Surfaces carrying no singular functions

By Mitsuru NAKAI,^{*),†)} Shigeo SEGAWA^{**)} and Toshimasa TADA^{**)}

(Communicated by Heisuke HIRONAKA, M.J.A., Nov. 12, 2009)

Abstract: From a finite number of Riemann surfaces W_j $(j \in J := \{1, 2, \dots, m\})$ we form two kinds of Riemann surfaces, one of which is a united surface $\bigotimes_{j \in J} W_j$ and the other is simply a bunched surface $\bigcup_{j \in J} W_j$. We compare the space $H(\bigotimes_{j \in J} W_j)$ of harmonic functions on $\bigotimes_{j \in J} W_j$ and the space $H(\bigcup_{j \in J} W_j)$ of harmonic functions on $\bigcup_{j \in J} W_j$ and show that these are canonically isomorphic, i.e.

$$H\left(\bigcup_{j\in J}W_j\right)\cong H\left(\bigcup_{j\in J}W_j\right)$$

in the sense that there is a bijective mapping t of the former space onto the latter space such that t is linearly isomorphic, t preserves orders, i.e. $tu \ge 0$ if and only if $u \ge 0$, and t fixes the real number field **R**, i.e. $t\lambda = \lambda$ for every $\lambda \in \mathbf{R}$, under the standing assumption that all the W_j are hyperbolic. The result is then applied to give a sufficient condition better than our former one for an afforested surface to belong to the class \mathcal{O}_s of hyperbolic Riemann surfaces carrying no nonzero singular harmonic functions when its plantation and trees on it are all in \mathcal{O}_s .

Key words: Afforested surface; hyperbolic; parabolic; Parreau decomposition; quasibounded; singular.

We denote by H(R) the real vector space of harmonic functions on a Riemann surface R and by HP(R) the vector subspace of H(R) consisting of essentially positive $u \in H(R)$ in the sense that |u| admits a harmonic majorant on R. Then HP(R) forms a vector lattice with lattice operations of join \vee and meet \wedge so that $u \vee v$ ($u \wedge v$, resp.) is the least (the greatest, resp.) harmonic majorant (minorant, resp.) of u and v in HP(R) on R. A $u \in HP(R)$ is said to be quasibounded if

(1)
$$u = \lim_{s,t \in \mathbf{R}^+, s,t \uparrow \infty} (u \land s) \lor (-t)$$

locally uniformly on R and a $u \in HP(R)$ is said to be singular if

(2)
$$(u \wedge s) \lor (-t) = 0$$

for every pair of s and t in $\mathbf{R}^+ := \{t \in \mathbf{R} : t \ge 0\},\$

where **R** is the real number field. On denoting by $HP_q(R)$ ($HP_s(R)$, resp.) the vector sublattice of HP(R) consisting of quasibounded (singular, resp.) $u \in HP(R)$, we obtain the direct sum decomposition referred to as the Parreau decomposition of HP(R):

(3)
$$HP(R) = HP_q(R) \oplus HP_s(R)$$

We recall that \mathcal{O}_G is the class of parabolic Riemann surfaces R characterized by the nonexistence of the Green function $g(\cdot, \zeta; R)$ on R with its pole ζ in R so that $R \notin \mathcal{O}_G$ means that R is hyperbolic in the sense that the Green function $g(\cdot, \zeta; R)$ on Rexists for one and hence for every point ζ in R. The notation \mathcal{O}_{HP} denotes the class of Riemann surfaces R with $HP(R) = \mathbf{R}$. Then we know the following important result of Sario and Tôki (cf. e.g. [8]):

(4) $\mathcal{O}_G < \mathcal{O}_{HP}$ (the strict inclusion relation),

and therefore, as far as we are concerned with the space HP(R), it is natural to assume that $R \notin \mathcal{O}_G$ in advance in order to avoid the trivial case $HP(R) = \mathbf{R}$ including $HP_q(R) = \mathbf{R}$ and $HP_s(R) = \{0\}$. Even if $R \notin \mathcal{O}_G$ it can happen the case $HP_s(R) = \{0\}$. Then the main theme of the present paper is the class

 \mathcal{O}_s

(5)

²⁰⁰⁰ Mathematics Subject Classification. Primary 30F20; Secondary 30F15, 30F25.

^{*)} Professor Emeritus, Nagoya Institute of Technology.

