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Two rigidity theorems on manifolds with Bakry-Emery Ricci curvature
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Abstract:

In this paper, we generalize the Cheng’s maximal diameter theorem and Bishop

volume comparison theorem to the manifold with the Bakry-Emery Ricci curvature. As their appli-
cations, we obtain some rigidity theorems on the warped product.
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1. Introduction. The classical Myers’s theo-
rem [7] states that if (M, g) is a complete, connected
Riemannian manifold of dimension n (>2) such that
Ric > (n —1)kg > 0, then its diameter D = D(M) is
less than or equal to \/LE In particular, M is compact.
It is natural to ask what happens if the diameter at-
tains its maximal value. In [4] S.Y. Cheng proved, i.e.
if (M,g) is a complete Riemannian manifold with
Ric> (n—1)kg>0,D = \/LE’ then (M, g) is isometric
to the sphere S} ’

In [1], Bakry and Ledoux proved an analogue of
Myers’s theorem and also provided a new analytic
proof of Cheng’s theorem based on Sobolev inequali-
ties. Bakry and Ledoux’s result implies that if (M, g)
is a complete, connected Riemannian manifold of di-
mension n (>2), assume that there is a smooth func-
tion h, m > n and k > 0, such that the Bakry-Emery
Ricci curvature Ric = Ric — VVh — miﬁ Vh® Vh >
(m —1)kg. Then M is compact and D < ﬁ This
result was also proved by Qian in [9] independently.
At the end of the paper [1], the authors asked the
rigidity question under the Bakry-Emery Ricci cur-
vature setting. In this paper, the author wants to
answer this question and prove the following rigidity
theorem. Our method is motivated by Peterson [8].

Theorem 1.1. Let (M, g) be a complete, con-
nected Riemannian manifold of dimension n (>2),

assume that the Bakry-Emery Ricci curvature Ric =

Ric— VVh— ml_"Vh QVh>(m—1)kg>0, m>n,
and D :ﬁ, then (M, g) is isometric to the sphere

sin(vEr)
VE

s moreover h(z) = (m—n)ln

distance function defined on S).

, where r is a
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Remark 1.1.  From Theorem 1.1, we can see
that when m = n, h =0 and Ric = Ric, thus we re-
duce to Cheng’s mazximal diameter theorem.

The rigidity theorems asserts that if a certain
geometric quality is as large as possible relative to
the pertinent lower bound on Ricci curvature, then
the metric on the manifold in question is a warped
product metric of a particular type. The notion of
the warped product manifold was introduced by
Bishop and O’Neil [2], where the authors used the
warped product metric to construct a manifold of
negative curvature.

Let B= (B',gg) and F = (F¥ gr) be two Rie-
mannian manifolds with the dimension [ and k. We
denote by 7 and ¢ the projections of B x F' onto B
and F, respectively. For a nonnegative smooth func-
tion f defined on B, the warped product N = B x; F
is the product N = B x F furnished with the metric
tensor ¢ defined by ¢ = n*gp + f20*gr, where * de-
notes the pull back. The function f is referred to as
the warping function. In [6], J. Lott pointed out
that the Bakry-Emery Ricci curvature is in fact the
horizontal part of the Ricci curvature of some
warped product manifolds. Thus from Theorem 1.1
we obtain the following rigidity theorem on a warped
product.

Corollary 1.1. Let (M, g) be a complete, con-
nected Riemannian manifold of dimension n (>2),

assume that the Bakry-Emery Ricci curvature Ric >
(m—1)kg >0, m>n, and its diameter D = ik If

NG
N=M"x _ S"™", then N=G5"x

m—n
em—n (L_sin kr) k
where 1 is a distance function defined on S}
Now we want to discuss the rigidity theorem
about the Bishop volume comparison. So far we only
know the relative volume comparison theorem on

’
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manifolds with the Bakry-Emery Ricci curvature, see
[3] (also see [5] or [10]). The problem about the Bishop
volume comparison theorem remains open. We ap-
preciate Prof. Bakry for his suggestion of studying
this problem.

Let B(p,r) be a ball centered p with a radius r in
the manifold M, the weighted volume of B(p,r) de-
notes by wvoly,(B(p,r)) :fB(p,r) dvolh:fB(W) eldvol,,
and v(m, k,r) denotes the volume of a ball B(k,r) of
radius r in the space form M;" with a constant

sin Vkr

curvature k. Suppose that Sny(r) == k> 0;
Sni(r)y =r, k=0; Sni(r) = %, k < 0; then we
can prove the following Bishop volume comparison
theorem.

