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Abstract: We announce the construction of toroidal partial compactifications of the

moduli spaces of mixed Hodge structures with polarized graded quotients. They are moduli

spaces of log mixed Hodge structures with polarized graded quotients. We include an application

to the analyticity of zero loci of normal functions.
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Introduction. Log Hodge structure is a

natural formulation of ‘‘degenerating family of

Hodge structures’’. In [KU09], the moduli spaces

of polarized log Hodge structures were constructed.

In this paper, we construct the moduli spaces of log

mixed Hodge structures whose graded quotients by

weight filtrations are polarized log Hodge struc-

tures. The construction is parallel to the pure case

[KU09]. We add points at infinity to the non-log

moduli (i.e., �nD for D in 1.3 and � in 2.1 below) by

using the mixed version of nilpotent orbits. It is

also parallel to the pure case to prove that the

constructed spaces are actually the moduli of log

mixed Hodge structures with polarized graded

quotients. As in the pure case, they are like toroidal

partial compactifications with slits of the moduli of

mixed Hodge structures with polarized graded

quotients.

We omit here the details of proofs of the above

facts, which are to be published in the series of

papers [KNU.p1, KNU.p2], . . . .
In the final section, we include an application

on the analyticity of zero loci of normal functions to

show how our spaces are helpful in studying such

geometric problems.

We are thankful to the referee for careful

reading and valuable comments.

1. Mixed Hodge structures and mod-

uli. We review the construction of the moduli

spaces of mixed Hodge structures with polarized

graded quotients, introduced in [U84]. This is a

natural generalization of Griffiths classifying space

of polarized Hodge structures [G68].

1.1. We fix a 4-ple � ¼ ðH0;W; ðh ; ikÞk;
ððhp;q

k Þp;qÞkÞ, where
H0 is a finitely generated free Z-module,

W is an increasing filtration on H0;Q :¼
Q�Z H0,

h ; ik is a non-degenerate Q-bilinear form

grWk � grWk ! Q given for each k 2 Z which is

symmetric if k is even and anti-symmetric if k is

odd, and

hp;q
k is a non-negative integer given for p; q; k 2

Z such that hp;q
k ¼ 0 unless pþ q ¼ k, that hp;q

k ¼
hq;p
k for all p, q, k, and that rankZðH0Þ ¼P
p;q;k h

p;q
k ; dimQðgrWk Þ ¼

P
p;q h

p;q
k for all k.

1.2. We fix notation.

For A ¼ Z, Q, R, or C, let GA be the group of

all A-automorphisms of H0;A which preserve A�Z

W and A�Z h ; ik for any k.

For A ¼ Q, R, C, let gA be the set of all A-

homomorphisms N : H0;A ! H0;A satisfying the fol-

lowing conditions (1) and (2).

(1) NðA�Q WkÞ � A�Q Wk for any k.

(2) For any k, the homomorphism grWk ðNÞ :
A�Q grWk ! A�Q grWk induced by N satisfies

hgrWk ðNÞðxÞ, yik þ hx; grWk ðNÞðyÞik ¼ 0 for all x; y 2
A�Q grWk .

1.3. Let D be the set of all decreasing

filtration F on H0;C for which ðH0;W; F Þ is a

mixed Hodge structure such that the ðp; qÞ Hodge

number of F ðgrWk Þ coincides with hp;q
k for any

p; q; k 2 Z and such that F ðgrWk Þ is polarized by

h ; ik for all k.

Let �DD � D be the set of all decreasing filtra-

tions F on H0;C satisfying the following properties

(1) and (2).
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(1) dim grpF ðgrWk;CÞ ¼ hp;q
k for any p; q; k 2 Z such

that pþ q ¼ k.

(2) h ; ik kills FpðgrWk Þ � FqðgrWk Þ for any

p; q; k 2 Z such that pþ q > k.

Then GC ¼ AutðH0;C;W; ðh ; ikÞkÞ acts transi-

tively on �DD and hence �DD is an analytic manifold.

Furthermore, D is open in �DD and hence it is also an

analytic manifold.

2. Space of nilpotent orbits.

2.1. Set D�. We fix � ¼ ðH0;W; ðh ; ikÞk;
ðhp;q

k ÞkÞ as in 1.1.

2.1.1. Nilpotent cone, admissibility. A fi-

nitely generated and sharp cone ([KU09] 1.3.1) of

gR is called a nilpotent cone if it is generated by

mutually commuting nilpotent elements.

