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The ideal class group of the Z,3-extension over the rational field

By Kuniaki HORIE® and Mitsuko HORIE**)-1)

(Communicated by Masaki KASHIWARA, M.J.A., Nov. 12, 2009)

Abstract:

Given any prime number [ which is a primitive root modulo 529 (= 232), we shall

prove that the l-class group of the Zy3-extension over the rational field is trivial.

Key words:

Let p be any odd prime number. Let Z, denote
the ring of p-adic integers, and By, the Z,-extension
over the rational field Q (contained in the complex
field). The p-class group of B, is known to be trivial
(cf. Iwasawa [5]). Let ! be a prime number different
from p. We have shown in [1-4], through arithmetic
study of the analytic class number formula, that the
[-class group of By is trivial if [ is a primitive root
modulo p? and if

3
p<19 or 1>5(p—1p(p—1)log(plogp);

here ¢ denotes the Euler function and, for each real
number r > 0, log, r = (log )/ log 2 as usual. In this
paper, we shall prove the following result by means
of some results in [1-3] with the help of a personal
computer.

Theorem. If p=23 and [ is a primitive root
modulo 232, then the I-class group of By is trivial.

Remark. The condition that [ is a primitive
root modulo 232 means that [ is congruent modulo
23 to some integer in {5,7,10,11,14,15,17,19, 20,21}
and is not congruent modulo 529 to any integer in
{28,42,63,130,195,263,274, 352, 359,411}.

We have used Mathematica for our calculations
by computer.

1. To begin with, we give lemmas helpful for
the computations in the proof of our theorem. Let
the notations p and [ be as before, except that we
assume [ > 2. For each integer m > 0, let B,, denote
the subfield of By, with degree p™, and h,, the class
number of B,,. Let n be any positive integer. Since
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the prime ideal of B,_; dividing p is totally ramified
in B, class field theory shows that h,_; divides h,,
i.e., hy,/h,_1 is an integer. The notation n, as well as
p and [, will be used henceforth.

Now, let v be the number of distinct prime di-
visors of (p—1)/2, and let gi,...,g, be the prime-
powers > 1 pairwise relatively prime such that

p—1_

2
Let V denote the subset of the cyclic group
(e2m/(P=1)} consisting of

g1 Gu-

em’,m]/gl . eﬂimu/gu
for all w-tuples (mi,...,m,) of integers with
0<m <g,...,0<m, < g,. It is naturally under-

stood that V = {1} if p = 3. Let ® denote the set of
maps
z:V —{0,...,2l}

such that I} z(§) for some £ € V and | 2(¢’) for all
¢ e V\ {£}. We put

M =max N z -1,

na; (; (6% )
where 9t denotes the norm map from Q(e*™/(?=1) to
Q. We easily see that M is a positive integer.

Next, let p be a prime ideal of Q(e*™/®~V) di-
viding p. Let I denote the set of positive integers
a <p"! for which a=¢ (mod p"*t) with some
&€ V. Since p is of degree 1 over Q and since
no pair (§1,&) of distinct elements of V' satisfies
& —&ep, each £ €V gives a unique a € I con-
gruent to & modulo p"*! and the map & — a defines
a bijection from V to I. We note that I contains 1.
Let I denote the set of all maps from I to the ring Z
of (rational) integers, so that I is regarded as a
module in the usual manner. Let §& denote the set of
maps j in I with j(I) €{0,1} and, for each a € I,
let &, denote the set of maps j in I such that



0 < j(a) <l and that j(b) =0 or j(b) =1 for every
be I\ {a}. Given any m € Z, we then define P,(m)
to be the set of (j,y) € ®, x § satisfying

D (" + 1)) +yb))b=m  (mod p"*);
bel

further, we define Q,(m) to be the set of (j,y) €
& X G, satisfying

> (P +1)j(b) + y()b=m  (mod p"*).

