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Abstract:

Kawabata and Yamada [3] proposed an implicit Newton method for stochastic

differential equations and proved its convergence. They proved an error estimate in a sufficiently
small time interval and extended it to a global convergence theorem by using open-closed
method. In this note, the author gives an ezplicit Newton scheme which is equivalent to
Kawabata-Yamada’s implicit formulation (Remark 1) and prove its direct error estimate
(Theorem 2.1). His result could provide a key to solve the open problem of second order
convergence (see Remark of Theorem 2.1 and [2]).
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1. Prelinimaries. Let a(t,z) and b(t,x) be
real-valued bounded C! smooth functions defined in
R”. For the sake of simplicity, we assume that there
exist nonnegative constants A; and B; satisfying
0b
- (t, LL') < Bl

x
in R%. Let &(t), t >0 be a solution of the initial
value problem for stochastic differential equation

(1) dg(t) = a(t,&(t)) di + b(t,£(1)) dw(t), £(0) = &,

where w(t) denotes a standard Brownian motion
and & is a bounded random variable independent of
F(w(s),s >0). Without loss of generality, we
assume that £(¢) is continuous with respect to
t > 0. Our explicit Newton scheme for the problem
(1) is formulated as follows: We define a sequence

{&u(t)} by &o(t) = & and
§n+1 (t)

t
= e (f() + / (GOVn(S) - bO,n(S) bln(s)) e ) ds
0
t
+/ bo.n(s) en’l(s)dw(s))

0
forn=20,1,2,---, where
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+ /Ot bin(s) dw(s),

aO‘n(t) = a(tv fn(t)) - %
oa

= % (t7 £,L(t)),
ab
bo,n(t) =b(t,&u(t)) — o (t,6a(t)) &ult),

0b

o (t:a(t).

Though the above definition of {,(¢)} may look

strange, it is actually a natural fomulation of

Newton’s method. In fact, each &,(t) is a solution

of the linearized equation of (1) (see Lemma 1.1 and

Remark 1).
Lemma 1.1.

(t,€a (1)) En(t),

a1n(t)

bin(t) =

Assume that a;(t), b;i(t), i =0,1
are bounded continuous monanticipative functions
defined in [0,00). Then, the initial value problem for
linear stochastic differential equation

dg(t) = (ao(t) + ar(t) £(1)) dt
+ (bo(£) + b1(2) £(1)) duw(t), £(0) = &

has an explicit solution
t
g(t) = en(t) (&) +/ (ao(s) — bO(S)bl(S)) 6777(5) ds
0
t
+/%@€Wmmﬂ,
0

where
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o= | t(ams) -y )as+ [ bu(s) duo(s).

Lemma 1.1 follows immediately from Ito’s
formula.

Remark 1. It follows immediately from the
definition of &,41(t) and Lemma 1.1 that &,41(0) = &
and

d€n+1(t) = (aO,n(t) + al,n( )€n+1( )) dt
+ (bo.n(t) + b1,a(t) Ens1 (8)) duo(t)
for n=0,1,2,---. Therefore, {&.(t)} is exactly

the same sequence introduced by Kawabata and
Yamada [3].
The approximation errors

en(t) =& (t) —&(t), n=0,1,2,--
satisfy the following linear stochastic differential
equations.

Lemma 1.2. For any n=20,1,2,---, €,51(¢)
is a solution of the linear stochastic differential
equation

d5n+1 (t) = (Oéo,n(t) + CLLn(t) En+1 (t))dt

+ (Bon(t) + brn(t) ensa (b)) dw(t)

satisfying the initial condition €n+1(0) =0, where

00 (1) = alt, &0(8)) — o (1,64(1)) 20 (1)
ot 6(0) - mn(),

1) = D1, E(0) — o0 (16,(0)) 20 (1)
60 o),

Proof. Since, by Remark 1, £,11(¢) is a solution
of the linear stochastic differential equation

d&ni1(t) = (aon(t) + a1,n(t) &nta(t)) dt
+ (bon(t) + b1a(t) &nra(t)) duw(t),
we have
déenyt (t)
= d&u(t) — d&(t)

— (att&0) - 5 &) 60

ot £(1)) + arn(t) s,,,ﬂ(t)> it

0b

+ <b(t, &nt) = 5 (t:6(1)) &ult)
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bt £(0)) + i) £n+1(t>> du(t)

da

= (a(t,fn(t)) (t €n(t)) en(t)

— a(t, §n(t) — 577,(t)) + al,n,(t) 5n+l(t)) dt

ob

N (b(t, &() = 52 (1.6t &a(t)

Bt Ea(t) — £(t)) + Bra(t) an(t)) du(t)

= (0 (t) + arn(t) ensa(t)) dt
+ (ﬂo,n(t) + bl,n(t) Entl (t)) dw(t)
O
A version of Gronwall’s inequality plays an
important role to estimate the error €,1(t) (see also

[1]).

Lemma 1.3. For any constant T > 0, if f(t)
and g(t) are continuous nonnegative functions
defined in a closed interval [0,T] and if there exist

nonnegative constants Cy; and Cs such that

f @) §01/0 g(s)ds+02/0 f(s)ds

for any 0 <t < T, then we have

t
) < Cue [ gt ds

forall0 <t <T.
2. Theorem and its proof.
Theorem 2.1. For any T > 0, there exists a

nonnegative constant C depending only on T, Ay
and By such that

Cn
(2) sup Ee(t) < — sup Eel(t)
0<t<T ) n: o<t<T
form=1,2,3,---.

Proof. For any n=0,1,2,--- and 0<¢t<T,
Lemma 1.2 shows, by Minkowsky’s and Holder’s
inequalities and a fundamental property of stochas-
tic integrals, that

{Eep (0}

< {E</Ot(aoxn(8) + arn(s) e () ds> 2}1/2
+ {E(/Ot(ﬁo,n(s) + b (8) Ensi1(s)) dw(s)>2}1/2
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g{aE(/ﬁmM<>@)

+2E( e E,LH()ds)Q}
A
+2E( SENCTY }1/2
oy

([ aoe) [ 20}
fefn

+2E</ B(s) 2, >ds> }1/2.

Since

(3) |a0,n(t)| < 2A1|€n(t)|a |ﬂ0,n(t>| < 2Bl|8n(t)‘a

the above result gives

{EEnJrl( )}1/2

< {sAgTE< /0 2 (s) ds)
+2A§TE< /0 2 )ds) }1/2
[ 200
o[ aae)

< 2V2(AVT + B)) (/Of Ee(s) ds) v

2

1/2

+V2(ANVT + By) (/Or B2, (s) ds> 1/2.
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Consequently, we obtain

t
Eep(t) < 16(A1\/T+Bl)2/ E&%(s)ds
0

t
FAANT + BYY? / EE, (s)ds:
0

this shows, by Lemma 1.3,

EEn+1( )
t
<16(AVT + Bl)ze4(A1\/T+Bl)2T/ E£%(s)ds
0
for all 0<t<T and every n=0,1,2,---. The
recursive use of the above estimate completes the
proof. (I
Remark 2. Since (2) implies

lim sup E&’(t) =0,

n—00 )<<
Theorem 2.1 gives a simple proof of Kawabata and
Yamada’s convergence theorem. We easily have

(4) |O‘0.,n(t)| < A4 |5n(t)|2a |ﬂo,n(t)| < B2|5n(t)|2

instead of (3) if |az.| < As and |by| < By for some
constants As and Bs, however we cannot prove the
second order error estimate in the present note. For
this purpose, our explicit formulation and a new type
of approach would be necessary [2].
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