Note that, since a nilpotent cone is finitely

generated, there are only finitely many faces of it.

We say a nilpotent cone � is admissible

[SZ85, Kas86] if it satisfies the following condition

(1).

(1) For any N 2 �, the relative monodromy

filtration MðN;W Þ ([D80] (1.6.13), cf. [SZ85] (2.5))

exists. Furthermore, this filtration depends only on

the smallest face of � which contains N .

2.1.2. Fan in gQ. A fan � in gQ is a set of

nilpotent cones in gR satisfying the following

conditions (1)–(4).

(1) All � 2 � are rational. That is, � is generat-

ed by (a finite number of) elements of gQ over R�0.
(2) If � 2 �, all faces of � belong to �.

(3) If �, �0 2 �, � \ �0 is a face of �.

(4) All � 2 � are admissible in the sense of 2.1.1.

2.1.3. Nilpotent orbit. Let D and �DD be the

spaces in 1.3.

Let � be an admissible nilpotent cone. A subset

Z of �DD is called a �-nilpotent orbit (resp. �-nilpotent

i-orbit) if the following conditions (1)–(3) are

satisfied for some F 2 Z.

(1) Z ¼ expð�CÞF (resp. Z ¼ expði�RÞF ). Here

�C (resp. �R) is the C (resp. R)-linear span of � in

gC (resp. gR).

(2) NðFpÞ � Fp�1 for all N 2 � and p 2 Z.

(3) Take a finite family ðNjÞ1�j�n of elements

of � which generates �. Then, if yj 2 R and yj
are sufficiently large for 1 � j � n, we have

expð
Pn

j¼1 iyjNjÞF 2 D.

Note that, if (1)–(3) are satisfied for some

F 2 Z, then they are satisfied for all F 2 Z. See

[KNU08] 12.10 for a review on how the admissibility

appears in geometry.

The above notion of nilpotent orbit is closely

related to the notion of infinitesimal mixed Hodge

module (IMHM) in [Kas86] (see [KNU08] 5.2). For

a nilpotent cone � generated by N1; . . . ; Nn and for

F 2 �DD, ðH0;C;WC;F; �FF ;N1; . . . ; NnÞ is an IMHM if

and only if � is admissible and expð�CÞF is a �-

nilpotent orbit. Here �FF denotes the complex con-

jugate of F .

2.1.4. Let D� (resp. D]
�) be the set of all

pairs ð�; ZÞ, where � 2 � and Z is a �-nilpotent

orbit (resp. �-nilpotent i-orbit).

We have embeddings D � D� and D � D]
�,

F 7! ðf0g; fFgÞ.
We have a surjection D

]
� ! D�; ð�; ZÞ 7!

ð�; expð�CÞZÞ.
2.1.5. Compatibility with �. Let � be a

subgroup of GZ. We say � and � are compatible, if

for any � 2 � and � 2 �, we have Adð�Þ� 2 �.

Then � acts on D� and also on D]
� by ð�; ZÞ 7!

ðAdð�Þ�; �ZÞ (� 2 �).
Further, we say � and � are strongly compat-

ible if they are compatible and, for any � 2 �, any
element of � can be written as a finite sum of

elements of the form a logð�Þ, where a 2 R�0 and

� 2 �ð�Þ :¼ � \ expð�Þ.
2.2. Set E�. Let � and � be as in 2.1. Assume

that they are strongly compatible. We fix � 2 � in

this 2.2.

2.2.1. Let D� ¼ Dfaceð�Þ, D
]
� ¼ D]

faceð�Þ, where
faceð�Þ denotes the fan consisting of all faces of �.

Since �ð�Þ (2.1.5) is a sharp and torsion free fs

monoid ([Kat89], [KU09] 2.1.4), the associated group

�ð�Þgp is a finitely generated free abelian group and

it is strongly compatible with the fan faceð�Þ.
We will regard �ð�ÞgpnD� as a quotient of a

subset E� of an analytic space �EE� explained below

(see [KU09] Ch.3, Ch.4 for the pure version).

2.2.2. Associated to �, we have the torus and

the toric variety: torus� :¼ SpecðC½�ð�Þ_ gp	Þan �
toric� :¼ SpecðC½�ð�Þ_	Þan. Here and hereafter we

denote HomðP;NÞ by P_ for an fs monoid P .