bel
We also put
s(m) = Z ( Z (_1)y(a)+zbe,(j<b>+y(b)>y®
acl \ (j,y)€Qa(m)
_ Z (_1)]‘(@)+Zb£1(j(b)+:u(b))j®>;
(j,y)EPa(TTL)

here, for each integer c relatively prime to [, ¢ de-
notes the positive integer smaller than ! such that
c¢ =1 (mod I). For each a € I, let $, denote the set
of maps f in I satisfying

f(a)é{].,...,Ql—].}\{l}, f(I\{a‘})g{Ovla2l}
Every pair (j,y) in (0, x &) U (F x ©,) then gives a
map j+yin 9,. We put

R(m) = | (Pu(m) U Qu(m)),

acl

H(m) = {f cJs.

acl

Zf(b)b =m (mod p”)},

bel

so that every (j,y) in R(m) satisfies j+y € H(m).
We denote by t,, the map in I such that Ym(1) =
m and that ¢,,(a) =0 for all @ in T\ {1}. Obviously,
Y € H(m) when m € {1,...,2l — 1} \ {{}. On the
other hand, ¥, = 0 in / when m = 0.

Lemma 1. Let ny be any positive integer, and
u an integer in {1,...,21 — 1} \ {{}. Then the follow-
ing statements are equivalent.
(i) D(u) = {v,} in the case n = ny;
(i) H(u) = {Y,} whenever n > ny.

Proof. This follows immediately from the de-
finitions of I and $H(u). O

Lemma 2. Let u be an integer in {1,...,
20— 1} \ {1} such that p¥ u or p k2l — u according
to whether u < 1 or u > I. Assume that H(u) = {¢,}.
Then 1 does not dwide hy/hy_1 for any integer
n' > n.

Proof. By Lemma 1, it suffices to prove that [
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does not divide h,/h,—1. Let us first consider the
case u < l. We take any (j,y) in R(u) and any
(4',v") in R(u+ up™). It follows that not only j+y
but also j' + y’ belongs to 9 (u). Hence, by the as-
sumption $(u) = {tu},

J(1) +y(1) =,
and, for each b € I'\ {1},

J(b) = y(b) = 5'(b) = y'(b) = 0.
Furthermore, neither of the equalities
((1),y(1) = (u,0),  (i'(1),y'(1)) = (0, u)
holds, because u is not divisible by p. We thus obtain
(J,y) = (0,%u), (jlvy/) = (Yu, 0).
These mean that
R(u) = Qi(u) = {(0, %)},
R(u+up") = Pi(u+up") = {(tu, 0)}.

In particular,

I +y' (1) =uq,

s(u) =14, s(u+up")=—u.
Since [ does not divide 24 = s(u) — s(u + up™), we
then see from [3, Lemma 2] (or [2, Lemma 3]) that {
does not divide h,,/hy,_1.

In the case u > [, taking any (j,y) in R(u + Ip™)
and any (5/,y") in R(u+ (u — I)p"), we have by the
hypothesis

(j’ y) = (whwu—l)v (jlvy/) = (¢u—z7¢l),

similarly to the above, and hence we have succes-
sively

R(u+1p") = Q1(u+Ip") = {(¢, Yu) }

R(’U, + (’U, - l)pn) = 7Dl (U + (U - l)pn) = {(1/)71,—17 ¢l)}7
s(tu+lp")=—-a, s(u+(u—1p")=a.
It therefore follows again from [3, Lemma 2] that [
does not divide Ay, /hy,_1. O
2. Assume now that p is 23 and [ a primitive
root modulo 529. In the rest of the paper, we are de-
voted to the proof of the theorem already stated.
Let p = e™/11, so that
V:{poz]‘?""plo}?
We take any z € ® and put

10
a=>Y AHE-1= p"wn,
m=0

Eev

p11 =—1.

