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Abstract: Let p be an odd prime number, and F a number �eld. We show that when F=Q

is unrami�ed at p, any tame cyclic extension N=F of degree p has a normal integral basis if the

pushed up extension Nð�pÞ=F ð�pÞ has a normal integral basis.
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1. Introduction. Let p be a �xed odd prime
number. Let � be a cyclic group of order p. Let F be

a number �eld, and K ¼ F ð�pÞ where �p is a primi-

tive p-th root of unity. G�omez Ayala [4, Theorem
2.1] gave a very explicit criterion for a tame �-exten-

sion over K to have a normal integral basis (NIB for
short) in terms of a Kummer generator. Thus, it is

natural to ask ‘‘does a tame �-extension N=F has a

NIB if NK=K has a NIB?’’. Greither [6, Theorem
2.2] gave an af�rmative answer to the question when

p ¼ 3 and F=Q is unrami�ed at 3. The author [10,

Theorem 4] removed the assumption that F=Q is
unrami�ed at 3. Further, it has an af�rmative answer

for any p and F when N=F is unrami�ed at all �nite

primes (Brinkhuis [3], the author [8, 9]). The main
purpose of this note is to generalize Greither’s result

as follows:

Theorem 1. Let p be an odd prime number,

and let F be a number �eld and K ¼ Fð�pÞ. Assume

that F=Q is unrami�ed at p. Then any tame �-exten-

sion N=F has a NIB if and only if NK=K has a NIB.

Let F be a number �eld, OF the ring of integers,

ClF the ideal class group of the Dedekind domain
OF , and hF ¼ jClF j the class number of F . Let

ClðOF�Þ be the locally free class group of the group

ring OF�, and let Cl0ðOF�Þ be the kernel of the ho-
momorphism ClðOF�Þ ! ClF induced by the aug-

mentation OF�! OF . For a tame �-extension N=F ,
the integer ring ON is locally free over OF�, and

hence it determines a class ½ON � in ClðOF�Þ. The

class ½ON � is trivial if and only if the extension N=F

has a NIB as � is an abelian group. It is known that

½ON � 2 Cl0ðOF�Þ. Hence, Theorem 1 is an immedi-
ate consequence of the following

Theorem 2. Under the setting and the as-

sumption of Theorem 1, the natural map

Cl0ðOF�Þ ! Cl0ðOK�Þ

induced by the scalar extension is injective.

Remarks 1. (I) In general, the locally free

class group Cl0ðOF�Þ is a very complicated object.
However, when F=Q is unrami�ed at p, it is shown

by Brinkhuis [2, Proposition 2.1] that it is isomorphic

to the ray class group ClK;� of K ¼ F ð�pÞ de�ned

modulo � ¼ �p � 1. But, we do not need this fact for

proving Theorem 2.

(II) Let L=F be a �nite extension of a number
�eld F , and G an arbitrary �nite group. Recently,

Greither and Johnston [7, Corollary 5.2] showed that

the natural map ClðOFGÞ ! ClðOLGÞ is injective if
ð½L : F �; jClðOFGÞjÞ ¼ 1 and OL is free over OF .

Theorem 2 is not contained in this general result.

Actually, let F be a number �eld such that F=Q is
unrami�ed at p and hF ¼ 1. Then we have ClðOF�Þ ¼
Cl0ðOF�Þ ffi ClK;�. If further ðp� 1; hKÞ 6¼ 1, then

the triple ðF; K; �Þ does not satisfy the �rst assump-
tion of [7, Corollary 5.2], while the natural map

ClðOF�Þ ! ClðOK�Þ is injective by Theorem 2. For

example, the above conditions on F (and K) are
satis�ed when p ¼ 3 and F ¼ Qð

ffiffiffi

7
p
Þ. (We have

hK ¼ 2 in this case.)

(III) Let RðOF�Þ be the subset of Cl0ðOF�Þ
consisting of the locally free classes ½ON � for all tame

�-extensions N=F . In [12], McCulloh characterized
the realizable classes RðOF�Þ in terms of a ‘‘Stickel-

berger ideal’’ acting on ClðOF�Þ, from which it fol-

doi: 10.3792/pjaa.85.160

62009 The Japan Academy

160 Proc. Japan Acad., 85, Ser. A (2009) [Vol. 85(A),

2000 Mathematics Subject Classi�cation. 11R33.



lows that the main part of RðOF�Þ is contained in
the ‘‘minus’’ part of Cl0ðOF�Þ. Therefore, Theorem

2 is an assertion much stronger than Theorem 1, and
if one obtains some nice results on the minus part,

then it might be possible to obtain a better result on

the Galois descent problem.
(IV) Let p be a prime number. We say that a

Galois extension N=F has a p-NIB when it has a

normal basis with respect to the p-integers O0F ¼
OF ½1=p�. One can consider an analogous Galois de-

scent problem; Does a cyclic extension N=F of de-

gree pn has a p-NIB if the extension Nð�pnÞ=F ð�pnÞ
has a p-NIB? Here, �pn is a primitive pn-th root of

unity. When N=F is unrami�ed outside p, a quite

general af�rmative answer is given in Greither [5,
Theorem I.2.1]. However, for the rami�ed case, the

matters are complicated. Such a Galois descent prop-

erty holds when p does not divide the degree
½F ð�pnÞ : F �, but does not hold in general when p

divides the degree [11, Theorems 1, 2].