We denote

�EE� ¼ toric�� �DD:

We use some facts about log structures in

[Kat89, KU09]. We endow toric� with the canonical

fs log structure (cf. [KU09] 2.1.6 (ii)), and endow
�EE� with its inverse image. Since �DD is smooth, �EE�

is a logarithmically smooth fs log analytic space

([Kat89], cf. also [KU09] 2.1.11).
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Let ðtoriclog� ;Olog
toric�
Þ be the associated ringed

space ([KN99], cf. also [KU09] 2.2). We have

isomorphisms �1ðtoriclog� Þ ’ �1ðtorus�Þ ’ �ð�Þgp (cf.

[KU09] 3.3.2).

2.2.3. Let q 2 toric�. Let �ðqÞ be the face of �
corresponding to the face �þ1 ðqlogÞ :¼ �1ðqlogÞ \ �ð�Þ
of �ð�Þ. Let S0 ¼ ff 2 �ð�Þ_ j fðqÞ 6¼ 0g, where f is

regarded as a holomorphic function on toric�.
Let e : �C=ð�ðqÞC þ logð�ð�ÞgpÞÞ!
 HomððS0Þgp;C�Þ
be the isomorphism defined by ðeðz log �Þ; fÞ ¼
expð2�izð�; fÞÞ for z 2 C, � 2 �ð�Þgp, f 2 ðS0Þgp.
Let z be an element of �C whose image in �C=

ð�ðqÞC þ logð�ð�ÞgpÞÞ coincides with the class of q 2
HomððS0Þgp;C�Þ under the above isomorphism.

We define the subset E� of �EE� by the following

condition.

For ðq; F Þ 2 �EE� ¼ toric�� �DD, ðq; F Þ 2 E� if and

only if expð�ðqÞCÞ expðzÞF is a �ðqÞ-nilpotent orbit.
Denote j toric j� :¼ Homð�ð�Þ_;Rmult

�0 Þ � toric� ¼
Homð�ð�Þ_;CmultÞ, where Rmult

�0 and Cmult are the

sets R�0 and C regarded as monoids by multi-

plication, respectively. Define

�EE]
� ¼ j toric j� � �DD � �EE�; E]

� ¼ E� \ �EE]
�:

Then the subset E]
� of �EE]

� can be characterized

by the following condition.

For ðq; F Þ 2 �EE]
� ¼ j toric j� � �DD, ðq; F Þ 2 E]

� if

and only if expði�ðqÞRÞ expðiyÞF is a �ðqÞ-nilpotent
i-orbit. Here y 2 R is the imaginary part of the

above z.

2.2.4. Define canonical maps ’ : E� !
�ð�ÞgpnD� and ’] : E]

� ! D]
� by

’ðq; F Þ ¼ ðð�ðqÞ; expð�ðqÞCÞ expðzÞF Þ mod �ð�ÞgpÞ;
’]ðq; F Þ ¼ ð�ðqÞ; expði�ðqÞRÞ expðiyÞF Þ:

2.3. Strong topology, the category BðlogÞ,
log manifolds. In 2.4 below, we will endow �nD�

with a structure of a local ringed space over C with

an fs log structure, and we define a topology on D]
�.

In this 2.3, we give preparation for them.

2.3.1. Strong topology. Let Z be an analytic

space, and S a subset. The strong topology of S in Z

is defined as follows. A subset U of S is open for this

topology if and only if for any analytic space A and

any morphism f : A! Z of analytic spaces such

that fðAÞ � S, f�1ðUÞ is open in A. It is stronger

than or equal to the topology as a subspace of Z.

2.3.2. The category BðlogÞ. As in [KU09], in

the theory of moduli spaces of log mixed Hodge

structures, we have to enlarge the category of

analytic spaces because the moduli spaces are often

not analytic spaces.

Let A be the category of anaytic spaces and let

AðlogÞ be the category of fs log analytic spaces. We

enlarge A and AðlogÞ to B and BðlogÞ, respectively,
as follows:

B (resp. BðlogÞ) is the category of all local ringed

spaces S over C (resp. local ringed spaces S over C

endowed with an fs log structure) having the follow-

ing property: S is locally isomorphic to a subset of an

analytic space (resp. an fs log analytic space) Z with

the strong topology in Z (2.3.1) and with the inverse

image (resp. inverse images) of the sheaf of rings OZ

(resp. OZ and the log structure MZ).

