Some remarks on symmetric linear functions and pseudotrace maps

By Yusuke Arike
Department of Mathematics, Graduate School of Science, Osaka University, Machikaneyamacho 1-1, Toyonaka, Osaka 560-0043, Japan

(Communicated by Shigefumi Mori, M.J.A., June 14, 2010)

Abstract

Let A be a finite-dimensional associative algebra and ϕ a symmetric linear function on A. In this note, we will show that the pseudotrace maps defined in [6] are obtained as special cases of well-known symmetric linear functions on the endomorphism rings of projective modules. As an application of our approach, we will give proofs of several propositions and theorems in [6] for an arbitrary finite-dimensional associative algebra.

Key words: Symmetric algebras; symmetric linear functions; pseudotrace maps.

1. Introduction. In this note, we work on an algebraically closed field \mathbf{k} of characteristic 0 . Let A be a finite-dimensional associative \mathbf{k}-algebra. A linear function ϕ on A is said to be symmetric if $\phi(a b)=\phi(b a)$ for all $a, b \in A$. We denote the space of symmetric linear functions on A by $\operatorname{SLF}(A)$.

In [6], Miyamoto introduces a notion of a pseudotrace map on a basic symmetric k-algebra P in order to construct pseudotrace functions of logarithmic modules of vertex operator algebras satisfying some finiteness condition called C_{2}-condition. Let ϕ be a symmetric linear function on P which induces a nondegenerate bilinear form $P \times P \rightarrow \mathbf{k}$. Then the pseudotrace map $\operatorname{tr}_{W}^{\phi}$ is a symmetric linear function on the endomorphism ring of a finite-dimensional right P-module W called interlocked with ϕ. As it is implicitly mentioned in [6] and it is proved in this note, a finitedimensional right P-module which is interlocked with ϕ is in fact a direct sum of indecomposable projective modules.

For an arbitrary finite-dimensional k-algebra A, a finitely generated projective right A-module W has an A-coordinate system of W, that is, $\left\{u_{i}\right\}_{i=1}^{n} \subset$ W and $\left\{\alpha_{i}\right\}_{i=1}^{n} \subset \operatorname{Hom}_{A}(W, A)$ such that $w=$ $\sum_{i=1}^{n} u_{i} \alpha_{i}(w)$ for all $w \in W$ (see [2]). For any symmetric linear function ϕ on A, we can define a symmetric linear function on $\operatorname{End}_{A}(W)$ by

$$
\phi_{W}(\alpha)=\phi\left(\sum_{i=1}^{n} \alpha_{i} \circ \alpha\left(u_{i}\right)\right)
$$

[^0]for all $\alpha \in \operatorname{End}_{A}(W)$ (c.f. [3]). In this note, we show that the symmetric linear function $\operatorname{tr}_{W}^{\phi}$ coincides with the pseudotrace map when $A=P$ and ϕ induces a nondegenerate symmetric associative bilinear form on P. We also prove that a right P module W is interlocked with ϕ if and only if W is projective. Then we can prove several propositions and theorems in [6] for arbitrary finite-dimensional \mathbf{k}-algebras.

This note is organized as follows: In section 2, we recall a construction of a symmetric linear function ϕ_{W} on the endomorphism ring of finitely generated projective modules W from $\phi \in \operatorname{SLF}(A)$. In section 3, we assume that P is indecomposable, basic and symmetric and $\phi \in \operatorname{SLF}(P)$ satisfies some conditions (see section 3). We recall a notion of a right P-module W which is interlocked with ϕ and a notion of a pseudotrace map $\operatorname{tr}_{W}^{\phi}$ defined in [6]. We show that W is interlocked with ϕ if and only if W is projective. By using this fact, for any indecomposable projective module W, we define ϕ_{W} and show that ϕ_{W} coincides with $\operatorname{tr}_{W}^{\phi}$. In section 4 and 5 , we prove several propositions and theorems for pseudotrace maps in [6] by using ϕ_{W} for arbitrary finite-dimensional k -algebras.
2. Projective modules and symmetric linear functions. Let A be a finite-dimensional associative \mathbf{k}-algebra. We denote a left (resp. right) A-module M by ${ }_{A} M\left(\operatorname{resp} . M_{A}\right)$.

In this section, we recall a notion of a symmetric linear function on the endomorphism ring of a finitely generated projective right A-module (c.f. [3]).

Assume that W_{A} is finitely generated. Then W_{A} is projective if and only if there exist subsets $\left\{u_{i}\right\}_{i=1}^{n} \subset W_{A}$ and $\left\{\alpha_{i}\right\}_{i=1}^{n} \subset \operatorname{Hom}_{A}\left(W_{A}, A\right)$ such that

$$
w=\sum_{i=1}^{n} u_{i} \alpha_{i}(w)
$$

for all $w \in W_{A} \quad$ (see [2], chapter II, §2.6, Proposition 12). The set $\left\{u_{i}, \alpha_{i}\right\}_{i=1}^{n}$ is called an A coordinate system of W_{A}.

