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Abstract: We give a short and almost self-contained proof of generalizations of Koll�ar’s
vanishing and torsion-free theorems. Although they are contained in Ambro’s much more general

results on embedded normal crossing pairs, we give an alternate and direct reduction argument to

the mixed Hodge theory. In this sense, this paper gives a more readable account of the application
to the log minimal model program for log canonical pairs.
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1. Introduction. The main purpose of this
paper is to give a short and almost self-contained

proof of the following theorem.

Theorem 1.1 (Torsion-free and vanishing the-
orems). Let Y be a smooth projective variety and

B a boundary Q-divisor such that SuppB is sim-

ple normal crossing. Let f : Y ! X be a projective

morphism and L a Cartier divisor on Y such that

H �Q L� ðKY þ BÞ is f -semi-ample.

(i) Let q be an arbitrary non-negative integer.

Every non-zero local section of Rqf�OY ðLÞ con-

tains in its support the f -image of some strata

of ðY ;BÞ, where a stratum of ðY ;BÞ denotes Y

itself or an lc center of ðY ;BÞ.
(ii) Assume that H �Q f �H 0 for some ample

Q-Cartier Q-divisor H 0 on X. Then

H pðX ;Rqf�OY ðLÞÞ ¼ 0 for all p > 0 and q � 0.

Although this theorem is a very special case of

[A, Theorem 3.2], it will play important roles in the
log minimal model program for log canonical pairs.

In [A], Ambro proved the above theorem for em-

bedded normal crossing pairs. His proof is rather
dif�cult involving a highly technical notion of normal

crossing pairs. For a systematic and thorough treat-

ment, we refer the reader to [F1, Chapter 2].
The author has found a straightforward proof of

the cone theorem for log canonical pairs, which does

not use quasi-log varieties. The proof will be pub-
lished in the forthcoming [F2]. The cone theorem for

log canonical pairs is the starting point of the log
minimal model program for log canonical pairs. Be-

ing free from resolution of singularities and perturba-

tion of coef�cients, the proof of the cone theorem in
[F2] will be even easier than the original proof of

the cone theorem for Kawamata log terminal pairs.

Both [A, Chapter 3] and [F1, Chapter 2] were in-
tended for the experts and rather involved. Although

it was the feature of [A] to prove the cone theorem in

the context of quasi-log varieties, the proof of the
cone theorem without quasi-log varieties was not

available. Thus Theorem 1.1 had to be proved for

embedded normal crossing pairs, which was the
most dif�cult part in [A]. Both of [A, Chapter 3] and

[F1, Chapter 2] adopted Esnault{Viehweg’s frame-

work explained in [EV]. Here, we give a short proof
of Theorem 1.1 after Koll�ar’s philosophy explained

in, for example, [KM, §2.4]. It is the �rst time that

we use Koll�ar’s philosophy to treat Theorem 1.1. in
the literature. Hopefully, the approach adopted here

will clarify the nature of Theorem 1.1.

We summarize the contents of this paper. Sec-
tion 2 is a short review of the Hodge theoretic aspect

of the injectivity theorem. We would like to em-

phasize that the E1-degeneration in [D] is suf�cient
for our purposes. We do not know whether the

E1-degeneration discussed in [EV, (3.2, c)] follows

from the one in [D] if A 6¼ 0 in [EV, (3.2, c)] (cf.
[EV, 3.18. Remarks. a)]). In Section 3, we give a

short proof of Theorem 1.1. It is a standard argu-

ment once the fundamental injectivity theorem is
given in Section 2. In Section 4, we will explain two
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applications of Theorem 1.1. The �rst one contains
the extension theorem from log canonical centers. It

is very strong, seems inaccessible by the Kawamata{
Viehweg{Nadel vanishing theorem (cf. Remark 4.2),

and is intended for use in the log minimal model pro-

gram for log canonical pairs. Although [A] proved it
in the context of quasi-log varieties, this paper gives

a more accessible account. The �nal theorem is the

Kodaira vanishing theorem for log canonical pairs,
which was not explicitly stated in [A].

Notation. Let X be a normal variety and B

an e�ective Q-divisor such that KX þB is Q-Cartier.
Then we can de�ne the discrepancy aðE;X;BÞ 2 Q

for every prime divisor E over X. If aðE;X;BÞ � �1

for every E, then ðX;BÞ is called log canonical. We
sometimes abbreviate log canonical to lc. Assume

that ðX;BÞ is log canonical. If E is a prime divisor

over X such that aðE;X;BÞ ¼ �1, then cXðEÞ is
called a log canonical center (lc center, for short) of

ðX;BÞ, where cXðEÞ is the closure of the image of E

on X. A stratum of ðX;BÞ denotes X itself or an lc
center of ðX;BÞ.