2.3.3. A log manifold. A log manifold is an

object S of BðlogÞ such that locally on S, we can

take a logarithmically smooth fs log analytic space

Z and !1; � � � ; !n 2 �ðZ; !1
ZÞ (!1

Z is the sheaf of

differential forms with log poles; see [KU09] 2.1.7)

such that S (as an object of BðlogÞ) is isomorphic

to an open subspace of the subspace fz 2
Z j !1; � � � ; !n are zero in !1

zg with the strong top-

ology in Z and the inverse images of OZ and MZ .

In [KU09] 4.1.1, we saw that moduli spaces of

polarized log Hodge structures were log manifolds

(loc. cit. 3.5.7, 3.5.8).

2.4. Topology, local ringed space structure,

log structure of �nD�. Let � be a fan in gQ
(2.1.2). Let � be a subgroup of GZ, which is strongly

compatible with �. Let � 2 �.

2.4.1. We endow the subset E� of �EE� in 2.2

with the following structures of log local ringed

spaces overC. The topology is the strong topology in
�EE�. The sheaf O of rings and the log structure M are

the inverse images of O and M of �EE�, respectively.

We endow �nD� with the strongest topology

for which the maps �� : E�!
’
�ð�ÞgpnD� ! �nD�

are continuous for all � 2 �. Here ’ is as in 2.2.4.

We endow �nD� with the following sheaf of rings

O�nD�
over C and the following log structure

M�nD�
. For any open set U of �nD� and for any

� 2 �, let U� :¼ ��1� ðUÞ and define O�nD�
ðUÞ

(resp. M�nD�
ðUÞ) := fmap f : U ! C j f � �� 2

OE�
ðU�Þðresp. 2ME�

ðU�ÞÞð8� 2 �Þg.
2.4.2. We introduce the topology of E]

�

as a subspace of E� (2.2.3). We introduce on

D]
� the strongest topology for which the maps

E]
�!

’]

D]
� ! D]

� ð� 2 �Þ are continuous. Here ’] is

as in 2.2.4. Note that the surjection D
]
� ! �nD�

(cf. 2.1.4) becomes continuous.
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2.4.3. The above topologies have the

following properties.

(1) Let ð�; ZÞ 2 D�, let F 2 Z, and write � ¼
P

1�j�n R�0Nj. Then

ðð�; ZÞ mod �Þ
¼ lim

ImðzjÞ!1
1�j�n

ðexpð
P

1�j�n zjNjÞF mod �Þ in �nD�:

(2) Let ð�; ZÞ 2 D
]
�, let F 2 Z, and let Nj be as

above. Then

ð�; ZÞ ¼ lim
yj!1
1�j�n

expð
P

1�j�n iyjNjÞF in D
]
�:

Theorem A. Let � be a fan in gQ (2.1.2).

Let � be a subgroup of GZ, which is strongly

compatible with �. Let � 2 �.

(1) E� belongs to BðlogÞ. It is a log manifold.

(2) E� ! �ð�ÞgpnD� is a �C-torsor in the

category BðlogÞ. E]
� ! D]

� is an i�R-torsor in the

category of topological spaces.

(3) The action of � on D]
� is proper. The spaces

�nD]
� and �nD� are Hausdorff.

(4) Assume that � is neat. Then D]
� ! �nD]

� is

a local homeomorphism.

(5) Assume that � is neat. Then �nD� belongs

to BðlogÞ. It is a log manifold and ð�nD�Þlog ¼
�nD]

�.

For the notion ‘‘neat’’, see [B69], cf. also [KU09]

0.4.1.

3. Log mixed Hodge structures and

moduli. Let S be an object in BðlogÞ. Then we

have the associated ringed space ðSlog;Olog
S Þ. See

[KU09] 2.2 for the definition.

3.1. Log mixed Hodge structures.

3.1.1. Polarized log Hodge structure. A po-

larized log Hodge structure was the main ingredient

of [KU09]. See 2.4 in loc. cit. for the definition.

The definition includes two points.

(1) PHS after sufficiently twisted specializa-

tions.

(2) Small (i.e., pointwise) Griffiths transver-

sality.

3.1.2. For example, degeneration of elliptic

curves gives a polarizable pure log Hodge structure

of weight 1 (not mixed!). This is explained in detail

in [KU09] §0.