Assume that W_{A} is finitely generated and projective. Let $\left\{u_{i}, \alpha_{i}\right\}_{i=1}^{n}$ be an A-coordinate system of W_{A}. Then we define a map

$$
T_{W_{A}}: \operatorname{End}_{A}\left(W_{A}\right) \rightarrow A /[A, A]
$$

by $\alpha \mapsto \pi\left(\sum_{i=1}^{n} \alpha_{i} \circ \alpha\left(u_{i}\right)\right)$ where $\pi: A \rightarrow A /[A, A]$ is the canonical surjection (c.f. [5,8]). It is known that the map $T_{W_{A}}$ does not depend on the choice of A-coordinate systems and that $T_{W_{A}}(\alpha \circ \beta)=$ $T_{W_{A}}(\beta \circ \alpha)$ for all $\alpha, \beta \in \operatorname{End}_{A}\left(W_{A}\right)$ (see [5,8]). For $\phi \in \operatorname{SLF}(A)$, we set $\phi_{W_{A}}=\phi \circ T_{W_{A}}: \operatorname{End}_{A}\left(W_{A}\right) \rightarrow$ k. Then we have the following

Proposition 2.1. Assume that W_{A} is finitely generated and projective and let ϕ be a symmetric linear function on A. Then $\phi_{W_{A}}$ is a symmetric linear function on $\operatorname{End}_{A}\left(W_{A}\right)$.
3. Miyamoto's psedotrace maps. In this section, we show that the map $\phi_{W_{A}}$ coincides with the pseudotrace map defined in [6] if A satisfies extra conditions.

First we recall the definition of a pseudotrace map. Let P be a basic symmetric indecomposable \mathbf{k}-algebra We fix a decomposition of the unity 1 by mutually orthogonal primitive idempotents:

$$
1=e_{1}+e_{2}+\cdots+e_{k}
$$

We also fix $\phi \in \operatorname{SLF}(P)$ with the condition

$$
\begin{align*}
& \langle a, b\rangle:=\phi(a b) \text { is nondegenerate, } \tag{3.1}\\
& \phi\left(e_{i}\right)=0 \text { for all } 1 \leq i \leq k
\end{align*}
$$

Note that we have $P / J(P)=\mathbf{k} \bar{e}_{1} \oplus \cdots \oplus \mathbf{k} \bar{e}_{k}$ since P is basic and indecomposable. It is well-known that $\left\{e_{i} P \mid 1 \leq i \leq k\right\}$ is the complete list of indecomposable projective right P-modules.

Since $a \in \operatorname{Soc}\left(P_{P}\right)$ if and only if $a J(P)=0$ we see that

$$
\langle a J(P), P\rangle=\langle J(P), a\rangle=\langle P, J(P) a\rangle=0
$$

The same argument for $\operatorname{Soc}\left({ }_{P} P\right)$ shows $\operatorname{Soc}\left(P_{P}\right)=$ $\operatorname{Soc}\left({ }_{P} P\right)$. Thus $\operatorname{Soc}\left(P_{P}\right)=\operatorname{Soc}\left({ }_{P} P\right)$ is a two-sided
ideal and we denote it by $\operatorname{Soc}(P)$. Then we have $\langle a J(P), P\rangle=\langle a, J(P)\rangle$ for any $a \in P$. This identity shows that $\operatorname{Soc}(P)=J(P)^{\perp}$. Similarly we have $J(P)=\operatorname{Soc}(P)^{\perp}$. Thus the bilinear form \langle,$\rangle in-$ duces a nondegenerate pairing $\langle\rangle:, \operatorname{Soc}(P) \times$ $P / J(P) \rightarrow \mathbf{k}$. Let $\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}$ be a basis of $\operatorname{Soc}(P)$ which are dual to the basis $\left\{\bar{e}_{1}, \bar{e}_{2}, \ldots, \bar{e}_{k}\right\}$ of $P / J(P)$, that is, $\left\langle f_{i}, \bar{e}_{j}\right\rangle=\left\langle f_{i}, e_{j}\right\rangle=\delta_{i j}$ for $1 \leq$ $i, j \leq k$.

Lemma 3.1. $e_{i} f_{j}=f_{j} e_{i}=\delta_{i j} f_{j}$ for all $1 \leq$ $i, j \leq k$.

Proof. Note that $e_{i} f_{j} \in \operatorname{Soc}(P)$. Thus we have

$$
\left\langle e_{i} f_{j}, \bar{e}_{k}\right\rangle=\delta_{i k}\left\langle f_{j}, \bar{e}_{k}\right\rangle=\delta_{i k} \delta_{k j}
$$

so that $e_{i} f_{j}=\delta_{i j} f_{j}$.
Lemma 3.2. $\operatorname{Soc}(P) \subseteq J(P)$, in particular, $e_{i} \operatorname{Soc}(P) e_{j} \subseteq e_{i} J(P) e_{j}$ for all $1 \leq i, j \leq k$.

