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Abstract: In this paper, we make structural elucidation of some interesting arithmetical
identities in the context of the Parseval identity.

In the continuous case, following Romanoff [R] and Wintner [Wi], we study the Hilbert space
of square-integrable functions L,(0,1) and provide a new complete orthonormal basis—the Clau-
sen system—, which gives rise to a large number of intriguing arithmetical identities as manifesta-
tions of the Parseval identity. Especially, we shall refer to the identity of Mikolas-Mordell.

Secondly, we give a new look at enormous number of elementary mean square identities in
number theory, including H. Walum’s identity [Wa] and Mikolds’ identity (1.16). We show that
some of them may be viewed as the Parseval identity. Especially, the mean square formula for the
Dirichlet L-function at 1 is nothing but the Parseval identity with respect to an orthonormal basis

constructed by Y. Yamamoto [Y] for the linear space of all complex-valued periodic functions.

Key words:

1. The Hilbert space L2(0,1). The purpose
of the present paper is to show that some number-
theoretic identities have very natural hidden struc-
ture, i.e. the Parseval identity, that is why they are
to hold. To uncover such phenomena, we are to dis-
cover suitable complete orthonormal systems. Note
that in the case of finite-dimensional normed vector
spaces, all orthnormal systems (ONS) consisting of
the dimension number of elements are complete and
therefore, we immediately obtain the Parseval identi-
ties. However, in the Hilbert space Ly(0, 1), the space
of all square-integrable functions, completeness is
essential to attain the Parseval identity. This sec-
tion is a sequel to [KTZ] and by incorporating the
studies of Wintner [Wi] and Romanoff [R], provides
a new orthonormal basis (ONB)—the Clausen sys-
tem, {1, ani(z)} (n # kmod 2) given in Theorem 2.

The following lemma is a slight modification of
Wintner’s result [Wi, pp. 566-569].
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Lemma 1. Let the system {¢(kt)}, where
we understand ¢(0t) =1 and ¢ is an Lo-function of
mean value 0, be an ONS and each is given by

(1.1)
o (kt) ~

gk

(ay, cos(2mknt) + by, sin(2wknt)) (ag = 0).

Il
=

n

For any function f € Ly(0,1), let

(1.2) F) o~ S erd(kt)
k=1

be its orthogonal expansion, whence in particular,
3% 2 < oo. Suppose the growth conditions

n=1"n

(13) An = Z |Cdan/d| = O(n7%*5)7
d|n
B, = bujal = O(n37?
% [cabuya| = O(n7+)

hold in view of the assumption
Cn = O(?”L_%_é)7 V6 > 0.

Then the partial sums f,(t) =Y _, crp(kt) converge
to f(t) — ¢y Li.m., i.e. f01|f— o —f,,L|2dt —0asn—

00, and the Fourier series of f is given by

(1.5)
F(t) = o~ (ay cos(2mnt) + B, sin(2mnt)) (ag = 0),

n=1

(1.4)
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Qp = chan/da 571 = chbn/d'

dln dn

Proof is essentially given in [Wi, pp. 567-568].
The main ingredients are that the sequence of par-
tial sums {f,(¢)} is a Cauchy sequence in view of
(1.3) and that there exists a function to which the
sequence f,(t) converges Lim., which must be
f(t) — ¢y by assumption. The statement becomes
simpler if we restrict to those f whose mean values
are 0. Then we need to add the non-vanishing con-
stant 1 to the system {@(kt)}, k € N (cf. [Wi, pp.
564-565]).

Let

o 2mm
=>
n=1

be the polylogarithm function, and for s =k € N,
let

(1.7) oc=Res>1

Z cos(27ﬂrtn) L) = Z sin(2mwtn) '

k k
n=1 n n=1 n

(18) 1) =

Under this notation, Wintner [Wi, Statement (II),
p. 566] essentially proved that for v € N, each of

{11 (kt)}, {1(kt)}

forms a basis of Ly(0,3). We may proceed slightly
further to contend.
Proposition 1.

is complete in Ly(0,1):

{105 (kt) } U {15 (kt) },

the system of (periodic) Bernoulli polynomials, which
we denote by { By(t)};

{l2k 1 kt)} U{l’l;k(kt)}v

the system of Clausen functions, which we denote by
{Ar(t)}.

