The ideal class group of the Z_{23} -extension over the rational field

By Kuniaki Horie*) and Mitsuko Horie**),†)

(Communicated by Masaki Kashiwara, M.J.A., Nov. 12, 2009)

Abstract: Given any prime number l which is a primitive root modulo 529 (= 23^2), we shall prove that the l-class group of the \mathbb{Z}_{23} -extension over the rational field is trivial.

Key words: \mathbf{Z}_{23} -extension; ideal class group; Iwasawa theory.

Let p be any odd prime number. Let \mathbf{Z}_p denote the ring of p-adic integers, and \mathbf{B}_{∞} the \mathbf{Z}_p -extension over the rational field \mathbf{Q} (contained in the complex field). The p-class group of \mathbf{B}_{∞} is known to be trivial (cf. Iwasawa [5]). Let l be a prime number different from p. We have shown in [1–4], through arithmetic study of the analytic class number formula, that the l-class group of \mathbf{B}_{∞} is trivial if l is a primitive root modulo p^2 and if

$$p \leq 19 \quad \text{or} \quad l > \frac{3}{2}(p-1)\varphi(p-1)\log_2(p\log p);$$

here φ denotes the Euler function and, for each real number r>0, $\log_2 r=(\log r)/\log 2$ as usual. In this paper, we shall prove the following result by means of some results in [1–3] with the help of a personal computer.

Theorem. If p = 23 and l is a primitive root modulo 23^2 , then the l-class group of \mathbf{B}_{∞} is trivial.

Remark. The condition that l is a primitive root modulo 23^2 means that l is congruent modulo 23 to some integer in $\{5, 7, 10, 11, 14, 15, 17, 19, 20, 21\}$ and is not congruent modulo 529 to any integer in $\{28, 42, 63, 130, 195, 263, 274, 352, 359, 411\}$.

We have used Mathematica for our calculations by computer.

1. To begin with, we give lemmas helpful for the computations in the proof of our theorem. Let the notations p and l be as before, except that we assume l > 2. For each integer $m \ge 0$, let \mathbf{B}_m denote the subfield of \mathbf{B}_{∞} with degree p^m , and h_m the class number of \mathbf{B}_m . Let n be any positive integer. Since

the prime ideal of \mathbf{B}_{n-1} dividing p is totally ramified in \mathbf{B}_n , class field theory shows that h_{n-1} divides h_n , i.e., h_n/h_{n-1} is an integer. The notation n, as well as p and l, will be used henceforth.

Now, let ν be the number of distinct prime divisors of (p-1)/2, and let g_1, \ldots, g_{ν} be the prime-powers > 1 pairwise relatively prime such that

$$\frac{p-1}{2} = g_1 \cdots g_{\nu}.$$

Let V denote the subset of the cyclic group $\langle e^{2\pi i/(p-1)} \rangle$ consisting of

$$e^{\pi i m_1/g_1} \cdots e^{\pi i m_{\nu}/g_{\nu}}$$

for all ν -tuples (m_1, \ldots, m_{ν}) of integers with $0 \le m_1 < g_1, \ldots, 0 \le m_{\nu} < g_{\nu}$. It is naturally understood that $V = \{1\}$ if p = 3. Let Φ denote the set of maps

$$z: V \to \{0, \dots, 2l\}$$

such that $l \not\mid z(\xi)$ for some $\xi \in V$ and $l \mid z(\xi')$ for all $\xi' \in V \setminus \{\xi\}$. We put

$$M = \max_{z \in \Phi} \Re\left(\sum_{\xi \in V} z(\xi)\xi - 1\right),$$

where \mathfrak{R} denotes the norm map from $\mathbf{Q}(e^{2\pi i/(p-1)})$ to \mathbf{Q} . We easily see that M is a positive integer.