Proof. Since $P=\bigoplus_{i=1}^{k} P e_{i}$, we see that $\operatorname{Soc}(P)=\bigoplus_{i=1}^{k} \operatorname{Soc}\left(P e_{i}\right)$. Then $J(P) e_{i}$ is the unique maximal submodule of $P e_{i}$. Suppose that $\operatorname{Soc}\left(P e_{i}\right)$ is not contained in $J(P)$. We have $P e_{i}=\operatorname{Soc}\left(P e_{i}\right)+J(P) e_{i}$ since $J(P) e_{i}$ is the unique maximal submodule of $P e_{i}$. Then we conclude $\operatorname{Soc}\left(P e_{i}\right)=P e_{i}$ by Nakayama's lemma. Therefore we can see $e_{i} \in \operatorname{Soc}\left(P e_{i}\right)$. By the same argument for $P=\bigoplus_{i=1}^{k} e_{i} P$, we obtain $e_{i} \in \operatorname{Soc}\left(e_{i} P\right)$. Thus we find $J(P) e_{i}=e_{i} J(P)=0$, which shows that e_{i} is a central idempotent of P. This contradicts to the assumption that P is indecomposable.

Since $P=\sum_{i=1}^{k} \mathbf{k} e_{i}+J(P), \quad$ we have by Lemma 3.1

$$
e_{i} P e_{j}= \begin{cases}\mathbf{k} e_{i}+e_{i} J(P) e_{i}, & i=j, \tag{3.2}\\ e_{i} J(P) e_{j}, & i \neq j,\end{cases}
$$

and

$$
e_{i} \operatorname{Soc}(P) e_{j}= \begin{cases}\mathbf{k} f_{i}, & i=j \tag{3.3}\\ 0, & i \neq j\end{cases}
$$

Set $\quad d_{i j}=\operatorname{dim}_{\mathbf{k}} e_{i} J(P) e_{j} / e_{i} \operatorname{Soc}(P) e_{j} \quad$ for \quad all $\quad 1 \leq$ $i, j \leq k$. Then since the pairing

$$
\begin{gathered}
\langle,\rangle: e_{i} J(P) e_{j} / e_{i} \operatorname{Soc}(P) e_{j} \times e_{j} J(P) e_{i} / e_{j} \operatorname{Soc}(P) e_{i} \\
\rightarrow \mathbf{k}
\end{gathered}
$$

is well-defined and nondegenerate, it follows that $d_{i j}=d_{j i}$ for all $1 \leq i, j \leq k$.

Also since $e_{i} \operatorname{Soc}(P) e_{j} \subseteq e_{i} J(P) e_{j} \subseteq e_{i} P e_{j}$, (3.2) and (3.3), we have $\operatorname{dim}_{\mathbf{k}} e_{i} P e_{i}=d_{i i}+2$ and $\operatorname{dim}_{\mathbf{k}} e_{i} P e_{j}=d_{i j}$ for $i \neq j$ by (3.2) and (3.3).

Lemma 3.3 ([6], Lemma 3.2). The algebra P has a basis

$$
\Omega=\left\{\rho_{0}^{i i}, \rho_{d_{i i}+1}^{i i}, \rho_{s_{i j}}^{i j} \mid 1 \leq i, j \leq k, 1 \leq s_{i j} \leq d_{i j}\right\}
$$

$$
\begin{equation*}
\sum_{\rho \in \Omega-\left\{e_{i}\right\}} W \rho=\left(\sum_{\rho \in \Omega-\left\{e_{i}\right\}} W_{1} \rho\right) \oplus\left(\sum_{\rho \in \Omega-\left\{e_{i}\right\}} W_{2} \rho\right) . \tag{3.4}
\end{equation*}
$$

By (3.4) and the definition of the module which interlocked with ϕ, we have the lemma.

Lemma 3.8. Assume that W_{P} is interlocked with ϕ. Then

$$
W e_{i} / W J(P) e_{i} \cong W f_{i}, \overline{w e_{i}} \mapsto w f_{i}
$$

for any $1 \leq i \leq k$.
Proof. The kernel of the map $W e_{i} \rightarrow W f_{i}$, $w e_{i} \mapsto w f_{i}$ is equal to $\sum_{\rho \in \Omega-\left\{e_{i}\right\}} W \rho e_{i}=W J(P) e_{i}$ since W_{P} is interlocked with ϕ.

Proof of Theorem 3.5. By Lemma 3.6 and Lemma 3.7, any finite direct sum of indecomposable projective modules is interlocked with ϕ.

Conversely, suppose that W_{P} is interlocked with ϕ. By Lemma 3.8, there exists $v^{e_{i}}$ such that $v^{e_{i}} f_{i} \neq 0$ if $\operatorname{dim}_{\mathbf{k}} W f_{i} \neq 0$. Then the map

$$
\theta: e_{i} P \rightarrow W, e_{i} p \mapsto v^{e_{i}} e_{i} p
$$

is a P-homomorphism. Suppose $\operatorname{ker}(\theta) \neq 0$. Note that $\operatorname{Soc}\left(e_{i} P\right)=\mathbf{k} f_{i}$ by Lemma 3.1. Since $e_{i} P$ has the unique simple submodule $\operatorname{Soc}\left(e_{i} P\right)$ (see [4, Proposition 9.9 (ii)]) we have $f_{i} \in \operatorname{ker}(\theta)$ and $v^{e_{i}} f_{i}=0$. This is a contradiction. Thus θ is injective.