Let r be a rational number. The integral part

SrT is the largest integer � r and the fractional part
frg is de�ned by r� SrT. We put QrR ¼ �S�rT

and call it the round-up of r. For a Q-divisor

D ¼
P

r
i¼1 diDi, where Di is a prime divisor for every

i and Di 6¼ Dj for i 6¼ j, we call D a boundary Q-

divisor if 0 � di � 1 for every i. We note that �Q

denotes the Q-linear equivalence of Q-Cartier Q-
divisors. We put SDT ¼

P
SdiTDi, QDR ¼

P
QdiRDi,

fDg ¼
P
fdigDi, D<1 ¼

P
di<1 diDi, and D¼1 ¼

P
di¼1 Di.

We will work over C, the complex number �eld,

throughout this paper.

2. Hodge theoretic aspect. In this section,
we will prove the following injectivity theorem,

which is the same as [EV, 5.1. b)]. The proof given

here is more in the sprint of Koll�ar than in the sprit
of Esnault{Viehweg.

We use the classical topology throughout this

section.
Proposition 2.1 (Fundamental injectivity

theorem). Let X be a smooth projective variety

and S þ B a boundary Q-divisor on X such that the

support of S þ B is simple normal crossing and

SS þ BT ¼ S. Let L be a Cartier divisor on X and D

an e�ective Cartier divisor whose support is con-

tained in SuppB. Assume that L �Q KX þ S þ B.

Then the natural homomorphisms

HqðX;OXðLÞÞ ! HqðX;OXðLþDÞÞ;
which are induced by the inclusion OX ! OXðDÞ, are

injective for all q.

Before we prove Proposition 2.1, let us recall

some results on the Hodge theory.

2.2. Let V be a smooth projective variety
and � a simple normal crossing divisor on V .

Let � : V n �! V be the natural open immersion.

Then �!CV n� is quasi-isomorphic to the complex
��V ðlog �Þ � OV ð��Þ. By this quasi-isomorphism,

we can construct the following spectral sequence

Epq
1 ¼ HqðV ;�p

V ðlog �Þ � OV ð��ÞÞ

) Hpþq
c ðV n �;CÞ:

By the Serre duality, the right hand side

HqðV ;�p
V ðlog �Þ � OV ð��ÞÞ

is dual to Hn�qðV ;�n�p
V ðlog �ÞÞ, where n ¼ dimV .

By the Poincar�e duality, Hpþq
c ðV n �;CÞ is dual to

H2n�ðpþqÞðV n �;CÞ. Therefore,

dimHk
c ðV n �;CÞ

¼
X

pþq¼k
dimHqðV ;�p

V ðlog �Þ � OV ð��ÞÞ

by Deligne (cf. [D, Corollaire (3.2.13) (ii)]). Thus, the
above spectral sequence degenerates at E1. We will

use this E1-degeneration in the proof of Proposition

2.1. By the above E1-degeneration, we obtain

Hk
c ðV n �;CÞ ’

M

pþq¼k
HqðV ;�p

V ðlog �Þ � OV ð��ÞÞ:

In particular, the natural inclusion �!CV n� 	
OV ð��Þ induces surjections

Hp
c ðV n �;CÞ ’ HpðV ; �!CV n�Þ ! HpðV ;OV ð��ÞÞ

for all p.
Proof of Proposition 2.1. We put L ¼

OXðL�KX � SÞ. Let � be the smallest positive inte-

ger such that �L � �ðKX þ S þ BÞ. In particular,
�B is an integral Weil divisor. We take the �-fold

cyclic cover � 0 : Y 0 ¼ SpecX
L��1

i¼0 L�i ! X associ-

ated to the section �B 2 jL�j. More precisely, let
s 2 H 0ðX;L�Þ be a section whose zero divisor is �B.

Then the dual of s : OX ! L� de�nes an OX-algebra

structure on
L��1

i¼0 L�i. Let Y ! Y 0 be the normal-
ization and � : Y ! X the composition morphism.