Theorem 1.2. Let (M, g) be a complete, con-
nected Riemannian manifold of dimension n (>2),

assume that there is a function h satisfying
lim-¢- =1 such that the Bakry-Emery Ricci

m—n
r—0"

curvature Ric > (m—1)kg, m > n, then

volp(B(p,r)) <

Wn—1

v(m, k, )
m—1

where w,_1 1s the volume of the n dimensional unit
sphere; the equality holds if and only if B(p, r) is iso-
metric to B(k, r); moreover h(z) = (m — n)In Sni(r),
where r is a distance function defined on B(k,r).
Remark 1.2. The function of Ww

b s @
nonincreasing function. This is a well-known fact for
experts. However people did not know what is its lim-
its. So they could not obtain the Bishop volume com-
parison theorem. Our contribution of this paper is to
find a warping function, which has a singularity at
origin. Thus the initial condition of the warping func-
tion h is necessary. For example, M = R’ n=2,
m=3, h(z)=1, then Ric=0. The function of

voly(B(p,r))
v(m,k,r)

its limit does not exist.
As we know that

v(m, k,r) = (-‘Jm—l/ Sn’];nil(p)dp,
0

then we obtain the following interesting result, since
we allow the number m to take any real number (not
only integer).

Corollary 1.2. Let (M, g) be a complete, con-
nected Riemannian manifold of dimension n (> 2),

s always a nonincreasing function, however

assume that there is a function h satisfying
li o:l(j =1 such that the Bakry-Emery Ricci curva-

ture Ric > (m —1)kg, m > n, then

[Vol. 85(A),

voly(B(p, 1)) < wn_l/ Sn(p)dp.
0

In particular, when Ric > 0, the weighted volume has
a sharp upper bound:

volp(B(p,r)) < wy—1r™.

As same as Corollary 1.1, we can obtain the fol-
lowing rigidity theorem on the warped product.

Corollary 1.3. Let (M, g) be a complete, con-
nected Riemannian manifold of dimension n (> 2),
assume that there is a function h satisfying

hmoﬁ =1 such that the Bakry-Emery Ricci curva-

ture Ric > (m—1)kg, m > n, and vol,(B(p,r)) =
“Lo(myk,r). If N=M"x » S"™", then N=

Wm-1 em—n

M X g, S"", where M is a space form with a
constant curvature k, r is a distance function defined
on M.

2. Proof of Theorem 1.1 and Theorem
1.2. Firstly we introduce some lemmas. The follow-
ing weighted Laplacian comparison theorem was
proven by Qian [9] (also see [3] and [5]).

Lemma 2.1. (Qian) Let (M, g) be a complete,
connected Riemannian manifold of dimension n (>2),
assume that there is a smooth function h, m > n, such
that Bakry-Emery Ricci curvature Ric > (m — 1)kg,
then

!
Snj,

Lr(z) < (m—-1) Sy

Vo € M\ cut(p),

where L=A+Vh-V, r(x) is a distance function
from a fix point p, cut(p) denotes the cut locus of the
Riemannian manifold M with respect to the point p.

The following weighted volume comparison the-
orem can be found in [9] (also see [11]). However the
limit of the relative volume comparison is a new
result.

Lemma 2.2. Let (M,g) be a complete, con-
nected Riemannian manifold of dimension n with
Ric > (m —1)kg, m > n, then

_ voly(B(p, 1))
v(m, k,r)

is a nonincreasing function; if the initial condition of

the function h satisfying lirr(l) fj(,)" =1, then
T—

iy 20 (B0, 7)) _ .
r—0 v(m, k, 7’) Wm—1

Wn—1

Secondly we want to use the above Lemmas to
prove Theorem 1.1:
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Proof. Fix p,q€ M such that d(p,q):\/iE.

Define r(z) =d(p, z), 7(z) =d(q, z). Firstly, we want
to claim the following fact:

(2.1) r(xz) +7(z) =d(p,q) = %, Yz € M.
The above fact also tell us that the function r and 7
is smooth on M — {p, ¢}. Now we suppose that (2.1)
does not hold, from the triangle inequality we know
that
d(p, ) + d(g,2) >
p,x) +d(q,x) > N3

So we can find € > 0 such that

d(p, ) + d(q, 7) = ——+ 2¢

VEk
Then the balls B(p,r) and B(g,r2) and B(z,¢)
are pairwise disjoint, when r; < d(p,x), r2 < d(q,x)

and r| + 7y = \/ig Thus by Lemma 2.2, we have that

_ woly(M)
~ woly, (M)
> UOZ}L(B(QL', 6)) + UOZ}L(B(pa Tl)) + UOZIL(B((L T?))
- voly (M)
U(m7 k? 6) + U(mv ka 7‘1) + U(m7 ka T2)

o(m. k. )

=d(p,q) + 2¢.