Since P is a symmetric algebra, any projective module is also injective (see [4, Proposition 9.9 (iii)]). Therefore θ is split and then $e_{i} P$ is a direct summand of W, say, $W \cong e_{i} P \oplus W^{\prime}$. By Lemma 3.5, W^{\prime} is also interlocked with ϕ and $\operatorname{dim}_{\mathbf{k}} W^{\prime} f_{i}=$ $\operatorname{dim}_{\mathbf{k}} W f_{i}-1$ since $\operatorname{dim}_{\mathbf{k}} e_{i} P f_{i}=1$. If $W f_{i}=0$ for all $1 \leq i \leq k$, then $w f_{i}=0$ for all $w \in W$ and $1 \leq i \leq k$. Thus we have

$$
W=\bigcap_{i=1}^{k}\left(\sum_{\rho \in \Omega-\left\{e_{i}\right\}} W \rho\right)=W J(P)
$$

By Nakayama's lemma, we have $W=0$.
Therefore the induction on $\operatorname{dim}_{\mathbf{k}} W f_{i}$ proves the theorem. In particular, the multiplicity of $e_{i} P$ in W is equal to $\operatorname{dim}_{\mathbf{k}} W f_{i}$ for all $1 \leq i \leq k$.

Assume that W_{P} is finitely generated and projective. Then W_{P} is isomorphic to a finite direct sum of indecomposable projective modules:

$$
\begin{equation*}
W_{P} \cong \bigoplus_{i=1}^{k} n_{i} e_{i} P \tag{3.5}
\end{equation*}
$$

where n_{i} is the multiplicity of $e_{i} P$, that is, $n_{i}=\operatorname{dim}_{\mathbf{k}} W f_{i}$. We denote the element of W_{P} corresponding to e_{i} by $v_{j}^{e_{i}}$ for $1 \leq i \leq k$ and $1 \leq$ $j \leq n_{i}$. Note that W_{P} has a basis $\left\{v_{j}^{e_{i}} \rho \mid \rho \in \Omega_{i}, 1 \leq\right.$ $\left.i \leq k, 1 \leq j \leq n_{i}\right\}$.

Since $\alpha\left(v_{j}^{e_{i}}\right)=\alpha\left(v_{j}^{e_{u}} e_{i}\right)=\alpha\left(v_{j}^{e_{i}}\right) e_{i} \in W e_{i}$ for $\alpha \in$ $\operatorname{End}_{P}\left(W_{P}\right)$ and Lemma 3.3 (b), we have

$$
\begin{equation*}
\alpha\left(v_{j}^{e_{i}}\right)=\sum_{s=1}^{k} \sum_{t=1}^{n_{s}} \sum_{\rho^{s i} \in \Omega_{s i}} \alpha_{j t}^{\rho^{s i}} v_{t}^{e_{s}} \rho^{s i} \tag{3.6}
\end{equation*}
$$

for $1 \leq i \leq k$ and $1 \leq j \leq n_{i}$ where $\alpha_{j t}^{\rho^{s i}} \in \mathbf{k}$. In [6], the pseudotrace map $\operatorname{tr}_{W_{P}}^{\phi}$ on $\operatorname{End}_{P}\left(W_{P}\right)$ is defined by

$$
\begin{equation*}
\operatorname{tr}_{W_{P}}^{\phi}(\alpha)=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} \alpha_{j j}^{f_{i}} \tag{3.7}
\end{equation*}
$$

In order to show that the pseudotrace map coincides with $\phi_{W_{P}}$, we choose the following P coordinate system of W_{P}. Note that $\phi_{W_{P}}$ does not depend on the choice of P-coordinate systems.

Set

$$
\alpha_{j}^{i}\left(v_{t}^{e_{s}} \rho^{s p}\right)= \begin{cases}\rho^{i p}, & i=s, j=t \\ 0, & \text { otherwise }\end{cases}
$$

for $1 \leq i \leq k$ and $1 \leq j \leq n_{i}$. Then α_{j}^{i} belongs to $\operatorname{Hom}_{P}\left(W_{P}, P\right)$ for $1 \leq i \leq k$ and $1 \leq j \leq n_{i}$.

Lemma 3.9. The set $\left\{v_{j}^{e_{i}}, \alpha_{j}^{i} \mid 1 \leq i \leq k, 1 \leq\right.$ $\left.j \leq n_{i}\right\}$ is a P-coordinate system of W_{P}.