Proof. We show that {1,I5(kt)} and
{1,cos(27kt)} are equivalent, i.e. that their closures
coincide. Indeed, using f(t) = cos(2wkt) and ¢(kt) =
1°(kt), in (1.2) we deduce that «, are all 0 except for
n = k; ap = 1. Denoting this function by E(n), and
applying the Mobius inversion formula we derive

= SH)E) e

d|n

Each of the following systems

(1.9)
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Hence it follows that ¢, = O(n™") and so (1.4) is
satisfied and a fortiori, (1.3). Hence, Lemma 1 assures
that cos(27kt) is well approximated by finite combi-
nations of I(kt)'s, so that it lies in the closure of
{1,15(kt)}. The reverse inclusion being clear, we
conclude that these systems are equivalent. Similarly
we can prove the equivalence of {1,15(kt)} and
{1,sin(27kt)}. Hence we conclude the assertion in
view of the completeness of the trigonometric func-
tions. ]

At this point we quote the following result from
[KTZ] and [R].

Proposition 2 ([KTZ, Proposition 2] and [R]).
Each of the sequences {1, 8,;(z)} and {1, a,;(z)}
(n £ kmod2) forms an orthonormal system of
Ly(0,1), where

(1.10)
L n
Bralz) = 1 Z” —)d*By(dx — [dx]),
(%) Barpar(n) din ( )
(1.11)

>~ (%) d* Au(da — [dal),

a7l:k(x) =
m/ (% ) BQMP%(”) d|n

and where @op(n) = n?* ] (1 - ﬁ) is the Jordan

totient function.

Now from Proposition 1 and Proposition 2 we
deduce the following result. The Bernoulli system is
due to Romanoff [R] and the Clausen system is new.

Theorem 1. FEach of {1,08,i(z)} and
{1, ani(2)} (n# kmod 2) forms a complete or tho-
normal basis of Ly(0,1).

Now we shall give some examples of orthogonal
expansions and Parseval identities based on Theo-
rem 1. We first evaluate the orthogonal coefficient,
with (s, u) designating the Hurwitz zeta-function,

1

Cn;k(s): A C(Sau)an:k(u)dua

(1.12)

which reduces to

/0 ¢(s,u) A (bu)du

for b € N. As in the proof of [KTZ, Corollary 2], we
may prove the following result which is a generaliza-
tion of [KTZ, (20)], which in turn is a generalization
of the results of [EM1, EM2].

Proposition 3. We have for o <0
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(1.13)

1
/ C(s,u)Ag(bu)du
0
m(s+k)
2
Rewriting (1.11) in the form

= = u(5) o)

k bn

with @, = 7/ 2kk ™" Barpar(n), and using (1.13) we

evaluate the orthogonal coefficients:

(1.14) Can(s) = aikz u(?)
n; sln
k! 5— n(s+k)

= . 27)5 K
an,k(m” 1(n)(27)"" cos 9

= —k(27m)* ¥ cos V(1 —8)¢(1+ k- s).

k()

6k/0 C(s,u)Ag(bu)du

x (1 =38)¢(1+k—s).

Example 1. For o < 0, we have the orthogo-
nal expansion with respect to {1, i (u)}

= Z Cn;kOln k (’LL)
n, k

where cpp = cni(8) s given by (1.14).
Using (1.14), we may easily write down the Par-
seval formula for

[ cts.uctzma

However, we shall not evaluate it here and refer to
the Mordell-Mikolas formula given in the following
remark.

Remark 1. Fora, b € N we have

/< Aaub)¢(z {bu})du

()" <£;> ooy
xT'(1 =51 —2)C2—s—2),

(1.15)

valid for max{c,0} + max{Rez, 0} <1 (¢f. [Mil, p.
158]), where d = (m,n) the g.c.d. of m, n. Indeed,
(1.15) is equivalent to

(1.16)

1
/ (5, ) (2, u)du =
0

2(2m)* 7 (1 — $)[(1 — 2)

X cos(g (s — z))((? —s—2),
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which is [Mil, (5.1)]. Mikolds [Mi2] gave the special
case of (1.15) with s = z.