^{†)} Present address: 52, Eguchi, Hinaga, Chita, Aichi 478-0041, Japan.

^{**)} Department of Mathematics, School of Liberal Arts and Sciences, Daido University, 10-3, Takiharu, Minami, Nagoya, Aichi 457-8530, Japan.

of Riemann surfaces $R \notin \mathcal{O}_G$ such that $HP_s(R) = \{0\}$. A typical example R in the class \mathcal{O}_s is furnished by $R \in \mathcal{O}_{HP} \setminus \mathcal{O}_G$ (cf. (4) above).

We denote by dim R for any Riemann surface $R \notin \mathcal{O}_G$ the harmonic dimension of R which is the cardinal number of the set of minimal Martin boundary points of R (cf. e.g. [1]). We have shown in [4] the following result:

(6) $\dim \mathcal{O}_s := \{\dim R : R \in \mathcal{O}_s\} = \mathbf{N} \cup \{\aleph_0\},\$

where **N** is the set of positive integers and $\aleph_0 :=$ card **N**, the cardinal number of **N**, as a refinement of the former result in [3] that dim $R \leq \aleph_0$ for $R \in \mathcal{O}_s$. In the course of proving (6) we have introduced the notion of, what we call, afforested surfaces.

An afforested surface

$$W := \langle P, (T_i)_{i \in \mathbf{N}_{\mathcal{E}}}, (\sigma_i)_{i \in \mathbf{N}_{\mathcal{E}}} \rangle$$

consists of three ingredients: a Riemann surface Pcalled a plantation; a finite or infinite sequence $(T_i)_{i \in \mathbf{N}_{\xi}}$ of Riemann surfaces T_i , each of which is called a tree, where $\mathbf{N}_{\xi} := \{1, 2, \dots, \xi\}$ is a finite set if $\xi \in \mathbf{N}$ and $\mathbf{N}_{\xi} = \mathbf{N}_{\mathbf{N}_0} := \mathbf{N}$ is an infinite set if $\xi = \aleph_0$; a sequence $(\sigma_i)_{i \in \mathbf{N}_{\xi}}$ of slits σ_i commonly included in P and T_i for each $i \in \mathbf{N}_{\xi}$, which are mutually disjoint and do not accumulate in P, and each σ_i of which is called the root of each tree T_i and at the same time the root hole in P. We paste each $T_i \setminus \sigma_i$ to $P \setminus (\bigcup_{j \in \mathbf{N}_{\xi}} \sigma_j)$ crosswise along each σ_i for every $i \in \mathbf{N}_{\xi}$ and the resulting Riemann surface is the afforested surface $W := \langle P, (T_i)_{i \in \mathbf{N}_{\xi}}, (\sigma_i)_{i \in \mathbf{N}_{\xi}} \rangle$.

Our question is whether the condition $P \in \mathcal{O}_s$ and $T_i \in \mathcal{O}_s$ $(i \in \mathbf{N}_{\xi})$ assures that $W := \langle P, (T_i)_{i \in \mathbf{N}_{\xi}}, (\sigma_i)_{i \in \mathbf{N}_{\xi}} \rangle \in \mathcal{O}_s$ or not. We have seen in [5] that this is not the case in general but on the other hand we have also seen in [4] that if $\xi \in \mathbf{N}$ or if $\xi = \aleph_0$ and

(7)
$$\sum_{i \in \mathbf{N}} (4M_i + 1) \frac{\sup_{P \setminus V_i} g(\cdot, \zeta_i; P)}{\inf_{\sigma_i} g(\cdot, \zeta_i; P)} < 1,$$

then $W \in \mathcal{O}_s$ can be concluded. Here $V_i := \{|z| < 1\}$ is a parametric disc about the point ζ_i which correspond to the center 0 of the slit $\sigma_i = [-s_i, s_i] \subset V_i$ in terms of the local parameter V_i for each $i \in \mathbb{N}$. Moreover it is assumed that $\overline{V}_i \cap \overline{V}_j = \emptyset$ $(i \neq j)$ and let M_i be the Harnack constant of the set $\{o\} \cup \partial V_i$ with a reference point $o \in P \setminus \bigcup_{i \in \mathbb{N}} (1/2)\overline{V}_i$ with respect to the family $H(P \setminus \bigcup_{i \in \mathbb{N}} (1/2)\overline{V}_i)^+$, where \mathcal{F}^+ is the class of nonnegative functions in the function space \mathcal{F} (see also e.g. [4] for its precise definition). However (7) is not too good in the following two points. First, it is too restrictive in practical application; at least < 1 in the condition (7) should be desirably replaced by < ∞ . Second the condition like (7) should be something that can take care of not only the case of $\xi = \aleph_0$ but also that of $\xi \in \mathbf{N}$. The primary purpose of this paper is to replace (7) by