Proof. By the definitions of $v_{j}^{e_{i}}$ and α_{j}^{i}, we have $v_{j}^{e_{i}} \rho^{i p}=v_{j}^{e_{i}} \alpha_{j}^{i}\left(v_{j}^{e_{i}} \rho^{i p}\right)=\sum_{s=1}^{k} \sum_{t=1}^{n_{s}} v_{t}^{e_{s}} \alpha_{t}^{s}\left(v_{j}^{e_{i}} \rho^{i p}\right)$.
Since the elements $v_{j}^{e_{i}} \rho^{i p}$ form a basis of W_{P}, we have shown the lemma.

Theorem 3.10. Let P be a basic symmetric algebra. Assume that $\phi \in \operatorname{SLF}(P)$ satisfies the condition (3.1) and that W_{P} is finitely generated and projective. Then $\phi_{W_{P}}=\operatorname{tr}_{W_{P}}^{\phi}$.

Proof. For $\alpha \in \operatorname{End}_{P}\left(W_{P}\right)$, one has

$$
\begin{aligned}
\phi_{W_{P}}(\alpha) & =\phi\left(\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} \alpha_{j}^{i} \circ \alpha\left(v_{j}^{e_{i}}\right)\right) \\
& =\phi\left(\sum_{i, s=1}^{k} \sum_{j=1}^{n_{i}} \sum_{t=1}^{n_{s}} \sum_{\rho^{s i} \in \Omega_{s i}} \alpha_{j}^{i}\left(\alpha_{j t}^{\rho^{s i}} v_{t}^{e_{s}} \rho^{s i}\right)\right) \\
& =\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} \sum_{\rho^{i i} \in \Omega_{i i}} \alpha_{j j}^{\rho_{j i}} \phi\left(\rho^{i i}\right) \\
& =\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} \alpha_{j j}^{f_{i}}=\operatorname{tr}_{W_{P}}^{\phi}(\alpha)
\end{aligned}
$$

since (3.6) and Lemma 3.3 (c).
4. The center and symmetric linear functions. In this section, we assume that the finite-dimensional \mathbf{k}-algebra A contains a nonzero central element ν such that $(\nu-r)^{s} A=0$ and $(\nu-r)^{s-1} A \neq 0$ for some $r \in \mathbf{k}$ and $s \in \mathbf{Z}_{>0}$.

Set $\mathcal{K}=\{a \in A \mid(\nu-r) a=0\}$. Note that \mathcal{K} is a two-sided ideal of A. Let $\alpha: M_{A} \rightarrow N_{A}$ be an A module homomorphism. Then $M / M \mathcal{K}$ is an A / \mathcal{K} module and the map $\widehat{\alpha}: M / M \mathcal{K} \rightarrow N / N \mathcal{K}$ defined by $\widehat{\alpha}(\bar{m})=\overline{\alpha(m)}$ is an A / \mathcal{K}-module homomorphism where \bar{m} is the image of m under the canonical map $M \rightarrow M / M \mathcal{K}$. Assume that W_{A} is finitely generated and projective and let $\left\{u_{i}, \alpha_{i}\right\}_{i=1}^{n}$ be an A-coordinate system of W_{A}. Then $\left\{\bar{u}_{i}, \widehat{\alpha}_{i}\right\}_{i=1}^{n}$ is an A / \mathcal{K}-coordinate system of the right A / \mathcal{K}-module $W / W \mathcal{K}$.

Let ϕ be a symmetric linear function on A. Then $\phi^{\prime}(\bar{a})=\phi((\nu-r) a)$ for any $\bar{a} \in A / \mathcal{K}$ is welldefined and symmetric on A / \mathcal{K}.

Proposition 4.1 ([6], Proposition 3.8). Assume that W_{A} is finitely generated and projective. Let ϕ be a symmetric linear function on A. Then

$$
\phi_{W_{A}}(\alpha \circ(\nu-r))=\phi_{W / W \mathcal{K}}^{\prime}(\widehat{\alpha})
$$

for all $\alpha \in \operatorname{End}_{A}\left(W_{A}\right)$ where $\nu-r$ is identified as an element of $\operatorname{End}_{A}\left(W_{A}\right)$.

Proof. Let $\left\{u_{i}, \alpha_{i}\right\}_{i=1}^{n}$ be an A-coordinate system of W_{A}. Then we have

$$
\begin{aligned}
\phi_{W / W \mathcal{K}}^{\prime}(\widehat{\alpha}) & =\phi^{\prime}\left(\sum_{i=1}^{n} \widehat{\alpha}_{i} \circ \widehat{\alpha}\left(\bar{u}_{i}\right)\right) \\
& =\phi\left((\nu-r) \sum_{i=1}^{n} \alpha_{i} \circ \alpha\left(u_{i}\right)\right) \\
& =\phi\left(\sum_{i=1}^{n} \alpha_{i} \circ \alpha\left(u_{i}(\nu-r)\right)\right) \\
& =\phi_{W_{A}}(\alpha \circ(\nu-r)) .
\end{aligned}
$$