Next, let $\mathfrak p$ be a prime ideal of $\mathbf Q(e^{2\pi i/(p-1)})$ dividing p. Let I denote the set of positive integers $a < p^{n+1}$ for which $a \equiv \xi \pmod{\mathfrak p^{n+1}}$ with some $\xi \in V$. Since $\mathfrak p$ is of degree 1 over $\mathbf Q$ and since no pair (ξ_1, ξ_2) of distinct elements of V satisfies $\xi_1 - \xi_2 \in \mathfrak p$, each $\xi \in V$ gives a unique $a \in I$ congruent to ξ modulo $\mathfrak p^{n+1}$ and the map $\xi \mapsto a$ defines a bijection from V to I. We note that I contains 1. Let \hat{I} denote the set of all maps from I to the ring $\mathbf Z$ of (rational) integers, so that \hat{I} is regarded as a module in the usual manner. Let $\mathfrak F$ denote the set of maps j in \hat{I} with $j(I) \subseteq \{0,l\}$ and, for each $a \in I$, let $\mathfrak G_a$ denote the set of maps j in \hat{I} such that

²⁰⁰⁰ Mathematics Subject Classification. Primary 11R29; Secondary 11R20, 11R23.

^{*)} Department of Mathematics, Tokai University, 1117, Kita-kaname, Hiratsuka, Kanagawa 259-1292, Japan.

^{**)} Department of Mathematics, Ochanomiz University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan.

^{†)} Corresponding author.

0 < j(a) < l and that j(b) = 0 or j(b) = l for every $b \in I \setminus \{a\}$. Given any $m \in \mathbb{Z}$, we then define $\mathcal{P}_a(m)$ to be the set of $(j, y) \in \mathfrak{G}_a \times \mathfrak{F}$ satisfying

$$\sum_{b \in I} ((p^n + 1)j(b) + y(b))b \equiv m \pmod{p^{n+1}};$$

further, we define $Q_a(m)$ to be the set of $(j, y) \in \mathfrak{F} \times \mathfrak{G}_a$ satisfying

$$\sum_{b \in I} ((p^n + 1)j(b) + y(b))b \equiv m \pmod{p^{n+1}}.$$

We also put

$$s(m) = \sum_{a \in I} \left(\sum_{(j,y) \in \mathcal{Q}_a(m)} (-1)^{y(a) + \sum_{b \in I} (j(b) + y(b))} \widetilde{y(a)} - \sum_{(j,y) \in \mathcal{P}_a(m)} (-1)^{j(a) + \sum_{b \in I} (j(b) + y(b))} \widetilde{j(a)} \right);$$

here, for each integer c relatively prime to l, \tilde{c} denotes the positive integer smaller than l such that $c\tilde{c} \equiv 1 \pmod{l}$. For each $a \in I$, let \mathfrak{H}_a denote the set of maps f in \hat{I} satisfying

$$f(a) \in \{1, \dots, 2l-1\} \setminus \{l\}, \quad f(I \setminus \{a\}) \subseteq \{0, l, 2l\}.$$

Every pair (j, y) in $(\mathfrak{G}_a \times \mathfrak{F}) \cup (\mathfrak{F} \times \mathfrak{G}_a)$ then gives a map j + y in \mathfrak{F}_a . We put

$$\mathcal{R}(m) = \bigcup_{a \in I} (\mathcal{P}_a(m) \cup \mathcal{Q}_a(m)),$$

$$\mathfrak{H}(m) = \left\{ f \in \bigcup_{a \in I} \mathfrak{H}_a \middle| \sum_{b \in I} f(b)b \equiv m \pmod{p^n} \right\},\,$$

so that every (j,y) in $\mathcal{R}(m)$ satisfies $j+y \in \mathfrak{H}(m)$. We denote by ψ_m the map in \hat{I} such that $\psi_m(1) = m$ and that $\psi_m(a) = 0$ for all a in $I \setminus \{1\}$. Obviously, $\psi_m \in \mathfrak{H}(m)$ when $m \in \{1, \ldots, 2l-1\} \setminus \{l\}$. On the other hand, $\psi_m = 0$ in \hat{I} when m = 0.

Lemma 1. Let n_0 be any positive integer, and u an integer in $\{1, \ldots, 2l-1\} \setminus \{l\}$. Then the following statements are equivalent.