(8)
$$\sum_{i \in \mathbf{N}_{\xi}} M_i \, \frac{\sup_{P \setminus V_i} g(\cdot, \zeta_i; P)}{\inf_{\sigma_i} g(\cdot, \zeta_i; P)} < +\infty,$$

under which we can conclude that $P \in \mathcal{O}_s$ and $T_i \in \mathcal{O}_s$ $(i \in \mathbf{N}_{\xi})$ imply $W := \langle P, (T_i)_{i \in \mathbf{N}_{\xi}}, (\sigma_i)_{i \in \mathbf{N}_{\xi}} \rangle \in \mathcal{O}_s$. Since (8) also assures that dim $W = \xi + 1$ ($\xi \in \mathbf{N} \cup \{\aleph_0\}$) by taking P and T_i ($i \in \mathbf{N}_{\xi}$) in $\mathcal{O}_{HP} \setminus \mathcal{O}_G$, we can also deduce (6). We remark that (8) is automatically satisfied for $\xi \in \mathbf{N}$ so that it is really a condition to be assumed for the case of $\xi = \aleph_0$, although the condition (7) in which \mathbf{N} is replaced by \mathbf{N}_{ξ} with $\xi \in \mathbf{N}$ may not be true even if (8) for $\xi = \aleph_0$ holds. Anyhow we will show in the sequel that (8) assures $W \in \mathcal{O}_s$ when $P \in \mathcal{O}_s$ and $T_i \in \mathcal{O}_s$ ($i \in \mathbf{N}_{\xi}$).

Let X and Y be two Riemann surfaces and γ a slit commonly contained in both of X and Y. We denote by $(X \setminus \gamma) \Join_{\gamma} (Y \setminus \gamma)$ the Riemann surface obtained by pasting $X \setminus \gamma$ to $Y \setminus \gamma$ crosswise along γ . Given a finite number, say m, of open Riemann surfaces W_i $(j \in J := \{1, 2, \cdots, m\})$. Suppose a permutation $J' := \{j_1, j_2, \cdots, j_m\}$ of J is given. Let $Z_1 :=$ $(W_{j_1} \setminus \gamma_{j_1}) \bigotimes \gamma_{j_1} (W_{j_2} \setminus \gamma_{j_1})$ for a common slit γ_{j_1} in W_{j_1} and W_{j_2} , $Z_2 := (Z_1 \setminus \gamma_{j_2}) \bigotimes_{\gamma_{j_2}} (W_{j_3} \setminus \gamma_{j_2})$ for a common slit γ_{j_2} in Z_1 and W_{j_3} , and finally $Z_{m-1} :=$ $(Z_{m-2} \backslash \gamma_{j_{m-1}}) \bigotimes_{\gamma_{j_{m-1}}} (W_{j_m} \backslash \gamma_{j_{m-1}})$ for a common slit $\gamma_{j_{m-1}}$ in Z_{m-2} and W_{j_m} . We then denote by $\bigotimes_{j \in J} W_j$ the final Riemann surface Z_{m-1} neglecting how the permutation J' and the sequence of pasting slits γ_{i} $(i \in J)$ are chosen and call the surface $\bigotimes_{i \in J} W_i$ as a united surface consisting of W_j $(j \in J)$. We can view $\bigcup_{i \in J} W_i$ a disconnected Riemann surface and call it as a bunched surface consisting of W_i $(j \in J)$. We are interested in comparing ordered vector space structures of the harmonic function spaces $H(\bigcup_{j \in J} W_j)$ and $H(\bigcup_{j \in J} W_j)$. The latter is simply given by

$$H\left(\bigcup_{j\in J}W_j\right) = \bigoplus_{j\in J}H(W_j) \text{ (direct sum)},$$

where we understand that $u|W_i \equiv 0$ $(i \in J \setminus \{j\})$ for $u \in H(W_j)$. In general, let \mathcal{F} be an ordered vector