5. Basic algebras and symmetric linear functions. Let

$$
\begin{equation*}
1=\sum_{i=1}^{n} \sum_{j=1}^{n_{i}} e_{i j} \tag{5.1}
\end{equation*}
$$

be a decomposition of the unity 1 by mutually orthogonal primitive idempotents where $e_{i j} A \cong$ $e_{i k} A$ and $e_{i j} A \not \not e_{k \ell} A$ for $i \neq k$. Set $e_{i}=e_{i 1}$ for $1 \leq$ $i \leq n$ and $e=\sum_{i=1}^{n} e_{i}$. Then k-algebra $e A e$ with the unity e is called a basic algebra associated with A. Then $A e$ is $(A, e A e)$-bimodule. Let $\ell: A \rightarrow$ $\operatorname{End}_{e A e}\left(A e_{e A e}\right)$ and $r: e A e \rightarrow \operatorname{End}_{A}\left({ }_{A} A e\right)$ be maps
defined by $\ell(a)(b e)=a b e$ for all $a, b \in A$ and $r(e a e)(b e)=b e a e$ for all $a, b \in A$.

Lemma 5.1 ([1], Proposition 4.15, Theorem 17.8).
(a) The map r is an anti-isomorphism of algebras.
(b) The map ℓ is an isomorphism of algebras

By Lemma 5.1, an element $a \in A$ is identified as an element in $\operatorname{End}_{e A e}(A e)$ and an element eae \in $e A e$ is identified as an element in $\operatorname{End}_{A}(A e)$.

Remark 5.2. By Lemma 5.1, we have two linear maps

$$
\begin{aligned}
& (-)_{A e_{e A e}}: \operatorname{SLF}(e A e) \rightarrow \operatorname{SLF}(A) \\
& (-)_{A A e}: \operatorname{SLF}(A) \rightarrow \operatorname{SLF}\left((e A e)^{\mathrm{op}}\right)
\end{aligned}
$$

Since $\operatorname{SLF}(e A e)=\operatorname{SLF}\left((e A e)^{\mathrm{op}}\right)$, the second map is in fact a map $\operatorname{SLF}(A) \rightarrow \operatorname{SLF}(e A e)$.

By (5.1), we have

$$
\begin{equation*}
A e=\bigoplus_{i=1}^{n} \bigoplus_{j=1}^{n_{i}} e_{i j} A e \tag{5.2}
\end{equation*}
$$

The following fact is well-known.
Lemma 5.3. Let e and f be idempotents of A. Then the following assertions are equivalent.
(a) $A e \cong A f$.
(b) $e A \cong f A$.
(c) There exist $p \in e A f$ and $q \in f$ Ae such that $p q=e$ and $q p=f$.
Lemma 5.4. For $1 \leq i \leq n$ and $1 \leq j \leq n_{i}$, we have $e_{i} A e \cong e_{i j} A e$ as right eAe-modules.

Proof. By Lemma 5.3 and the fact $e_{i} A \cong e_{i j} A$, there exist $p_{i j} \in e_{i j} A e_{i}$ and $q_{i j} \in e_{i} A e_{i j}$ such that $p_{i j} q_{i j}=e_{i j} \quad$ and $\quad q_{i j} p_{i j}=e_{i}$. Then the maps $\alpha: e_{i j} A e \rightarrow e_{i} A e$ defined by $\alpha\left(e_{i j} a e\right)=q_{i j} a e$ and $\beta: e_{i} A e \rightarrow e_{i j} A e$ defined by $\beta\left(e_{i} a e\right)=p_{i j} a e$ are $e A e$-homomorphisms and are inverse each other. Thus we have shown the lemma.

For any $a e \in A e$, it is not difficult to check that $a e=\sum_{i=1}^{n} \alpha_{i}(a) e_{i}$ where $\alpha_{i}(a)=a e_{i}$. Thus $\left\{e_{i}, \alpha_{i}\right\}_{i=1}^{n}$ is an A-coordinate system of ${ }_{A} A e$.

By the proof of Lemma 5.1, we can see that $e_{i j} A e_{e A e}$ is generated by $p_{i j} \in e_{i j} A e_{i}$ such that $p_{i j} q_{i j}=e_{i j}$ and $q_{i j} p_{i j}=e_{i}$ for some $q_{i j} \in e_{i} A e_{i j}$. Note that we can choose $p_{i 1}=q_{i 1}=e_{i 1}=e_{i}$. For any $a e \in A e$, we set $\beta_{i j}(e a)=q_{i j} a e \in e A e$ for all $1 \leq i \leq n$ and $1 \leq j \leq n_{i}$. Then we have $\beta_{i j} \in$ $\operatorname{Hom}_{e A e}(A e, e A e) \quad$ and $\quad \sum_{i=1}^{n} \sum_{j=1}^{n_{i}} p_{i j} \beta_{i j}(a e)=$ $\sum_{i=1}^{n} \sum_{j=1}^{n_{i}} e_{i j}(a e)=a e$ by (5.1). Thus $\left\{p_{i j}, \beta_{i j} \mid 1 \leq\right.$ $\left.i \leq n, 1 \leq j \leq n_{i}\right\}$ is an $e A e$-coordinate system of $A e_{e A e}$. In the following, we fix the A-coordinate
system $\left\{e_{i}, \alpha_{i}\right\}_{i=1}^{n}$ of ${ }_{A} A e$ and the $e A e$-coordinate system $\left\{p_{i j}, \beta_{i j} \mid 1 \leq i \leq n, 1 \leq j \leq n_{i}\right\}$ of $A e_{e A e}$.