Proof of (1.15) is easily accessible if we make use
of the results of Mikolas [Mil, Mi2;] and Mordell [Mo],
where an argument similar to Mordell’s has been
given also by Romanoff [R].

We may obtain an enormous amount of new in-
triguing identities and the following are illustrative
examples which will be treated more thoroughly else-
where.

Example 2

iex’ (ewg‘(—l)]‘ — eJTiz) C(J+1—2)¢1 —2z+5s)

Gk +5)C(k+2s — )Pk +1 - 2)
CRRIC(2k + 35— )
G145k +H1+25 = )G (R +2 - 2)

CC(2k+2)C(2k+2+3s — )
Let

Vi Y

n=—oo
N#0

We have

:j!SiIlﬂ'S[

Example 3.

2minu

\I/(’U, u) ’m 27r|n|v)

be a Maass wave form corresponding to the eigen
value 1/4 + K> of the automorphic Laplacian, where
K signifies the modified Bessel function. Then

Ck+2-2) id n)K;k(2v)
C2(2k+2) nh+l

p(n)

n=1

_ i d(n)K;x(2mnv) o(n).

n=1 nliz
Example 4. Let

— 5 Z T(n K0(27r|n|v> oo

(24)

% (Uv )

where T(n) is the coefficients defined by [Coh]. Then

T(n)Ko(m>
i(24)' " Fsin Z %
n=0 (24), n>0 "
_ mkr1-9 T Ko (%) digy)
—cog—=2 1 7 k
2 ¢k, (24), n>0 "

T(m) Ko (%517) dl)
nkt

s 72 (k+2—2)
nN————
S B ok 1 2)

n=0(24), n>0

2. Mean square identity and Yamamoto’s

basis. In the remaining of the paper we will estab-
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lish a new look at discrete mean square result as Par-
seval identities.

Let x be a Dirichlet character modulo N, with
N > 1. Let L(s,x) denote the associated Dirichlet
L-function defined by

Lis.x) = i x(n)

n

Res > 1.

For non-principal , the series defining L(s, x) is con-
vergent for o > 0 and we may speak of the value
L(1,x), which is related to the class number of
a quadratic field.

In the special case of N =p, an odd prime, H.
Walum [Wa] discovered an intriguing identity

L = pp)p—1)(P—2) ,

T
x(=1)=-1 12p? ’

(2.1)

where the sum is over all odd Dirichlet characters x
modulo a prime p, and ¢(n) is the Euler function.
Walum’s identity (2.1) stimulated some authors to
generalize it to the case of composite modulus and
the product of two L-functions; cf. [Loul, Lou2,
Lou3], which were later generalized by [LZ] and this
last result was recently generalized and elucidated
fully in [KMZ]. However, except for the last paper,
other authors used ad hoc methods and one cannot
see the reason why such identities are to hold.

We push forward the structural study on such
sums in [KMZ] and establish the following structural
elucidation of the generalization of (2.1) to be proved
in §3.

Theorem 2. As a Parseval identity with re-
spect to the orthonormal basis (ONB) Xo(N) given
in Lemma 3, we have the identity

Z(lN) S P

d|N d Xodd,mod%

d
a 2
_ (i)Q 3 <Cot@7r>
2N 0#a mod N N

Our approach depends on Y. Yamamoto’s [Y]
method for the inner product linear space C(N) of
all complex-valued periodic functions f of period N
with V € Z*. We assemble some basic results below.

C(N)={f1f :{Z— C; f(n+N) = f(n)}.
The inner product of ¢, p, € C(N) is defined by

(2.2)

(2.3) (er02) = > wi(a)pa(a),

a mod N
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where S means the complex conjugation of S.

Let x be a Dirichlet character mod wu, then
x € C(ku) for k=1,2,.... For a positive integer d
we define x¥ € C(du) by

D(n) = {X(ﬁ), if d|n,

(2.4)
0, if d|n.

Let
X(N) = {x9|x Dirichlet character mod u, du = N}.

In [Y, Proposition 1.1] Yamamoto showed the
following result:

Lemma 2.
(0S) of C(N).