3.1.3. Log mixed Hodge structure with

polarized graded quotients. This is the main

ingredient of this paper. Let S be an object in

BðlogÞ. A log mixed Hodge structure with polarized

graded quotients (LMH with PGQ, for short) on S is

a 4-ple ðHZ;W; ðh ; ikÞk; F Þ, where
HZ is a locally constant sheaf of finitely

generated free Z-modules on Slog,

W is an increasing filtration onHQ :¼ Q�Z HZ,

h ; ik is a ð�1Þk-symmetric bilinear form

grWk � grWk ! Q given for each k 2 Z,

F is a decreasing filtration of the Olog
S -module

Olog
S �Z HZ,

such that ðHZ;WR; F Þ is an LMH in the sense of

[KU09] 2.6 and such that for each k 2 Z, the

induced data on grWk form a polarized log Hodge

structure of pure weight k.

Thus there are three points in the definition.

(1) MHS with polarized graded quotients after

sufficiently twisted specializations.

(2) Small Griffiths transversality.

(3) Admissibility of local monodromy.

3.1.4. The key observation in the pure case

in [KU09] 0.4.25 can be generalized, and we have

also in the present case the following

(an LMH with PGQ on an fs log point)

¼ (a nilpotent orbit in the mixed case):

3.2. Moduli functor. We define the moduli

functor of log mixed Hodge structure with polarized

graded quotients.

3.2.1. Fix � ¼ ð�;�;�Þ, where � is as in 1.1,

� and � are as in 2.1, and � is assumed to be

strongly compatible with �.
3.2.2. Let S be an object of BðlogÞ. By a log

mixed Hodge structure of type � on S, we mean

an LMH with polarized graded quotients H ¼
ðHZ;W; ðh ; ikÞk; F Þ endowed with a global section

� of the sheaf �n IsomððHZ;W; ðh ; ikÞkÞ;
ðH0;W; ðh ; ikÞkÞÞ on Slog which satisfies the follow-

ing conditions (1) and (2).

(1) rankZðHZÞ ¼
P

p;q;k h
p;q
k , rankOlog

S
ðFpÞ ¼

P
k2Z;r�p h

r;k�r
k for all p.

(2) For any s 2 S and t 2 Slog lying over s, if ~��t :

ðHZ;t;W; ðh ; ikÞkÞ!
’ ðH0;W; ðh ; ikÞkÞ is a representa-

tive of the germ of � at t, then there exists � 2 � such

that the image of the composite map HomðMS;s=

O�S;s;NÞ ,! �1ð��1ðsÞÞ ! AutðHZ;t;W; ðh ; ikÞkÞ �!
by ~��t

AutðH0;W; ðh ; ikÞkÞ is contained in expð�Þ. Further-
more, if we take the smallest such � 2 �, then the
expð�CÞ-orbit Z including ~��tðC�Olog

S;t
FtÞ, which is

independent of the choice of a C-algebra homo-
morphism Olog

S;t ! C, is a �-nilpotent orbit (cf. 3.1.4,
cf. also [KU09] 0.4.24, 2.5.1, 2.5.5).
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We call a log mixed Hodge structure of type �

on S also a log mixed Hodge structure with polarized

graded quotients, with global monodromy in �, and

with local monodromy in �.

3.2.3. Let LMH� : BðlogÞ ! (set) be the

contravariant functor defined as follows: LMH�ðSÞ
for an object S of BðlogÞ is the set of isomorphism

classes of log mixed Hodge structures of type � on

S.

Theorem B. Assume that � is neat. Then

the functor LMH� in 3.2.3 is represented by

�nD�.

The period map LMH� ! Morð;�nD�Þ which
is the isomorphism in this Theorem B is as follows.

Let S and H be as in 3.2.2. Let s 2 S. The

associated point of �nD� by this period map is the

image of ð�; ZÞ 2 D� in �nD�, where � and Z are

the ones in the last sentence of 3.2.2 (2).

The proofs of the theorems so far in this paper

are similar to those in the pure case [KU09]. In the

pure case, the key tool is the SLð2Þ-orbit theorem

in several variables of Cattani-Kaplan-Schmid

[CKS86]. Instead of this, here we use a mixed

Hodge theoretic version [KNU08] of the SLð2Þ-orbit
theorem in several variables.

4. Some application. Let the notation be

as in §1.