For details, see [EV, 3.5. Cyclic covers]. We can take

a �nite cover ’ : V ! Y such that V is smooth and
T is a simple normal crossing divisor on V , where

 ¼ � 
 ’ and T ¼  �S, by Kawamata’s covering
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trick (cf. [EV, 3.17. Lemma]). Let �0 : Y n ��S ! Y

be the natural open immersion and U the smooth

locus of Y . We denote the natural open im-
mersion U ! Y by j. We put e�p

Y ðlogð��SÞÞ ¼
j��

p
Uðlogð��SÞÞ for any p. Then it can be checked

easily that

�0!CY n��S
qis�! e��Y ðlogð��SÞÞ � OY ð���SÞ

is a direct summand of

’�ð�!CV nT Þ
qis�! ’�ð��V ðlogT Þ � OV ð�T ÞÞ;

where qis means a quasi-isomorphism. On the

other hand, we can decompose ��ðe��Y ðlogð��SÞÞ�
OY ð���SÞÞ and ��ð�0!CY n��SÞ into eigen components

of the Galois action of � : Y ! X. We write these
decompositions as follows:

��ð�0!CY n��SÞ ¼
M��1

i¼0

Ci

	
M��1

i¼0

L�iðSiBT� SÞ ¼ ��OY ð���SÞ;

where Ci 	 L�iðSiBT� S Þ for every i. We put C ¼ C1.

Then we have that

C qis�! ��XðlogðS þ BÞÞ � L�1ð�SÞ
is a direct summand of

 �ð�!CV nT Þ
qis�!  �ð��V ðlogT Þ � OV ð�T ÞÞ:

The E1-degeneration of the spectral sequence

Epq
1 ¼ HqðV ;�p

V ðlogT Þ � OV ð�T ÞÞ

) HpþqðV ;��V ðlogT Þ � OV ð�T ÞÞ

’ HpþqðV ; �!CV nT Þ

implies the E1-degeneration of

Epq
1 ¼ HqðX;�p

XðlogðS þ BÞÞ � L�1ð�SÞÞ
) HpþqðX;��XðlogðS þ BÞÞ � L�1ð�SÞÞ
’ HpþqðX; CÞ:

Therefore, the inclusion C 	 L�1ð�SÞ induces surjec-

tions

HpðX; CÞ ! HpðX;L�1ð�SÞÞ:
The following arguments are the same as those in
[KM]. We describe them for readers’ convenience.

We can check the following simple property by
seeing the monodromy action of the Galois group of

� : Y ! X on C around SuppB.

Corollary 2.3 (cf. [KM, Corollary 2.54]). Let

U 	 X be a connected open set such that

U \ SuppB 6¼ ;. Then H 0ðU ; CjU Þ ¼ 0.

This property is utilized via the following fact.
The proof is obvious.

Lemma 2.4 (cf. [KM, Lemma 2.55]). Let F

be a sheaf of Abelian groups on a topological space

X and F1;F2 	 F subsheaves. Let Z 	 X be a closed

subset. Assume that

(1) F2jXnZ ¼ F jXnZ , and

(2) if U is connected, open and U \ Z 6¼ ;, then

H 0ðU ;F1jUÞ ¼ 0.

Then F1 is a subsheaf of F2.

As a corollary, we obtain:

Corollary 2.5 (cf. [KM, Corollary 2.56]). Let

M 	 L�1ð�SÞ be a subsheaf such that M jXnSuppB ¼
L�1ð�SÞjXnSuppB. Then the injection

C ! L�1ð�SÞ
factors as

C !M ! L�1ð�SÞ:
Therefore,

HiðX;MÞ ! HiðX;L�1ð�SÞÞ

is surjective for every i.

Proof. The �rst part is clear from Corollary 2.3
and Lemma 2.4. This implies that we have maps

HiðX; CÞ ! HiðX;MÞ ! HiðX;L�1ð�SÞÞ:
As we saw above, the composition is surjective.

Hence so is the map on the right. r
Therefore, we obtain that

HqðX;L�1ð�S �DÞÞ ! HqðX;L�1ð�SÞÞ
is surjective for every q. By the Serre duality, we
obtain

HqðX;OXðKXÞ � LðSÞÞ

! HqðX;OXðKXÞ � LðS þDÞÞ
is injective for every q. This means that

HqðX;OXðLÞÞ ! HqðX;OXðLþDÞÞ
is injective for every q.