- (i) $\mathfrak{H}(u) = \{\psi_u\}$ in the case $n = n_0$;
- (ii) $\mathfrak{H}(u) = \{\psi_u\}$ whenever $n \geq n_0$.

Proof. This follows immediately from the definitions of I and $\mathfrak{H}(u)$.

Lemma 2. Let u be an integer in $\{1, \ldots, 2l-1\} \setminus \{l\}$ such that $p \not\mid u$ or $p \not\mid 2l-u$ according to whether u < l or u > l. Assume that $\mathfrak{H}(u) = \{\psi_u\}$. Then l does not divide $h_{n'}/h_{n'-1}$ for any integer $n' \geq n$.

Proof. By Lemma 1, it suffices to prove that l

does not divide h_n/h_{n-1} . Let us first consider the case u < l. We take any (j, y) in $\mathcal{R}(u)$ and any (j', y') in $\mathcal{R}(u + up^n)$. It follows that not only j + y but also j' + y' belongs to $\mathfrak{H}(u)$. Hence, by the assumption $\mathfrak{H}(u) = \{\psi_u\}$,

$$j(1) + y(1) = u, \quad j'(1) + y'(1) = u,$$

and, for each $b \in I \setminus \{1\}$,

$$j(b) = y(b) = j'(b) = y'(b) = 0.$$

Furthermore, neither of the equalities

$$(j(1), y(1)) = (u, 0), \quad (j'(1), y'(1)) = (0, u)$$

holds, because u is not divisible by p. We thus obtain

$$(j,y) = (0,\psi_u), \quad (j',y') = (\psi_u,0).$$

These mean that

$$\mathcal{R}(u) = \mathcal{Q}_1(u) = \{(0, \psi_u)\},\$$

$$\mathcal{R}(u+up^n) = \mathcal{P}_1(u+up^n) = \{(\psi_u, 0)\}.$$

In particular,

$$s(u) = \tilde{u}, \quad s(u + up^n) = -\tilde{u}.$$

Since l does not divide $2\tilde{u} = s(u) - s(u + up^n)$, we then see from [3, Lemma 2] (or [2, Lemma 3]) that l does not divide h_n/h_{n-1} .

In the case u > l, taking any (j, y) in $\mathcal{R}(u + lp^n)$ and any (j', y') in $\mathcal{R}(u + (u - l)p^n)$, we have by the hypothesis

$$(j, y) = (\psi_l, \psi_{u-l}), \quad (j', y') = (\psi_{u-l}, \psi_l),$$

similarly to the above, and hence we have successively

$$\mathcal{R}(u+lp^n) = \mathcal{Q}_1(u+lp^n) = \{(\psi_l, \psi_{u-l})\},$$

$$\mathcal{R}(u+(u-l)p^n) = \mathcal{P}_1(u+(u-l)p^n) = \{(\psi_{u-l}, \psi_l)\},$$

$$s(u+lp^n) = -\tilde{u}, \quad s(u+(u-l)p^n) = \tilde{u}.$$

It therefore follows again from [3, Lemma 2] that l does not divide h_n/h_{n-1} .

2. Assume now that p is 23 and l a primitive root modulo 529. In the rest of the paper, we are devoted to the proof of the theorem already stated.

Let $\rho = e^{\pi i/11}$, so that

$$V = \{ \rho^0 = 1, \dots, \rho^{10} \}, \quad \rho^{11} = -1.$$

We take any $z \in \Phi$ and put

$$\alpha = \sum_{\xi \in V} z(\xi)\xi - 1 = \sum_{m=0}^{10} \rho^m w_m,$$

where $w_0 = z(1) - 1$, $w_1 = z(\rho), \dots, w_{10} = z(\rho^{10})$. We further put

$$W_c = \sum_{m=c}^{10} w_m w_{m-c} - \sum_{m=0}^{c-1} w_{m+11-c} w_m$$

for each $c \in \{1, ..., 5\}$. Let σ be any automorphism of $\mathbf{Q}(\rho)$. It follows that