No. 10]

space consisting of some real valued functions with respect to function sums and function orders containing the constant function subspace \mathbf{R} . We say that two such spaces \mathcal{F}_1 and \mathcal{F}_2 are *canonically isomorphic*, $\mathcal{F}_1 \cong \mathcal{F}_2$ in notation, if there is a bijective mapping t of \mathcal{F}_1 onto \mathcal{F}_2 satisfying the following 3 conditions: t is a vector space isomorphism of \mathcal{F}_1 onto \mathcal{F}_2 ; t preserves order in the sense that $tf \ge 0$ if and only if $f \ge 0$ for $f \in \mathcal{F}_1$; $t\lambda = \lambda$ for every $\lambda \in \mathbf{R}$. We maintain the following assertion: if all the Riemann surfaces W_j are hyperbolic (i.e. $W_j \notin \mathcal{O}_G$) for all $j \in J$, then

(9)
$$H\left(\bigcup_{j\in J} W_j\right) \cong H\left(\bigcup_{j\in J} W_j\right)$$
 (canonically isomorphic).

In passing we remark that the hyperbolicity of all the W_j $(j \in J)$ is essential for the validity of (9). For, let

and

 $W_1 \in \mathcal{O}_{HP} \setminus \mathcal{O}_G$

$$W_2 := \mathbf{C} \setminus \{0, \infty\} \in \mathcal{O}_G,$$

where \mathbf{C} is the Riemann sphere. If $H(W_1 \otimes W_2) \cong$ $H(W_1 \cup W_2) = H(W_1) \oplus H(W_2)$, then a canonical isomorphism t here preserves HP and hence $HP(W_1 \otimes W_2) \cong HP(W_1 \cup W_2) = HP(W_1) \oplus$ $HP(W_2)$ so that dim $HP(W_1 \otimes W_2) = \dim HP(W_1 \cup W_2)$ is the usual vector space dimension of the vector space $HP(W_1 \otimes W_2)$. However, dim $HP(W_1 \otimes W_2) = 3$ and dim $HP(W_1 \cup W_2) = 2$. Therefore we see that

 $H(W_1 \boxtimes W_2) \ncong H(W_1 \cup W_2),$

i.e. (9) may not be true when there is a $W_i \in \mathcal{O}_G$.

For the proof of (9), by using the induction, we can assume that $J = \{1, 2\}$. Let X be a hyperbolic Riemann surface and ∞_X the ideal boundary of X in the sense of Alexandroff. Any complement A of a compact subset of X is said to be an ideal boundary neighborhood of ∞_X and any two harmonic functions u and v on A are said to coincide with each other at ∞_X , $u \doteq v$ at ∞_X in notation, if |u - v| is dominated by a potential (cf. e.g. [2]) on X on an ideal boundary neighborhood of ∞_X . A function $s \in$ H(A) for an ideal boundary neighborhood A of ∞_X is said to be a singularity at ∞_X and any $p \in H(X)$ with $p \doteq s$ at ∞_X is said to be a (Dirichlet) principal function of s on X (cf. e.g. Rodin-Sario [7]). We have then the following useful result (cf. e.g. [6]): **Principal Function Theorem.** There exists a unique principal function p on a hyperbolic Riemann surface X of any given singularity s at the ideal boundary ∞_X of X.

To prove this let A be an ideal boundary neighborhood of ∞_X such that $s \in H(\overline{A})$ and A is the complement of the closure $X \setminus A$ of a regular subregion of X and B is a regular subregion of X with $B \supset X \setminus A$. For any $f \in C(\partial A)$ ($C(\partial B)$, resp.) H_f^A $(H_f^B, \text{ resp.})$ is the PWB (i.e. Perron-Wiener-Brelot) solution of Dirichlet problem on A (B, resp.) with the boundary data f on $\alpha := \partial A$ ($\beta := \partial B$, resp.) (cf. e.g. [1]) so that moreover the additional condition $H_f^A \doteq 0$ at ∞_X is imposed upon H_f^A . Let $T\varphi := H_f^A | \beta$ with $f = H_{\varphi}^B | \alpha$ for $\varphi \in C(\beta)$. Since the sup-norm of H_1^A on β is strictly less than 1, i.e. $||H_1^A;\beta||_{\infty} =: k < 1$, by virtue of $X \notin \mathcal{O}_G$, $T: C(\beta) \to C(\beta)$ is a bounded linear operator with the operator norm $||T|| \leq k < 1$, and the abstract integral equation