3. Proof of the main theorem. In this

section, we prove Theorem 1.1. First, we prove a gen-

eralization of Koll�ar’s injectivity theorem (cf. [A,
Theorem 3.1]). It is a straightforward consequence

of Proposition 2.1 and will produce the desired

torsion-free and vanishing theorems.
Theorem 3.1 (Injectivity theorem). Let X be

a smooth projective variety and � a boundary Q-
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divisor such that Supp� is simple normal crossing.

Let L be a Cartier divisor on X and D an e�ective

Cartier divisor that contains no lc centers of ðX ;�Þ.
Assume the following conditions.

(i) L �Q KX þ�þ H,

(ii) H is a semi-ample Q-Cartier Q-divisor, and

(iii) tH �Q D þ D 0 for some positive rational

number t, where D 0 is an e�ective Q-Cartier

Q-divisor that contains no lc centers of ðX ;�Þ.
Then the homomorphisms

HqðX;OXðLÞÞ ! HqðX;OXðLþDÞÞ;

which are induced by the natural inclusion OX !
OX ðDÞ, are injective for all q.

Proof. We put S ¼ S�T and B ¼ f�g. We can

take a resolution f : Y ! X such that f is an isomor-

phism outside SuppðDþD 0 þ BÞ, and that the un-
ion of the support of f�ðS þ BþDþD0Þ and the ex-

ceptional locus of f has a simple normal crossing

support on Y . Let B 0 be the strict transform of B on
Y . We write KY þ S 0 þ B 0 ¼ f�ðKX þ S þ BÞ þ E,

where S 0 is the strict transform of S, and E is f-

exceptional. It is easy to see that Eþ ¼ QE R � 0. We
put L0 ¼ f�Lþ Eþ and E� ¼ Eþ � E � 0. We note

that Eþ is Cartier and E� is an e�ective Q-Cartier

divisor with SE�T ¼ 0. Since f�H is semi-ample, we
can write f�H �Q aH 0, where 0 < a < 1 and H 0 is

a general Cartier divisor on Y . We put B 00 ¼
B 0 þ E� þ "

t f
�ðDþD 0Þ þ ð1� "ÞaH 0 for some 0 <

"� 1. Then L0 �Q KY þ S0 þB 00. By the construc-

tion, it is easy to see that SB 00T ¼ 0, the support

of S 0 þ B 00 is simple normal crossing on Y , and
SuppB 00 � Suppf�D. So, Proposition 2.1 implies

that the homomorphisms HqðY ;OY ðL0ÞÞ !
HqðY ;OY ðL0 þ f�DÞÞ are injective for all q. By
Lemma 3.2 below, Rqf�OY ðL0Þ ¼ 0 for all q > 0 and

it is easy to see that f�OY ðL0Þ ’ OXðLÞ. By the

Leray spectral sequence, the homomorphisms
HqðX;OXðLÞÞ ! HqðX;OXðLþDÞÞ are injective

for all q. r
Let us recall the following well-known easy

lemma.

Lemma 3.2. Let V be a smooth projective

variety and B a boundary Q-divisor on V such that

SuppB is simple normal crossing. Let f : V !W be

a birational morphism onto a projective variety W .

Assume that f is an isomorphism at the generic point

of every lc center of ðV ;BÞ and that D is a Cartier

divisor on V such that D � ðKV þ BÞ is nef. Then

Rif�OV ðDÞ ¼ 0 for every i > 0.

Proof. We use the induction on the number of
irreducible components of SBT and on the dimension

of V . If SBT ¼ 0, then the lemma follows from the
Kawamata{Viehweg vanishing theorem (cf. [KM,

Corollary 2.68]). Therefore, we can assume that there

is an irreducible divisor S 	 SBT. We consider the
following short exact sequence

0! OV ðD� SÞ ! OV ðDÞ ! OSðDÞ ! 0:

By induction, we see that Rif�OV ðD� SÞ ¼ 0 and
Rif�OSðDÞ ¼ 0 for every i > 0. Thus, we have

Rif�OV ðDÞ ¼ 0 for i > 0. r
Let us start the proof of the main theorem: The-

orem 1.1.

Proof of Theorem 1.1. We begin the proof

of (i). We can assume that H is semi-ample by re-
placing L (resp. H) with Lþ f�A0 (resp. H þ f�A0),
where A0 is a very ample Cartier divisor on X.