Lemma 5.5.

(a) Let ϕ be a symmetric linear function on A. Then $\phi_{A} A e(e a e)=\phi(e a e)$ for all eae $\in e A e$.
(b) Let ψ be a symmetric linear function on $e A e$. Then $\psi_{A e_{e A e}}(a)=\psi\left(\sum_{i=1}^{n} \sum_{j=1}^{n_{i}} q_{i j} a p_{i j}\right)$ for all $a \in A$.
Proof. Since $\quad \phi_{A} A e(e a e)=\sum_{i=1}^{n} \phi\left(\alpha_{i}\left(e_{i} e a e\right)\right)=$ $\sum_{i=1}^{n} \phi\left(e_{i} a e_{i}\right)$ and ϕ is symmetric, we obtain $\phi\left(e_{i} A e_{j}\right)=\phi\left(e_{j} e_{i} A e_{j}\right)=0$ for $i \neq j$, which shows the first assertion.

The second assertion is proved as follows:

$$
\begin{aligned}
\psi_{A e_{e A e}}(a) & =\sum_{i=1}^{n} \sum_{j=1}^{n_{i}} \psi\left(\beta_{i j}\left(a p_{i j}\right)\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n_{i}} \psi\left(q_{i j} a p_{i j}\right)
\end{aligned}
$$

Theorem 5.6.

(a) Let ϕ be a symmetric linear function on A. Then $\left(\phi_{A} A e\right)_{A e_{e A e}}(a)=\phi(a)$ for all $a \in A$.
(b) Let ψ be a symmetric linear function on $e A e$. Then we have $\left(\psi_{A e_{e A e}}\right)_{A A}(e a e)=\psi(e a e)$ for all $e a e \in e A e$.
(c) The space of symmetric linear functions on A and the one of eAe are isomorphic as vector spaces.
Proof. By Lemma 5.5, we have

$$
\begin{aligned}
\left(\phi_{A A e}\right)_{A e_{e A e}}(a) & =(\phi)_{A A e}\left(\sum_{i=1}^{n} \sum_{j=1}^{n_{i}} q_{i j} a p_{i j}\right) \\
& =\phi\left(\sum_{i=1}^{n} \sum_{j=1}^{n_{i}} q_{i j} a p_{i j}\right) \\
& =\phi\left(\sum_{i=1}^{n} \sum_{j=1}^{n_{i}} p_{i j} q_{i j} a\right) \\
& =\phi\left(\sum_{i=1}^{n} \sum_{j=1}^{n_{i}} e_{i j} a\right)=\phi(a)
\end{aligned}
$$

which shows (a).
By Lemma 5.5, we have

$$
\begin{aligned}
\left(\psi_{A e_{e A e}}\right)_{A A e}(e a e) & =\psi_{A e_{e A e}}(e a e) \\
& =\psi\left(\sum_{i=1}^{n} \sum_{j=1}^{n_{i}} q_{i j} e a e p_{i j}\right) \\
& =\psi(e a e),
\end{aligned}
$$

since $q_{i 1}=p_{i 1}=e_{i}$.

Hence we can see that two linear maps $(-)_{A} A e$: $\operatorname{SLF}(A) \rightarrow \operatorname{SLF}(e A e) \quad$ and $\quad(-)_{A e_{e A e}}: \operatorname{SLF}(e A e) \rightarrow$ $\operatorname{SLF}(A)$ are inverse each other, which shows the last assertion.

Remark 5.7. The statement (a) of Theorem 5.6 for $a \in \operatorname{Soc}(A)$ is found in [6, Lemma 3.9]. The statement (c) of Theorem 5.6 is well-known (see [7, 6.1]).

For $\phi \in \operatorname{SLF}(A)$, we set $\operatorname{Rad}(\phi)=\{a \in A \mid$ $\phi(A a)=0\}$. Then $\operatorname{Rad}(\phi)$ is a two-sided ideal of A and ϕ induces a symmetric linear function on $A / \operatorname{Rad}(\phi)$. Note that $A / \operatorname{Rad}(\phi)$ is a symmetric algebra since ϕ is well-defined on $A / \operatorname{Rad}(\phi)$ and induces a nondegenerate symmetric associative bilinear form on $A / \operatorname{Rad}(\phi)$.

Let $A=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{\ell}$ be a decomposition into two-sided ideals of A. For any $\phi \in \operatorname{SLF}(A)$, we have $\phi=\phi_{1}+\phi_{2}+\cdots+\phi_{\ell}$ where $\phi_{i}=\left.\phi\right|_{A_{i}}$. Note that $\phi_{i} \in \operatorname{SLF}\left(A_{i}\right)$. If $\phi(a A)=0$ for some $a \in A$, then we can see that $\phi_{i}\left(a A_{i}\right) \subseteq \phi(a A)=0$.