It is immediate to deduce the following result
from Lemma 2.

X(N) is an orthogonal system

Lemma 3. Let N > 2. Then
1 @
(2.5) Xo(N) = x'7\d| N
ey

is an ONB of C(N).

We note that the normality of the system in
Lemma 3 entails the fact that the Euler function
©(n) is the number of natural numbers < n coprime
to n.

If {¢),---,p,} is an ONB of an inner product
space, then for any ¢, -, ¢, € C, we have (a finite
form of) the Parseval identity

n
§ CrPk
k=1

for f € C(N).

We shall also use the following lemma [Vista,
Lemma 8.3] in an essential way.

Lemma 4. For the sum over odd characters
mod ¢, we have

2
n

2 2 2
= lal < 1IAP =) lel,

k=1 X

(2.6)

if n#Z £1 (mod q)

N

>

=
I
S

old . —
5o ifn=1(mod q)
x(=1)=-1 o@ . —
—5F if n=-1(mod q).
Remark 2. Lemma 4 refers to the difference

between two groups, {all characters} and {even char-
acters}. The orthogonality of these characters give
rise to the difference {odd characters} which looks
like having orthogonality, although it is not a group.
From now on we shall speak about the orthogon-
ality of odd characters in the above interpretation.



No. 9]

3. Proof of Theorem 2.
Proof. We want to find a function f whose
Fourier expansion is
Z Cxo X0y

X0€Xo(N)
with
——=L(1,X), if x(-1)=
99(;)
0, if x(-1) =1,

where x mod N /d corresponds to xo as in (2.4).
For any a #Z 0 (mod N), one has

= Z Cxo X0 (a’)

1,
(3.1) ¢, =

1 1

= L(1,%) X (a)
an Je) xzod:d (%)

- L(1 4.
%};@ > n0x()
dla

But noting that x is a Dirichlet character mod N/d,

we see that x(4)#0 only if (Z,N)—l ie.

(a, N) = d. Hence only one value (a, N) of d is possi-

ble, and
1 B a
(3.2)  fla) = @((a]’\;\;)) sz;z L(1,X)X<W>.
mod &

(a,N)

We appeal to the following form of the Dirichlet class
number formula [Vista, (8.30), p. 174]

T b
— x(b) cot —7
2N 0#b mod N N

(3-3) L(1,X) =

which is valid for all x not necessarily primitive, to
rewrite (3.2) as

cotﬂw
> oty

N
2N s"(W) b#0 mod N

PR ( N))'

X odd
mod &
By the orthogonality of odd characters, this becomes

(a.N)

(3.4)

Next, the Parseval identity for f as
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65 I =Llewl =3 o (_)

dN ¥\d

> LX)
x odd

d X
mo 7]

Hence, by (3.4)

3.6) P = |f(a)?

D

a#0 mod N

o 2
( T )2 Z ( (a,N) )
= |== cot——m | .
2N a#0 mod N N

Equating (3.5) and (3.6), we complete the proof of
Theorem 2. O

Corollary 1. For N = p an odd prime, (2.2)
reduces to (2.1).

Indeed, (2.2) reads
(3.7)
DY b3
— |(1x—() (cot 7r).
dlp (,O(S) X odd a=1
mod L

(d)

Applying the inverse Eisenstein formula [Vista,
(8.41), p. 178]

a ek
cot—m =21 Z By <) vk,
p """ \p

where Bj(z) = Bi(z — [z]) with [z] designating the
integral part of  and Bj(x) denotes the 1st Bernoulli
polynomial, we conclude the assertion.

Remark 3. The proof hinges on the pseudo-
group structure of the set of all odd characters and
the form of the class number formula (3.3) wvalid for
all odd characters, in the spirit of [HKT] (cf. [Vista,
Chapter 8]). The ordinary form of the class number
formula for an odd primitive character mod N is

z()

-1
Although we cannot apply the above argument to
(3.8) for a general modulus, we can give a structural
proof of Walum’s formula for the prime modulus
case, all the non-principal characters being primitive.
Acknowledgements. The authors would like
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(3.8) L(1,x)
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