$$\begin{split} |\sigma(\alpha)|^2 &= \left(\sum_{m=0}^{10} \sigma(\rho)^m w_m\right) \left(\sum_{m=0}^{10} \sigma(\rho)^{-m} w_m\right) \\ &= \sum_{c=1}^{10} (\sigma(\rho)^c + \sigma(\rho)^{-c}) \sum_{m=c}^{10} w_m w_{m-c} + \sum_{m=0}^{10} w_m^2 \\ &= \sum_{c=1}^{5} (\sigma(\rho)^c + \sigma(\rho)^{-c}) W_c + \sum_{m=0}^{10} w_m^2. \end{split}$$

In view of the above expansion and the simple fact that, for real constants r_1 and r_2 , the function $x^2 + r_1x + r_2$ of a real variable x defined on a closed interval takes its maximum at an endpoint of the interval, we find that if the real function

$$\left(\sum_{m=0}^{10} \sigma(\rho)^m x_m - 1\right) \left(\sum_{m=0}^{10} \sigma(\rho)^{-m} x_m - 1\right)$$

of eleven variables x_0, \ldots, x_{10} in the closed interval [0, 2l] takes its maximum, then each value of x_0, \ldots, x_{10} is 0 or 2l and so

$$\begin{split} -4l^2 &< \sum_{m=1}^{10} x_m' x_{m-1}' - x_{10}' x_0' \leq 36l^2, \\ -8l^2 &< \sum_{m=2}^{10} x_m' x_{m-2}' - \sum_{m=0}^{1} x_{m+9}' x_m' \leq 28l^2, \\ -12l^2 &< \sum_{m=3}^{10} x_m' x_{m-3}' - \sum_{m=0}^{2} x_{m+8}' x_m' \leq 20l^2, \\ -12l^2 &\leq \sum_{m=4}^{10} x_m' x_{m-4}' - \sum_{m=0}^{3} x_{m+7}' x_m' < 16l^2, \\ -12l^2 &< \sum_{m=4}^{10} x_m' x_{m-5}' - \sum_{m=4}^{4} x_{m+6}' x_m' \leq 12l^2, \end{split}$$

where $x'_0 = x_0 - 1$, $x'_1 = x_1, \dots, x'_{10} = x_{10}$. Hence

$$\Re(\alpha) = \prod_{d=0}^{4} \left| \sum_{c=1}^{5} 2W_c \cos \frac{\pi c 3^d}{11} + \sum_{m=0}^{10} w_m^2 \right|$$

$$< \left(\left(18 \cos \frac{\pi}{11} + 14 \cos \frac{2\pi}{11} + 10 \cos \frac{3\pi}{11} + 8 \cos \frac{4\pi}{11} + 6 \cos \frac{5\pi}{11} + 11 \right)$$

$$\times \left(18\cos\frac{3\pi}{11} + 4\cos\frac{5\pi}{11} + 6\cos\frac{2\pi}{11} + 6\cos\frac{2\pi}{11} + 6\cos\frac{\pi}{11} + 4\cos\frac{4\pi}{11} + 11\right)$$

$$\times \left(2\cos\frac{2\pi}{11} + 14\cos\frac{4\pi}{11} + 10\cos\frac{5\pi}{11} + 6\cos\frac{\pi}{11} + 11\right)$$

$$\times \left(18\cos\frac{3\pi}{11} + 6\cos\frac{\pi}{11} + 11\right)$$

$$\times \left(18\cos\frac{5\pi}{11} + 4\cos\frac{\pi}{11} + 6\cos\frac{4\pi}{11} + 8\cos\frac{2\pi}{11} + 6\cos\frac{\pi}{11} + 11\right)$$

$$\times \left(2\cos\frac{4\pi}{11} + 4\cos\frac{3\pi}{11} + 10\cos\frac{\pi}{11} + 16\cos\frac{\pi}{11} + 6\cos\frac{\pi}{11} + 11\right)$$

$$\times \left(2\cos\frac{4\pi}{11} + 6\cos\frac{2\pi}{11} + 11\right) \left(4l^2\right)^5.$$

We thus obtain

$$M < 50412966(2l)^{10}$$
.