Assume that Rqf�OY ðLÞ has a local section whose
support does not contain the image of any

ðY ;BÞ-stratum. Then we can �nd a very ample

Cartier divisor A with the following properties.
(a) f�A contains no lc centers of ðY ;BÞ, and

(b) Rqf�OY ðLÞ ! Rqf�OY ðLÞ � OXðAÞ is not in-

jective.
We can assume that H � f�A is semi-ample by re-

placing L (resp. H) with Lþ f�A (resp. H þ f�A).
If necessary, we replace L (resp. H) with Lþ f�A00
(resp. H þ f�A00), where A00 is a very ample Cartier

divisor on X. Then, we have

H 0ðX;Rqf�OY ðLÞÞ ’ HqðY ;OY ðLÞÞ
and

H 0ðX;Rqf�OY ðLÞ � OXðAÞÞ ’ HqðY ;OY ðLþ f�AÞÞ:
We see that

H 0ðX;Rqf�OY ðLÞÞ ! H 0ðX;Rqf�OY ðLÞ � OXðAÞÞ
is not injective by (b) if A00 is suf�ciently ample. So,

HqðY ;OY ðLÞÞ ! HqðY ;OY ðLþ f�AÞÞ
is not injective. It contradicts Theorem 3.1. This
completes the proof of (i).

Let us start the proof of (ii). We take a general

member A 2 jmH 0j, where m is a suf�ciently divisi-
ble positive integer, such that A0 ¼ f�A and

Rqf�OY ðLþ A0Þ is �-acyclic for every q. By (i), we

have the following short exact sequences,

0! Rqf�OY ðLÞ ! Rqf�OY ðLþ A0Þ

! Rqf�OA 0 ðLþ A0Þ ! 0:
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for all q. Note that Rqf�OA0 ðLþ A0Þ is �-acyclic by
the induction on dimX and Rqf�OY ðLþ A0Þ is also

�-acyclic by the above assumption. We consider the
spectral sequences

Epq
2 ¼ HpðX;Rqf�OY ðLÞÞ ! HpþqðY ;OY ðLÞÞ;

and

E
pq

2 ¼ HpðX;Rqf�OY ðLþ A0ÞÞ

! HpþqðY ;OY ðLþ A0ÞÞ:
Thus, Epq

2 ¼ 0 for p � 2 in the following commuta-

tive diagram of spectral sequences.

E pq
2 ¼¼¼¼¼> HpþqðY ;OY ðLÞÞ

’pqj
j

#
’pþqj

j

#
E pq

2 ¼¼¼¼¼> HpþqðY ;OY ðLþ A0ÞÞ:
We note that ’1þq is injective by Theorem 3.1.

We have E 1q
2 ! H1þqðY ;OY ðLÞÞ is injective by the

fact that Epq
2 ¼ 0 for p � 2. We also have that

E
1q

2 ¼ 0 by the above assumption. Therefore, we

obtain E 1q
2 ¼ 0 since the injection E1q

2 ! H1þq

ðY ;OY ðLþ A0ÞÞ factors through E
1q

2 . This implies
that HpðX;Rqf�OY ðLÞÞ ¼ 0 for every p > 0. r

4. Applications. In this �nal section, we give

two applications of Theorem 1.1. The next theorem
is powerful enough and seems inaccessible by the

classical approaches (cf. Remark 4.2). We recom-

mend the reader to see [F2] for some applications to
the log minimal model program for log canonical

pairs.

Theorem 4.1 (cf. [A, Theorem 4.4]). Let X

be a normal projective variety and B a boundary

Q-divisor on X such that ðX ;BÞ is log canonical.

Let L be a Cartier divisor on X. Assume that

L� ðKX þ BÞ is ample. Let fCig be any set of lc

centers of the pair ðX ;BÞ. We put W ¼
S

Ci with a

reduced scheme structure. Then we have

H iðX; IW �OXðLÞÞ ¼ 0; H iðX;OXðLÞÞ ¼ 0;

and
H iðW;OW ðLÞÞ ¼ 0

for all i > 0, where IW is the de�ning ideal sheaf of

W on X. In particular, the restriction map

H 0ðX;OXðLÞÞ ! H 0ðW;OW ðLÞÞ
is surjective. Therefore, if ðX ;BÞ has a zero-dimen-

sional lc center, then the linear system jLj is not

empty and the base locus of jLj contains no zero-

dimensional lc centers of ðX ;BÞ.

Before the proof of Theorem 4.1, we give a very
important remark.