Theorem. Let S be a complex analytic mani-

fold, let T be a smooth divisor on S, and let S� ¼
S � T . Let � be a neat subgroup of GZ. For 1 �
j � n, let fj : S

� ! �nD be the period maps associ-

ated to some variations of mixed Hodge structure Hj

with polarized graded quotients which are admissible

with respect to S.

Let V ¼ fs 2 S� j f1ðsÞ ¼ � � � ¼ fnðsÞg, and let
�VV be the closure of V in S. Then �VV is an analytic

subset of S.

Proof. By a standard argument, we may

assume that the local monodromy of Hj along

the divisor T is unipotent. Then, by the admissi-

bility, Hj extends to a log mixed Hodge structure
~HHj on S (see [KNU08] §12). Hence the period map

fj of Hj extends to a morphism �ffj : S ! �nD� in

BðlogÞ corresponding to ~HHj, where � is the fan

consisting of all the one-dimensional rational

nilpotent cones and f0g (see [KU09] 4.3.1 (i) for

the pure case). To prove the Theorem, it is

sufficient to see that fs 2 S j �ff1ðsÞ ¼ � � � ¼ �ffnðsÞg
is a closed analytic subset of S. Hence we are

reduced to:

Proposition. Let S be a complex analytic

space, let Y be an object of B, let fj : S ! Y ð1 �
j � nÞ be morphisms in B, and assume that Y

is Hausdorff as a topological space. Let C ¼
fs 2 S j f1ðsÞ ¼ � � � ¼ fnðsÞg. Then C is a closed

analytic subset of S.

Proof. Let f ¼ ðfjÞj : S ! Y n. Working locally

on Y , we may assume that Y is a subset of a

complex analytic space Z and OY is the inverse

image of OZ. Then C is the fiber product of

S ! Zn  Z, where S ! Zn is the composite S !
Y n ! Zn and Z ! Zn is the diagonal morphism.

This proves Proposition. �

Remark 1. The above theorem yields an

alternative proof of the analyticity of the closure

of the zero locus of an admissible normal function

for a family of intermediate Jacobians over S�,
which was proved by Saito in [Sa.p] and by

Brosnan-Pearlstein in [BP.p1]. This is possible in

virtue of the facts that the universal intermediate

Jacobian appears as the graded quotient map

�nD! �0nD0 for the type explained below, where

D0 and �0 are D and � for grW , respectively, and

that an admissible normal function is regarded as a

period map S� ! �nD.

More precisely, let H 0 be a variation of

polarized Hodge structure of weight �1 on S�.
Assume that H 0 has unipotent monodromy. Let

JðH 0Þ be the intermediate Jacobian. Fix s 2 S�,
and let H0 :¼ H 0Z;s � Z, W�1 ¼ H 0Q;s, W0 ¼ H0;Q,

h ; i0 : Z� Z! Q; ða; bÞ 7! ab, h ; i�1 and the hp;q
�1

are the ones determined by H 0, h0;0
0 ¼ 1, and hp;q

k ¼ 0

for the other p; q. Let �0 � AutZðH 0Z;sÞ be the

monodromy group of H 0, and let � be the subgroup

of GZ consisting of all the elements whose restric-

tions to grW�1ðH0Þ belong to �0 and which induce

1 on grW0 ðH0Þ ¼ Z. Then JðH 0Þ � S� � �nD (cf.

[KNU10]), and an admissible normal function � :

S� ! JðH 0Þ is identified with the composite f :

S� ! �nD of the second projection after �. The last

map is nothing but the period map associated to H

in the extension 0! H 0 ! H ! Z! 0 of varia-

tions of mixed Hodge structure corresponding to �.

If admissible normal functions �j : S
� ! JðH 0Þ cor-

respond to fj in Theorem, we have V ¼ fs 2
S� j �1ðsÞ ¼ � � � ¼ �nðsÞg. Assume further that n ¼
2 and �2 is the zero section of JðH 0Þ over S�. Then,
V is the zero locus of �1 in S� and Theorem asserts

that its closure in S is analytic, which is proved in

[Sa.p] and in [BP.p1].
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Remark 2. In the series of papers

[KNU.p1, KNU.p2], . . . , we plan to give a general-

ization of the Theorem in which T can be any closed

analytic subspace of S. This will give an alternative

proof of a result of Brosnan and Pearlstein ([BP.p2];

cf. also [Sc.p] by Schnell) when V is the zero locus of

an admissible normal function.
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