where wy = 2(1) — 1, w; = 2(p), ..., wip = 2(p'°). We
further put
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W § Wi Wi —c § Wm4-11—-cWm

m=c

for each ¢ € {1,...,5}. Let o be any automorphism
of Q(p). It follows that

10 10
lo(a)|* = (Z U(P)mwm> (Z U(ﬁ)_mwm>

m=0 m=0

10 10
(@(p) +0(p) ™) D Wt e+ Y _ w0,
m=c m=0

10
(0(p) +0(p) Wt >},

c=1 m=0

1

o

Il
(]

c=1

(S]]

In view of the above expansion and the simple fact
that, for real constants r; and ry, the function 2? +
2 + 7r9 of a real variable z defined on a closed inter-
val takes its maximum at an endpoint of the interval,
we find that if the real function

10 10
(Z U(p)mxm - 1) (Z O'(p)_mxm - 1)
m=0

m=0

of eleven variables zg,...,r19 in the closed inter-
val [0,2[] takes its maximum, then each value of
xg, ..., 210 is 0 or 2/ and so

—41% < me L= @hem) < 360,

m=

1
2 U U 2
817 < sz m—2 me+9xm < 281,
m=0
2
—12% < Z ‘Tm m—3 Z 1.'/m+81.'/m < 20[2’
m= m=0
10 3
2 / / 2
—12" < Z xm m—4 Z T8 < 160,
m=4 m=0
4
_1212 < Z xm m— Z x{m+6x{m < 12127
m= m=0
where zy =9 — 1, ] =21, ..., &y = 210. Hence
4
S 1 A
d=0|c= m=
2T 3m
< 18 cos—+ 14 cos — + 10 cos —
<< 11 11 11

47 5%
+ 80051—4— Gcosﬁ—i— 11)
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2
5fﬁ—Gc s—ﬂ

3
18 cos X + 4 co
><<800S’11Jr ST 11

47
+ GCOSﬁ-i- 6cosﬁ+ 11)

9052 4+ 14 cos T 4 10 cos T
COS11 COS 11 COS11

3m
— —+1
+600811+6COS11+ 1)

5m 47
T4y el =
(18005 11 + cos11 + 6cos11

2m 3m
— —+11
—|—800$11+6cosll+ )

4m 3m ™
2cos—+4 1 —
(cosll—l— COSll+ ()cos11

om 2m
— —+11) ) (4P
—|—6c0511—|—6c0511+ ))(l)

We thus obtain
M < 50412966(21)".

Let P be the set of prime numbers which are primi-
tive roots modulo 529. Let S be the set of pairs
(n/,1’) such that n' is a positive integer, I’ is a prime

number in P, and
!
23" +1 oo
sin— |.
T

23

23" < 50412966(20")"°, 1I' < lllog2<

Each (n/,1") in S then satisfies

n' <31, 1'<1523.

By [3, Lemma 1],

hn/hnfb
We put, for later convenience,

S'={(7,I')| ' € P, 293 < I' < 389}
U{(8,1')|1"€ P,389 <1’ <613}
u{(9,1)|1I' € P, 613 < I' < 1523}.

(n,l) belongs to S if [ divides

From now on, suppose that (n,l) belongs to SUS’.
As hy =1, it suffices for our proof to show that [
does not divide h,,/h,_1. We define a unit n in B,, by

_ H sin(27ra/23"+1)
T 1L Gn(2n(237 + 1)a/23 )

This is a typical example of a circular (or cyclotomic)
unit of B,,. For each positive integer m < 10, let a,,
denote the integer such that

Ay = 523"m (mod 23n+1)7

0< a,, < 23",
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Since 5 is a primitive root modulo 23", we take as p
the prime ideal of the 11th cyclotomic field Q(p) gen-
erated by 23 and a; — p. It follows that
I= {1,0,1, N ,(110}.
We let ||n]| denote the maximum of the absolute
values of all conjugates of 1 over Q. Lemma 2 of [2]
implies that h,/h,—1 Z 0 (mod 1) if I > log, ||n|| (cf.
[1, Lemmas 2, 3]).
Let us first consider the case n < 5. Put

S = ({1,2,3,4} x {5,7,11}) U ({2, 3,4} x {17, 19})
U ({4,5} x {37}),
S» ={(5,5),(5,7),(5,11),(5,17),(5,19)}
= {5} x {5,7,11,17, 19}.

