¼  AeeAeðeaeÞ

¼  
Xn
i¼1

Xni
j¼1

qijeaepij

 !
¼  ðeaeÞ;

since qi1 ¼ pi1 ¼ ei.

No. 7] Symmetric linear functions and pseudotrace maps 123



Hence we can see that two linear maps ð	Þ
AAe

:

SLFðAÞ ! SLFðeAeÞ and ð	ÞAeeAe : SLFðeAeÞ !
SLFðAÞ are inverse each other, which shows the

last assertion. �

Remark 5.7. The statement (a) of Theorem

5.6 for a 2 SocðAÞ is found in [6, Lemma 3.9]. The

statement (c) of Theorem 5.6 is well-known (see

[7, 6.1]).

For � 2 SLFðAÞ, we set Radð�Þ ¼ fa 2 A j
�ðAaÞ ¼ 0g. Then Radð�Þ is a two-sided ideal of A

and � induces a symmetric linear function on

A=Radð�Þ. Note that A=Radð�Þ is a symmetric

algebra since � is well-defined on A=Radð�Þ and

induces a nondegenerate symmetric associative

bilinear form on A=Radð�Þ.
Let A ¼ A1 �A2 � � � � � A‘ be a decomposition

into two-sided ideals of A. For any � 2 SLFðAÞ, we
have � ¼ �1 þ �2 þ � � � þ �‘ where �i ¼ �jAi

. Note

that �i 2 SLFðAiÞ. If �ðaAÞ ¼ 0 for some a 2 A,

then we can see that �iðaAiÞ � �ðaAÞ ¼ 0.
Theorem 5.8. Let � be a symmetric linear

function on A and � a central element of A. Assume

that there exists s 2 Z>0 such that �ðð� 	 rÞsaÞ ¼ 0

for any a 2 A and that A ¼ A1 � A2 � � � � � A‘ is a

decomposition of A into two-sided ideals. Then

there exist symmetric linear functions �i 2 SLFðAiÞ,
basic symmetric algebras Pi of Bi ¼ A=Radð�iÞ and
ðA;PiÞ-bimodules Mi satisfying ð� 	 rÞsMi ¼ 0.
Moreover,

�ðbÞ ¼
X‘
i¼1

ðð�iÞBiMi
ÞðMiÞPi

ðbÞ

for all b 2 A where b in the right hand side is viewed

as a linear map defined by the left action of b 2 A on

each ðA;PiÞ-bimodule Mi.

Proof. Set Bi ¼ A=Radð�iÞ. Since Radð�iÞ �
Aj for j 6¼ i, we can see that Bi ¼ Ai=Radð�iÞ. We

first note that the symmetric linear function �i on

Bi is well-defined and that Bi is naturally a left A-

module. Let Pi ¼ eiðA=Radð�iÞÞei be the basic

algebra of A=Radð�iÞ where ei is an idempotent of

Bi. The basic algebra Pi is a symmetric algebra by

[7, 10.1]. Then we set Mi ¼ ðA=Radð�iÞÞei which is

an ðA;PiÞ-bimodule. By the argument before the

statement of this theorem, we can see that

ð� 	 rÞs 2 Radð�iÞ and thus ð� 	 rÞsMi ¼ 0. Note

that the left action of a 2 A defines a right Pi-

module endomorphism of Mi. By Lemma 5.5,

we have �iðbÞ ¼ �iðbÞ ¼ ðð�iÞBiMi
ÞðMiÞPi

ðbÞ ¼
ðð�iÞBiMi

ÞðMiÞPi
ðbÞ for all b 2 Ai, which shows the

theorem. �

Remark 5.9. This theorem is found in

[6, Theorem 3.10]. In the proof of [6, Theorem 3.10],

it is shown that a symmetric linear function on

A may be written as a sum of pseudotrace

maps even if A is indecomposable by using the

fact ð�
AAeÞAeeAeðaÞ ¼ �ðaÞ for all a 2 SocðAÞ (see

[6, Lemma 3.9]) in our notation. However, since

ð�
AAeÞAeeAeðaÞ ¼ �ðaÞ for all a 2 A, any symmetric

linear function can be written by only one

symmetric linear function on the endomor-

phism ring of the ðA;P Þ-bimodule if A is indecom-

posable.
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