2. A description of locally free class group.

In this section, we recall a description of the locally

free class group following a convenient exposition in

[12, pp. 112{113].
Let p be a �xed prime number and F a number

�eld. Let O0F ¼ OF ½1=p� be the ring of p-integers of

F , and OF; p the elements of F integral at the primes
over p. Clearly, we have

OF ¼ O0F \ OF; p:ð1Þ
Let IðO0F�Þ be the group of fractional O0F�-ideals

in F�, and let P ðO0F�Þ be the subgroup consisting
of principal ideals �O0F� for units � 2 ðOF; p�Þ�
ð� F�Þ. Here, for a ring R containing a unity, R�

denotes the group of invertible elements of R. We
have a canonical isomorphism

ClðOF�Þ ffi IðO0F�Þ=P ðO0F�Þ:ð2Þ
Let K ¼ F ð�pÞ. Let � be a �xed nontrivial K-valued
character of �, and �0 the trivial character of �. Let

t ¼ tF ¼ ðp� 1Þ=½K : F �:
Let g be a primitive root modulo p. Then we see

that �; �g; � � � ; �g t�1
form a complete set of repre-

sentatives of the F -equivalent classes of nontrivial

K-valued characters of �. As usual, we extend a

character of � to a homomorphism from F� to K

by linearity. We have a Wedderburn decomposition

’ ¼ ’F : F�!� F 	K 	K 	 � � � 	K
with

’ð�Þ ¼ ð�0ð�Þ; �ð�Þ; �gð�Þ; � � � ; �g
t�1ð�ÞÞ:

We easily see that

’ðO0F�Þ ¼ O0F 	O0K 	 � � � 	 O0K:
A fractional O0F�-ideal in F� corresponds via ’ to a

direct product of fractional ideals of the components.
Let I 0ðO0F�Þ be the subgroup of IðO0F�Þ consisting

of fractional ideals A 2 IðO0F�Þ for which the �rst
component of ’ðAÞ equals the trivial ideal O0F . Let

P 0ðO0F�Þ be the subgroup of I 0ðO0F�Þ consisting of

principal ideals �O0F� for units � 2 ðOF; p�Þ� such
that �0ð�Þ ¼ 1. We easily see that

P 0ðO0F�Þ ¼ P ðO0F�Þ \ I 0ðO0F�Þ
using (1). Therefore, the isomorphism (2) induces an
isomorphism

Cl0ðOF�Þ ffi I 0ðO0F�Þ=P 0ðO0F�Þ:
3. Proof of Theorem 2. Let p be an odd

prime number. We �x a primitive p-th root � ¼ �p of
unity, and put � ¼ � � 1. Let F be a number �eld,

and K ¼ F ð�Þ. Throughout this section, we assume

that ½K : F � ¼ p� 1. Then we have tF ¼ 1 and tK ¼
p� 1. Let � be a nontrivial K-valued character of �,

and �0 the trivial character of �. As tF ¼ 1, all non-
trivial characters of � are conjugate to � over F .

Lemma 1. For x 2 O�F ;p and y 2 OF ;p½� ��,

there exists a unit � 2 ðOF ;p�Þ� such that �0ð�Þ ¼ x

and �ð�Þ ¼ y if and only if x 
 y mod �.

Proof. For simplicity, write � ¼ OF; p�. Let �
be a generator of �. The trivial character �0 induces

an isomorphism �=ð� � 1Þ ffi OF; p, and � induces an

isomorphism �=ð’pð�ÞÞ ffi OF; p½�� as ½K : F � ¼ p� 1.
Here, ’p is the p-th cyclotomic polynomial. We easily

see that ð� � 1Þ \ ð’pð�ÞÞ ¼ f0g. Hence, we obtain a

Milnor square:

�
���!�0 OF; p

�

?

?

y
j1

?

?

y

OF; p½� � ���!j2
S;

where S ¼ �=ð� � 1; ’pð�ÞÞ ¼ OF; p=p and the map

j1 (resp. j2) is the reduction modulo p (resp. �).
Here, we are identifying the quotient ring OF; p½��=�
with S by the map

X

i

ai�
i mod �!

X

i

ai mod p

with ai 2 OF; p. It is known that this diagram yields
the exact sequence:
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�� !f X ¼ O�F; p �OF; p½��� !
g
S�;

where the map f sends � 2 �� to ð�0ð�Þ; �ð�ÞÞ and

g sends ðx; yÞ 2 X to xy�1 mod �. For these, see

Theorem 5.3 and Example (5.5) in Bass [1, Chapter
9]. The assertion follows from the above exact

sequence. r
For a number �eld F , we put

XF;p ¼ fx 2 OK;p

�

� x 
 1 mod �g

with K ¼ F ð�Þ. When F=Q is unrami�ed at p, we

have ½K : F � ¼ p� 1 and OK;p ¼ OF; p½��. Therefore,
Theorem 2 is an immediate consequence of the

following

Theorem 3. Let F be a number �eld and

K ¼ Fð�Þ. Assume that ½K : F � ¼ p� 1 and XF ;p �
OF ;p½� �. Then the natural map

Cl0ðOF�Þ ! Cl0ðOK�Þ
is injective.