$$(I-T)\varphi = s_0, \quad s_0 := s - H_s^A$$

has a unique solution $\varphi \in C(\beta)$ in the C. Neumann series

$$\varphi := (I - T)^{-1} s_0 = \sum_{n=0}^{\infty} T^n s_0$$

so that by setting $f := H^B_{\omega}$ we obtain

(10)
$$f|\alpha = H^B_{\varphi}|\alpha, \quad H^A_{f-s}|\beta = (f-s)|\beta.$$

We define a $p \in H(X)$ by $p|A = H_f^A + s_0$ and $p|B = H_{\varphi}^B$. We need to ascertain that these two functions are identical on $A \cap B$. In fact, by using (10), we have

$$\begin{aligned} (p|A)|\alpha &= f|\alpha + s_0|\alpha = f|\alpha, \\ (p|B)|\alpha &= H_{\varphi}^B|\alpha = f|\alpha \end{aligned}$$

so that p|A = p|B on $\alpha = \partial A$, and similarly

$$\begin{aligned} (p|A)|\beta &= H_f^A|\beta + s_0|\beta = T\varphi + s_0|\beta \\ &= T\varphi + (I-T)\varphi = \varphi, \\ (p|B)|\beta &= H_{\phi}^B|\beta = \varphi, \end{aligned}$$

so that p|A = p|B on $\beta = \partial B$. Since p|A = p|B on $\partial(A \cap B) = \partial A \cup \partial B = \alpha \cup \beta$, we can conclude that p|A = p|B on $A \cap B$. Thus p is well defined on X and $p \in H(X)$. Then $p = H_f^A + s_0$ on A shows that $p - s = H_{p-s}^A$ and $p - s \doteq H_{p-s}^A \doteq 0$ at ∞_X and

therefore p is a principal function for the singularity s. The unicity of principal function for s is trivial since, if there are two principal functions p_1 and p_2 , then $p_1 - p_2 \doteq s - s = 0$ at ∞_X and $p_1 \equiv p_2$ on X.

We return to the proof of (9) in the form $H(W_1 \boxtimes W_2) \cong H(W_1 \cup W_2)$. Fix an arbitrary ideal boundary neighborhood A_j of ∞_{W_j} for j = 1 and 2 such that $A_j \subset W_1 \boxtimes W_2$ (j = 1, 2) and $A := A_1 \cup A_2 \subset W_1 \boxtimes W_2$ is an ideal boundary neighborhood of $\infty_{W_1 \boxtimes W_2}$ so that A is also an ideal boundary neighborhood of $\infty_{W_1 \cup W_2}$. For any $u \in H(W_1 \boxtimes W_2)$, let $tu = (t_1 \oplus t_2)u := t_1u + t_2u \in H(W_1) \oplus H(W_2) =$ $H(W_1 \cup W_2)$ with $t_iu|W_j \equiv 0$ $(i \neq j)$ and $t_iu \doteq u|A_i$ at ∞_{W_i} . The bijectiveness of $t: H(W_1 \boxtimes W_2) \to$ $H(W_1 \cup W_2)$ can be easily seen by the principal function theorem and it is also easily checked that t is a canonical isomorphism. The proof of (9) is herewith complete.

It is seen that the order preserving and the linear structure preserving map $t = \bigoplus_{j \in J} t_j$ giving a canonical isomorphism in (9) clearly preserves HP, HP_q , and HP_s :

(11)
$$HY\left(\bigcup_{j\in J} W_{j}\right) \cong HY\left(\bigcup_{j\in J} W_{j}\right)$$
$$= \bigoplus_{j\in J} HY(W_{j})$$

 $(Y = P, P_q, P_s).$

As a consequence of this we can deduce the following

Assertion 12. The united surface $\bigotimes_{i \in J} W_j$ of hyperbolic Riemann surfaces W_j $(j \in J$ with $J = \{1, 2, \dots, m\}; m \in \mathbb{N})$ belongs to the class \mathcal{O}_s if and only if every $W_j \in \mathcal{O}_s$ $(j \in J)$.