[Vol. 85(A),

Using a personal computer together with Mathema-
tica, we have verified that the maximal integer not
exceeding log, ||n|| is either 12, 20, 27, 40 or 38 ac-
cording as n is either 1, 2, 3, 4 or 5. Therefore (n,!)
satisfies 1 < log, ||n|| if and only if (n,l) € S;US;.
By further use of the (personal) computer under the
condition (n,l) € Sy, we have computed s(m) for
suitable integers m after the determination of P,(m),
Q.(m) for all a € I. Results for such cases of (n,!)
are given in Tables I and II. We therefore know from
[3, Lemma 2] that [ does not divide h,,/h,—1 when
(n,1) belongs to Si. In the case (n,l) € Sz, we can
find by computer an example of u satisfying the hy-
pothesis of Lemma 2; namely, we have H(u) = {¢,},
with u equal to either 3, 6, 2, 7 or 36, according to
whether [ is either 5, 7, 11, 17 or 19. Hence, by
Lemma 2, the product 5-7-11-17-19 is relatively
prime to h, /hy_1 for all integers n’ > 5. It is thus
proved that h,,/h,—; # 0 (mod /) whenever n < 5.

Let us next proceed to the case where n =6 so
that [ < 293. By an argument above, we may sup-
pose that | & {5,7,11,17,19}, i.e., I > 37. With the
help of a computer, as in the case (n,l) € Sy, we can
always find an example of u satisfying the hypothesis
of Lemma 2. Values of u € {1,...,l— 1} such that
9H(u) = {¢}, for all values of I, are given in Table
III. Consequently, Lemma 2 actually shows that
hn/hn—1 #0 (mod I) not only when n =6 but also
when n > 7 and [ < 293.

Let us finally deal with the case n > 7. Naturally
supposing that [ > 293, we put

T={(n"+m0") | (n,I")e S, 0<meZ}.

In the case (n,l) € S’, we have checked $H(1) = {1}
by computer. Therefore, in virtue of Lemma 2, [ does
not divide A,y /h,y—1 for all integers n' with (n/,1) € T.
Since

{(I)| (nI")eS, n >7}CT,

it then follows that h,/h,—1 # 0 (mod [) whenever

n > 7. Thus the theorem is completely proved.
Correction to [1]. Instead of defining f(x,u)

by line 19 on page 258, one should define f(x,u)

Table IIT

Table I
(n,l) s(1) s(1+23")
(5,37) ~20 -1
(4,37) 313 153
(4,19) ~70 155
(4,17) _75 18
(4,11) ~10 13
(4,7) 2 6
(4,5) 13 ~10
(3,17) —294 322
(3,11) —04 —74
(3,5) 29 ~23
(2,19) 6170 1482
(2,11) 2803 73
(2,5) 211 10
(1,11) 15055 —11216
(1,7) 3532 3975
(1,5) 115 769
Table II
(n,1) s(2) s(2 4 23")
(3,19) 242 427
(3,7) —134 41
(2,17) ~1297 —2032
(2,7) —55 1335
|37 43 53 61 67 79 83

89 97 103 107 113 149 157 181 191 199 227 241 251 281 283 293

v 1 1 1 2 2 1 1 2 4 2 1 90

3 3 13 3 4 8 4 8 12 281 )
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as the maximal divisor of f(x) relatively prime to
u, with the notation @ retained; furthermore, on
page 260, “qo = ged(q,2t)”" in line 3, “f' = f(d)”
in line 6, and “i¢(b) =1 in line 11 should be
“qo = f(2)/t7, “FS) [ 7, and “ahp(b)’ =17, re-
spectively.
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