Proof of Theorem 3. Let A be an arbi-

trary element of I 0ðO0F�Þ, and let A ¼ A � O0K� 2
I 0ðO0K�Þ. Let � be the generator of the Galois group

GalðK=F Þ sending � to � g, where g is the primitive

root modulo p in Section 2. By the Wedderburn de-
composition, we have

’F ðAÞ ¼ O0F 	A

and

’KðAÞ ¼ O0K 	A	A� 	 � � � 	A� p�2

as tF ¼ 1 and tK ¼ p� 1. Here, A is a fractional

ideal of O0K . Assume that the class ½A �K in
Cl0ðOK�Þ ¼ I 0ðO0K�Þ=P 0ðO0K�Þ is trivial. Then

there exists a unit � 2 ðOK;p�Þ� ð� K�Þ such that

�0ð�Þ ¼ 1 and A ¼ �O0K�. In particular, �ð�ÞO0K ¼
A. Clearly, �ð�Þ 
 1 mod � where � is, as before,

a generator of �. It follows that 1 ¼ �0ð�Þ 

�ð�Þ mod �, and hence �ð�Þ 2 OF; p½� � by the as-
sumption XF;p � OF; p½� �. Therefore, we see from

Lemma 1 that there exists a unit � 2 ðOF; p�Þ� such

that �0ð�Þ ¼ 1 and �ð�Þ ¼ �ð�Þ. Hence, we obtain
A ¼ �O0F�. r

Remarks 2. (I) Let p ¼ 3 and F a number

�eld with �3 62 F . Then we can easily show that the
second condition XF;p � OF; p½� � in Theorem 3 is

satis�ed. Therefore, by Theorem 3, we obtain an

alternative proof of [10, Theorem 4] mentioned in

Section 1. However, when p � 5 and F=Q is rami�ed
at p, the condition seems to be quite a hard one.

(II) When ½K : F � < p� 1 or XF;p 6� OF; p½� �,
the author has no idea, at present, as to whether or

not the injectivity in Theorem 3 holds.

Acknowledgments. The author is grateful
to the referee for valuable suggestions and com-

ments. The proof of Lemma 1 in the former version

was elementary but rather complicated. The present
simple proof was suggested by the referee. The

author was partially supported by Grant-in-Aid for

Scienti�c Research (C), No. 19540005, Japan Society
for the Promotion of Science.

References

[ 1 ] H. Bass, Algebraic K-theory, W. A. Benjamin,
Inc., New York, 1968.

[ 2 ] J. Brinkhuis, Normal integral bases and complex
conjugation, J. Reine Angew. Math. 375/376
(1987), 157{166.

[ 3 ] J. Brinkhuis, Normal integral bases and the Spie-
gelungssatz of Scholz, Acta Arith. 69 (1995),
no. 1, 1{9.

[ 4 ] E. J. G�omez Ayala, Bases normales d’entiers dans
les extensions de Kummer de degr�e premier, J.
Th�eor. Nombres Bordeaux 6 (1994), no. 1,
95{116.

[ 5 ] C. Greither, Cyclic Galois extensions of com-
mutative rings, Lecture Notes in Math., 1534,
Springer, Berlin, 1992.

[ 6 ] C. Greither, On normal integral bases in ray class
�elds over imaginary quadratic �elds, Acta
Arith. 78 (1997), no. 4, 315{329.

[ 7 ] C. Greither and H. Johnston, Capitulation for
locally free class groups of orders of group alge-
bras over number �elds, Bull. Lond. Math. Soc.
41 (2009), no. 3, 541{548.

[ 8 ] H. Ichimura, On a theorem of Childs on normal
bases of rings of integers, J. London Math. Soc.
(2) 68 (2003), no. 1, 25{36.

[ 9 ] H. Ichimura, Addendum to: ‘‘On a theorem of
Childs on normal bases of rings of integers’’ [J.
London Math. Soc. (2) 68 (2003), no. 1, 25{36;
1980241], J. London Math. Soc. (2) 69 (2004),
no. 2, 303{305.

[ 10 ] H. Ichimura, Normal integral bases and ray class
groups, Acta Arith. 114 (2004), no. 1, 71{85.

[ 11 ] H. Ichimura, On the ring of p-integers of a cyclic
p-extension over a number �eld, J. Th�eor. Nom-
bres Bordeaux 17 (2005), no. 3, 779{786.

[ 12 ] L. R. McCulloh, Galois module structure of ele-
mentary abelian extensions, J. Algebra 82
(1983), no. 1, 102{134.

162 H. ICHIMURA [Vol. 85(A),