1

k
_ <m_k€> ey
U(mv 7%)
which is a contradiction.
Secondly, we can use (2.1) and Lemma 2.1 to

prove the following fact:

Sn;it(r) d 2
S’nk(r) n—1-

In fact, from (2.1) we know that Lr = —L7. On the
other hand, from Lemma 2.1 we have that

(2.2) Hess r =

(m—1) gz;}igg >Lr=—-Lr>—-(m—-1) gz&gg
= -y G
So we obtain that
— (- Sny(r)
(2.3) Lr=( 1) Sre(r)”

By (2.3) and the fact of O,Ar+|Hessr|* =
—Ric(0r, 0r), we see that
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—(m—-1k=0,Lr+ 1 (Lr)

= 0,Ar + 8Ph + L (A7 + 9,h)?
m—1

1

m—-n

< O, Ar+h + ﬁ (AF)+ — (8,h)?

< 8.Ar + 8*h + |Hess 7| + Lt (8,h)°
m-—n

= —Ric(0r,0r)

< —(m—1)k.

So the equalities in the above inequalities always
hold, i.e.

2 1 2
o (B7) ()",

1
|Hess r|* = m(AT)Q.

Thus we have that

A o-h L
(2.4) L =,
n—1 m-n m-—1
and
A L
Hess r = ! gr = d r

n—1 m—1

(2.5) )
_ Snk(r) d82
Sny(r) "V

Let X;, 9=1,...,n—1, be the orthonormal eigen-
vectors of Hess r at r, then from (2.5), we have

V. 2 = Vkcot VEkrX;.

or

Extend X; in such a way that [X;, 2] = 0 at r, thus

P
we can compute the sectional curvature of M.

0
SeC<Xi’8r)

0
= - V£VX7E,XZ >
=—< VQ(\/ECOt \/ET)X7,X7 >
>

= kesc? Vkr — Vi cot Vkr < Vo X;, X; >

or
9 0
= kese? VEr — VEcot Vir < VX,'E?Xf >
= kes® Vir — (Vkcot Vir)® = k.

By (2.3) and (2.4), we obtain that
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sin(v/kr)
vk

Since the function h in the Bakry-Emery Ricci curva-
ture is a translation invariant, constant C has to be
sin(v/kr)
VE 0
Finally we prove Theorem 1.2. By Lemma 2.2,
we know that wvol,(B(p,r)) < %v(m, k,r). So we
only prove the rigidity part of Theorem 1.2.
Proof. Set dvoly, = e"dvol, = \y(r,0)dr A db,
dvoly, = A\ (r)dr A df, where A\g(r) = Sn*~!(r). From
Lemma 2.1, we know that

(2.6) Lr = 0,(In Ap(r,0)) < 0-(In Ag(r)).

h(z) = (m —n)ln +C.

zero, i.e. h(z) = (m —n)In

Setting F(r) = 7*;:(’;?,

of F(r).

then we compute the derivative

_ 0 (1, 0)A(r) — M (r, )9, M (r)
AR(r)

F(r)

- /\}L(T‘, 9)
Ak(r)
By (2.6), we know that the function F(r) is a non-
increasing function. On the other hand, by the initial
condition of the function h, let the distance function
r tend to zero, we can easily obtain that

(27) )\h(T7 9) S )\k(T‘).

(Or In Ap(r,0) — 0, In A (7).

Since

/ / Au(p, 0)dp A db = “’"*1/ / Ae(p)dp A df
0 Sn—1 Wm-1Jo Sgm—1

Taking the derivative of the both sides of the above
equation, then we get that

/ Ah(r,e)dezﬂ/ )\k(r)cw:/ (7)o
Sn—1 Wm—1 Jgm-1 Sn-1

By (2.7), we know that
)\h(r, 9) S )\k(?”‘).

Thus
Sn.(r)
Lr=(m—1)=-"=,
r=(m )Snk(r)
With the same Proof of Theorem 1.1, we can easily
prove Theorem 1.2. |
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