Remark 4.2. In the last sentence in Theorem
4.1, we do not assume that the zero-dimensional lc

center is isolated in the non-klt locus of the pair

ðX;BÞ, neither do we assume that there exists an-
other boundary Q-divisor B 0 on X such that ðX;B 0Þ
is klt. Therefore, it can not be proved by the tradi-

tional arguments depending on the Kawamata{
Viehweg{Nadel vanishing theorem. So, Theorem 4.1

is not a technical improvement of the known results.

We begin the proof of Theorem 4.1.
Proof of Theorem 4.1. Let f : Y ! X be a

resolution such that Suppf�1
� B [ ExcðfÞ is a simple

normal crossing divisor. We can further assume that
f�1ðW Þ is a simple normal crossing divisor on Y . We

can write
KY þBY ¼ f�ðKX þ BÞ:

Let T be the union of the irreducible components

of B¼1
Y that are mapped into W by f . We put

A ¼ Q�ðB<1
Y ÞR. Then A is an e�ective f-exceptional

divisor. Thus, we have f�OY ðAÞ ’ OX. On the other
hand, it is easy to see that f�OY ðA� T Þ ’ IW ,

where IW is the de�ning ideal sheaf of W . We note

that fðT Þ ¼W . Since

f�Lþ A� T � ðKY þ fBY g þ B¼1
Y � T Þ

�Q f�ðL� ðKX þBÞÞ;

and
f�Lþ A� ðKY þ fBY g þ B¼1

Y Þ
�Q f�ðL� ðKX þ BÞÞ;

we have

H iðX; IW �OXðLÞÞ
’ H iðX; f�OY ðA� T Þ � OXðLÞÞ ¼ 0;

and

H iðX;OXðLÞÞ
’ H iðX; f�OY ðAÞ � OXðLÞÞ ¼ 0

for all i > 0 by Theorem 1.1 (ii). By the following

long exact sequence

   ! H iðX;OXðLÞÞ ! H iðW;OW ðLÞÞ
! H iþ1ðX; IW �OXðLÞÞ !    ;

we obtain HiðW;OW ðLÞÞ ¼ 0 for all i > 0. r
Remark 4.3. We note that we do not need

Ambro’s vanishing theorem for embedded normal

crossing pairs (cf. [A, Theorem 3.2]) to obtain

H iðW;OW ðLÞÞ ¼ 0 for i > 0 in Theorem 4.1.
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We close this paper with the Kodaira vanishing
theorem for log canonical pairs, which was not ex-

plicitly stated in [A]. For a more general result con-
taining the Kawamata{Viehweg vanishing theorem,

see [F1, Theorem 2.48].

Theorem 4.4 (Kodaira vanishing theorem
for lc pairs). Let X be a normal projective variety

and B a boundary Q-divisor on X such that ðX ;BÞ
is log canonical. Let L be a Q-Cartier Weil divisor

on X such that L� ðKX þ BÞ is ample. Then

H qðX ;OXðLÞÞ ¼ 0 for every q > 0.

Proof. Let f : Y ! X be a resolution of ðX;BÞ
such that KY ¼ f�ðKX þ BÞ þ

P
i aiEi with ai �

�1 for every i and Supp
P
Ei is simple normal cross-

ing. We can assume that
P

i Ei [ Suppf�L is a
simple normal crossing divisor on Y . We put E ¼
P

i aiEi and F ¼
P

aj¼�1ð1� bjÞEj, where bj ¼
multEjff�Lg. We note that A ¼ L� ðKX þ BÞ is
ample by the assumption. So, we have f�A ¼
f�L� f�ðKX þ BÞ ¼ Qf �Lþ E þ F R� ðKY þ F þ
f�ðf�Lþ E þ F ÞgÞ. We can easily check that
f�OY ðQf �Lþ E þ F RÞ ’ OXðLÞ and that F þ
f�ðf�Lþ E þ F Þg has a simple normal crossing sup-

port and is a boundary Q-divisor on Y . By Theorem
1.1 (ii), we obtain that OXðLÞ is �-acyclic. Thus, we

have HqðX;OXðLÞÞ ¼ 0 for every q > 0. r
The reader can �nd more advanced topics and

many other applications in [F1{F8]. This paper is a

gentle introduction to Chapter 2 in [F1]. We recom-

mend the reader to see [F1].
Added in the proof: In the proof of Theorem

1.1(i), in order to take a very ample Cartier divisor

A with the properties (a) and (b), we sometimes have
to replace L (resp. B) with L� B 0 (resp. B� B 0)
after taking suitable blow-ups of Y , where B 0 is the

union of suitable components of SBT. We will discuss
the details in [F8].
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