Let P be the set of prime numbers which are primitive roots modulo 529. Let S be the set of pairs (n', l') such that n' is a positive integer, l' is a prime number in P, and

$$23^{n'} < 50412966(2l')^{10}, \quad l' < 11\log_2\left(\frac{23^{n'+1}}{\pi}\sin\frac{\pi}{23}\right).$$

Each (n', l') in S then satisfies

$$n' < 31, \quad l' < 1523.$$

By [3, Lemma 1], (n,l) belongs to S if l divides h_n/h_{n-1} .

We put, for later convenience,

$$S' = \{ (7, l') \mid l' \in P, 293 < l' \le 389 \}$$

$$\cup \{ (8, l') \mid l' \in P, 389 < l' \le 613 \}$$

$$\cup \{ (9, l') \mid l' \in P, 613 < l' \le 1523 \}.$$

From now on, suppose that (n, l) belongs to $S \cup S'$. As $h_0 = 1$, it suffices for our proof to show that l does not divide h_n/h_{n-1} . We define a unit η in \mathbf{B}_n by

$$\eta = \prod_{a \in I} \frac{\sin(2\pi a/23^{n+1})}{\sin(2\pi(23^n+1)a/23^{n+1})}.$$

This is a typical example of a circular (or cyclotomic) unit of \mathbf{B}_n . For each positive integer $m \leq 10$, let a_m denote the integer such that

$$a_m \equiv 5^{23^n m} \pmod{23^{n+1}}, \qquad 0 < a_m < 23^{n+1}.$$

Since 5 is a primitive root modulo 23^{n+1} , we take as \mathfrak{p} the prime ideal of the 11th cyclotomic field $\mathbf{Q}(\rho)$ generated by 23 and $a_1 - \rho$. It follows that

$$I = \{1, a_1, \dots, a_{10}\}.$$

We let $\|\eta\|$ denote the maximum of the absolute values of all conjugates of η over \mathbf{Q} . Lemma 2 of [2] implies that $h_n/h_{n-1} \not\equiv 0 \pmod{l}$ if $l \ge \log_2 \|\eta\|$ (cf. [1, Lemmas 2, 3]).

Let us first consider the case n < 5. Put

$$S_1 = (\{1, 2, 3, 4\} \times \{5, 7, 11\}) \cup (\{2, 3, 4\} \times \{17, 19\})$$

$$\cup (\{4, 5\} \times \{37\}),$$

$$S_2 = \{(5,5), (5,7), (5,11), (5,17), (5,19)\}$$

= $\{5\} \times \{5,7,11,17,19\}.$

Table I

	1 abic 1	
(n, l)	s(1)	$s(1+23^n)$
(5,37)	-20	-1
(4, 37)	-313	-153
(4, 19)	-70	155
(4, 17)	-75	18
(4, 11)	-10	13
(4,7)	26	-6
(4,5)	13	-10
(3, 17)	-294	-322
(3, 11)	-94	-74
(3, 5)	29	-23
(2, 19)	6170	1482
(2,11)	2803	73
(2,5)	211	-10
(1, 11)	15055	-11216
(1,7)	-3532	-3975
(1,5)	115	769
	I	

Table II

(n,l)	s(2)	$s(2+23^n)$
(3,19)	242	-427
(3,7)	-134	-41
(2, 17)	-1297	-2032
(2,7)	-55	1335