Theorem 5.8. Let ϕ be a symmetric linear function on A and ν a central element of A. Assume that there exists $s \in \mathbf{Z}_{>0}$ such that $\phi\left((\nu-r)^{s} a\right)=0$ for any $a \in A$ and that $A=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{\ell}$ is a decomposition of A into two-sided ideals. Then there exist symmetric linear functions $\phi_{i} \in \operatorname{SLF}\left(A_{i}\right)$, basic symmetric algebras P_{i} of $B_{i}=A / \operatorname{Rad}\left(\phi_{i}\right)$ and $\left(A, P_{i}\right)$-bimodules $\quad M_{i} \quad$ satisfying $\quad(\nu-r)^{s} M_{i}=0$. Moreover,

$$
\phi(b)=\sum_{i=1}^{\ell}\left(\left(\phi_{i}\right)_{B_{i} M_{i}}\right)_{\left(M_{i}\right)_{P_{i}}}(b)
$$

for all $b \in A$ where b in the right hand side is viewed as a linear map defined by the left action of $b \in A$ on each $\left(A, P_{i}\right)$-bimodule M_{i}.

Proof. Set $B_{i}=A / \operatorname{Rad}\left(\phi_{i}\right)$. Since $\operatorname{Rad}\left(\phi_{i}\right) \supseteq$ A_{j} for $j \neq i$, we can see that $B_{i}=A_{i} / \operatorname{Rad}\left(\phi_{i}\right)$. We first note that the symmetric linear function ϕ_{i} on B_{i} is well-defined and that B_{i} is naturally a left A module. Let $P_{i}=\bar{e}_{i}\left(A / \operatorname{Rad}\left(\phi_{i}\right)\right) \bar{e}_{i}$ be the basic algebra of $A / \operatorname{Rad}\left(\phi_{i}\right)$ where \bar{e}_{i} is an idempotent of B_{i}. The basic algebra P_{i} is a symmetric algebra by
$[7,10.1]$. Then we set $M_{i}=\left(A / \operatorname{Rad}\left(\phi_{i}\right)\right) \bar{e}_{i}$ which is an $\left(A, P_{i}\right)$-bimodule. By the argument before the statement of this theorem, we can see that $(\nu-r)^{s} \in \operatorname{Rad}\left(\phi_{i}\right)$ and thus $(\nu-r)^{s} M_{i}=0$. Note that the left action of $a \in A$ defines a right $P_{i^{-}}$ module endomorphism of M_{i}. By Lemma 5.5, we have $\phi_{i}(b)=\phi_{i}(\bar{b})=\left(\left(\phi_{i}\right)_{B_{i} M_{i}}\right)_{\left(M_{i}\right)_{P_{i}}}(\bar{b})=$ $\left(\left(\phi_{i}\right)_{B_{i} M_{i}}\right)_{\left(M_{i}\right)_{P_{i}}}$ (b) for all $b \in A_{i}$, which shows the theorem.

Remark 5.9. This theorem is found in [6 , Theorem 3.10]. In the proof of [6 , Theorem 3.10], it is shown that a symmetric linear function on A may be written as a sum of pseudotrace maps even if A is indecomposable by using the fact $\left(\phi_{A A e}\right)_{A e_{e A e}}(a)=\phi(a)$ for all $a \in \operatorname{Soc}(A)$ (see [6, Lemma 3.9]) in our notation. However, since $\left(\phi_{A} A e\right)_{A e_{e A e}}(a)=\phi(a)$ for all $a \in A$, any symmetric linear function can be written by only one symmetric linear function on the endomorphism ring of the (A, P)-bimodule if A is indecomposable.

Acknowledgement. The author expresses his gratitude to Prof. K. Nagatomo for his encouragement and useful comments.

References

[1] F. W. Anderson and K. R. Fuller, Rings and categories of modules, Second edition, Springer, New York, 1992.
[2] N. Bourbaki, Algebra I, Capters 1-3, Springer, New York, 1989.
[3] M. Broué, Higman's criterion revisited, Michigan Math. J. 58 (2009), no. 1, 125-179.
[4] C. W. Curtis and I. Reiner, Methods of representation theory. Vol. I, Wiley, New York, 1981.
[5] A. Hattori, Rank element of a projective module, Nagoya Math. J. 25 (1965), 113-120.
[6] M. Miyamoto, Modular invariance of vertex operator algebras satisfying C_{2}-cofiniteness, Duke Math. J. 122 (2004), no. 1, 51-91.
[7] C. Nesbitt and W. M. Scott, Some remarks on algebras over an algebraically closed field, Ann. of Math. (2) 44 (1943), 534-553.
[8] J. Stallings, Centerless groups-an algebraic formulation of Gottlieb's theorem, Topology 4 (1965), 129-134.

[^0]: 2000 Mathematics Subject Classification. Primary 16S50, 16D40.