Since an afforested surface W given by $\langle P, (T_j)_{j \in \mathbf{N}_{\xi}}, (\sigma_j)_{j \in \mathbf{N}_{\xi}} \rangle$ for a $\xi \in \mathbf{N}$ is a kind of united surface $P \boxtimes (\bigotimes_{j \in \mathbf{N}_{\xi}} W_j)$, the assertion 12 assures that $W \in \mathcal{O}_s$ if and only if $P \in \mathcal{O}_s$ and every $T_j \in \mathcal{O}_s$ $(j \in \mathbf{N}_{\xi})$. Hence, in particular, if $P \in \mathcal{O}_s$ and $T_j \in \mathcal{O}_s$ $(j \in \mathbf{N}_{\xi})$, then $W \in \mathcal{O}_s$. Next, let $W := \langle P, (T_j)_{j \in \mathbf{N}}, (\sigma_j)_{j \in \mathbf{N}} \rangle$ and assume that $P \in \mathcal{O}_s$ and $T_j \in \mathcal{O}_s$ $(j \in \mathbf{N})$. Clearly $W_m := \langle P, (T_j)_{j \geq m+1}, (\sigma_j)_{j \geq m+1} \rangle \notin \mathcal{O}_G$ and therefore, again by Assertion 12, $W = W_m \boxtimes (\bigotimes_{1 \leq j \leq m} T_j) \in \mathcal{O}_s$ if and only if

 $W_m \in \mathcal{O}_s$. Hence, in particular, we state the following

Assertion 13. The membership of an afforested surface $W := \langle P, (T_j)_{j \in \mathbf{N}}, (\sigma_j)_{j \in \mathbf{N}} \rangle$ with $P \in \mathcal{O}_s$ and $T_j \in \mathcal{O}_s \ (j \in \mathbf{N})$ in \mathcal{O}_s is not affected by adding or deleting of a finite number of trees to or from the sequence $(T_j)_{j \in \mathbf{N}}$.

Suppose (8) with $\xi = \aleph_0$ is valid. Then we can find an $m \in \mathbf{N}$ such that

$$\sum_{j>m} (4M_i+1) \frac{\sup_{P \setminus V_i} g(\cdot, \zeta_i; P)}{\inf_{\sigma_i} g(\cdot, \zeta_i; P)} \\ \leq 5 \sum_{j>m} M_i \frac{\sup_{P \setminus V_i} g(\cdot, \zeta_i; P)}{\inf_{\sigma_i} g(\cdot, \zeta_i; P)} < 1$$

Then we have (7) for the afforested surface $W_m := \langle P, (T_j)_{j>m}, (\sigma_j)_{j>m} \rangle$ so that we can conclude $W_m \in \mathcal{O}_s$ by our former result (cf. [4]). Adding *m* trees T_1, \dots, T_m to W_m we obtain $W := \langle P, (T_j)_{j\in \mathbf{N}}, (\sigma_j)_{j\in \mathbf{N}} \rangle$ and $W \in \mathcal{O}_s$ along with $W_m \in \mathcal{O}_s$ by assertion 13.

References

- C. Constantinescu and A. Cornea, *Ideale Ränder Riemannscher Flächen*, Ergebnisse der Mathematik und ihre Grenzgebiete, Band 32, Springer, Berlin, 1963.
- F.-Y. Maeda, Dirichlet integrals on harmonic spaces, Lecture Notes in Math., 803, Springer, Berlin, 1980.
- [3] H. Masaoka and S. Segawa, On several classes of harmonic functions on a hyperbolic Riemann surface, in *Complex analysis and its applications*, 289–294, Osaka Munic. Univ. Press, Osaka, 2008.
- [4] M. Nakai and S. Segawa, Types of afforested surfaces, Kodai Math. J. 32 (2009), no. 1, 109–116.
- [5] M. Nakai and S. Segawa, Existence of singular harmonic functions, Kodai Math. J. (to appear).
- [6] M. Nakai and T. Tada, Monotoneity and homogeneity of Picard dimensions for signed radial densities, Hokkaido Math. J. 26 (1997), no. 2, 253–296.
- [7] B. Rodin and L. Sario, *Principal functions*, University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J., 1968.
- [8] L. Sario and M. Nakai, Classification theory of Riemann surfaces, Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Band 164, Springer, New York, 1970.