Using a personal computer together with Mathematica, we have verified that the maximal integer not exceeding $\log_2 \|\eta\|$ is either 12, 20, 27, 40 or 38 according as n is either 1, 2, 3, 4 or 5. Therefore (n, l)satisfies $l < \log_2 \|\eta\|$ if and only if $(n, l) \in S_1 \cup S_2$. By further use of the (personal) computer under the condition $(n,l) \in S_1$, we have computed s(m) for suitable integers m after the determination of $\mathcal{P}_a(m)$, $\mathcal{Q}_a(m)$ for all $a \in I$. Results for such cases of (n, l)are given in Tables I and II. We therefore know from [3, Lemma 2] that l does not divide h_n/h_{n-1} when (n, l) belongs to S_1 . In the case $(n, l) \in S_2$, we can find by computer an example of u satisfying the hypothesis of Lemma 2; namely, we have $\mathfrak{H}(u) = \{\psi_u\},\$ with u equal to either 3, 6, 2, 7 or 36, according to whether l is either 5, 7, 11, 17 or 19. Hence, by Lemma 2, the product $5 \cdot 7 \cdot 11 \cdot 17 \cdot 19$ is relatively prime to $h_{n'}/h_{n'-1}$ for all integers $n' \geq 5$. It is thus proved that $h_n/h_{n-1} \not\equiv 0 \pmod{l}$ whenever $n \leq 5$.

Let us next proceed to the case where n=6 so that $l \leq 293$. By an argument above, we may suppose that $l \not\in \{5,7,11,17,19\}$, i.e., $l \geq 37$. With the help of a computer, as in the case $(n,l) \in S_2$, we can always find an example of u satisfying the hypothesis of Lemma 2. Values of $u \in \{1,\ldots,l-1\}$ such that $\mathfrak{H}(u) = \{\psi_u\}$, for all values of l, are given in Table III. Consequently, Lemma 2 actually shows that $h_n/h_{n-1} \not\equiv 0 \pmod{l}$ not only when n=6 but also when $n \geq 7$ and $l \leq 293$.

Let us finally deal with the case $n \geq 7$. Naturally supposing that l > 293, we put

$$T = \{ (n' + m, l') \mid (n', l') \in S', \ 0 \le m \in \mathbf{Z} \}.$$

In the case $(n, l) \in S'$, we have checked $\mathfrak{H}(1) = \{\psi_1\}$ by computer. Therefore, in virtue of Lemma 2, l does not divide $h_{n'}/h_{n'-1}$ for all integers n' with $(n', l) \in T$. Since

$$\{(n', l') \mid (n', l') \in S, \ n' \ge 7\} \subseteq T,$$

it then follows that $h_n/h_{n-1} \not\equiv 0 \pmod{l}$ whenever $n \geq 7$. Thus the theorem is completely proved.

Correction to [1]. Instead of defining $f(\chi, u)$ by line 19 on page 258, one should define $f(\chi, u)$

Table III

l	37	43	53	61	67	79	83	89	97	103	107	113	149	157	181	191	199	227	241	251	281	283	293
\overline{u}	1	1	1	2	2	1	1	2	4	2	1	90	3	3	13	3	4	8	4	8	12	281	5

as the maximal divisor of $f(\chi)$ relatively prime to u, with the notation \tilde{u} retained; furthermore, on page 260, " $q_0=\gcd(q,2t)$ " in line 3, " $f'=f(\psi_2^d)$ " in line 6, and " $\psi_2^d(b)=1$ " in line 11 should be " $q_0=f(\psi_2)/t$ ", " $f(\psi_2^d)\,|\,f'$ ", and " $\psi_2(b)^d=1$ ", respectively.

Acknowledgment. The authors express their sincere gratitude to the referee who carefully read the paper in manuscript and made helpful comments for its improvement.

References

[1] K. Horie, Ideal class groups of Iwasawa-theoretical abelian extensions over the rational field, J.

- London Math. Soc. (2) $\mathbf{66}$ (2002), no. 2, 257–275.
- [2] K. Horie, Primary components of the ideal class group of the \mathbb{Z}_p -extension over \mathbb{Q} for typical inert primes, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 3, 40–43.
- [3] K. Horie and M. Horie, The narrow class groups of some \mathbb{Z}_p -extensions over the rationals, Acta Arith. 135 (2008), no. 2, 159–180.
- [4] K. Horie and M. Horie, The narrow class groups of the Z₁₇- and Z₁₉-extensions over the rational field, Abh. Math. Sem. Univ. Hamburg. (to appear).
- [5] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg **20** (1956), 257–258.